

LINEAR PRODUCTS DATABOOK

OPER ATIONAL AMPLIFIERS COMPARATORS INSTRUMENTATION AMPLIFIERS ISOLATION AMPLIFIERS ANALOG MULTIPLIERS/DIVIDERS LOG/ANTILOG AMPLIFIERS RMS-TO-DC CONVERTERS SPECIAL FUNCTION COMPONENTS TEMPER ATURE TR ANSDUCERS SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS DIGITAL PANEL INSTRUMENTS APPLICATION SPECIFIC ICS POWER SUPPLIES COMPONENT TEST SYSTEMS

1988 LINEAR PRODUCTS DATABOOK

©Analog Devices, Inc., 1988 All Rights Reserved

General Information Operational Amplifiers Comparators Instrumentation Amplifiers **Isolation Amplifiers Analog Multipliers/Dividers** Log/Antilog Amplifiers **RMS-to-DC** Converters **Special Function Components Temperature Transducers Signal Conditioning Components & Subsystems Digital Panel Instruments Application Specific ICs Power Supplies Component Test Systems Package Information** Appendix **Product Index**

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

LINEAR PRODUCTS DATABOOK April 1988

© Analog Devices, Inc., 1988 All Rights Reserved

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Products in this book may be covered by one or more of the following patents. Additional patents are pending.

RE29,619, RE29,992, RE30,586, RE31,850, DES. 233,909, 3,007,114, 3,278,736, 3,355,670, 3,441,913, 3,467,908, 3,500,218, 3,530,390, 3,533,002, 3,685,045, 3,729,660, 3,793,563, 3,842,412, 3,868,583, 3,890,611, 3,906,486, 3,909,908, 3,932,863, 3,940,760, 3,942,173, 3,946,324, 3,950,603, 3,961,326, 3,978,473, 3,979,688, 4,016,559, 4,020,486, 4,029,974, 4,034,366, 4,054,829, 4,092,688, 4,123,698, 4,136,349, 4,141,004, 4,213,806, 4,250,445, 4,268,759, 4,270,118, 4,268,225, 4,309,693, 4,313,083, 4,323,795, 4,338,591, 4,349,811, 4,363,024, 4,374,314, 4,383,222, 4,395,647, 4,399,345, 4,400,689, 4,400,690, 4,427,973, 4,439,724, 4,460,891, 4,475,103, 4,475,169, 4,476,538, 4,481,708, 4,484,149, 4,485,372, 4,491,825, 4,511,413, 4,521,764, 4,543,560, 4,543,561, 4,547,766, 4,547,961, 4,556,870, 4,558,242, 4,562,400, 4,565,000, 4,586,019, 4,586,155, 4,590,456, 4,596,976, 4,601,760, 4,604,532, 4,608,541, 4,622,512, 4,626,769, 4,639,683, 4,644,253, 4,646,056, 4,646,238, 4,678,936, 4,684,922, 4,685,200, 4,694,276, 4,697,151, 4,703,283, 4,707,682, 4,709,167, 4,717,883

France:

111.833, 70.10561, 75.27557, 76 08238, 77 20799, 78 10462, 79 24041, 80 00960, 80 11312, 81 02661, 81 14845, 82 09758, 83 03140

Japan:

1,092,928, 1,242,936, 1,242,965, 1,306,235, 1,337,318, 1,401,661, 1,412,991

West Germany:

2,014 034, 25 40 451.7, 26 11 858.1

U.K.:

1,310,591, 1,310,592, 1,537,542, 1,590,136, 1,590,137, 1,599,538, 2,008,876, 2,032,659, 2,040,087, 2,050,740, 2,054,992, 2,075,295, 2,081,040, 2,100,081, 2,103,884, 2,104,288, 2,107,951, 2,115,932, 2,118,386, 2,119,139, 2,119,547, 2,126,445, 2,126,814, 2,135,545, 2,137,787

Canada:

984,015, 1,006,236, 1,025,558, 1,035,464, 1,054,248, 1,141,034, 1,141,820, 1,142,445, 1,143,306, 1,150,414, 1,153,607, 1,157,571, 1,159,956, 1,177,127, 1,177,966, 1,184,662, 1,184,663, 1,191,715, 1,192,310, 1,192,311, 1,192,312, 1,203,628, 1,205,920, 1,212,730, 1,214,282, 1,219,679, 1,219,966, 1,223,086

Sweden: 7603320-8

General Information Contents

Page

Introduction	1 – 3
Table of Contents	1 – 5

1–2 GENERAL INFORMATION

Analog Devices designs, manufactures and sells worldwide sophisticated electronic components and subsystems for use in real-world signal processing. More than six hundred standard products are produced in manufacturing facilities located throughout the world. These facilities encompass all relevant technologies, including several embodiments of CMOS, BiMOS, bipolar and hybrid integrated circuits, each optimized for specific attributes – and assembled products in the form of potted modules, printedcircuit boards and instrument packages.

State-of-the-art technologies have been utilized (and in many cases invented) to provide timely, reliable, easy-to-use advanced designs at realistic prices. Our popular IC products are available in both conventional and surface-mount packages (SO, LCC, PLCC) and many of our assembled products employ surface-mount technology to reduce manufacturing costs and overall size. More than twenty years of successful applications experience and continuing vertical integration insure that these products are oriented to user needs. The ongoing application of today's state-of-the-art and the invention of tomorrow's state-of-the-art processes strengthen the leadership position of Analog Devices in standard data-acquisition and signal-processing products and make us a strong contender in high-performance mixed-signal ASICs.

MAJOR PROGRESS

Since publication of the selection guides in the 1986 supplement to our 1984 *Data Acquisition Databook*, more than 120 significant new products have been introduced; they run the gamut from brand new product categories and technologies to new standard products (with improvements in price, performance, or design) to augmented second-source products. They are all classified and summarized in these Volumes, along with existing products that are desirable for use in new designs.

Among the landmark new linear products are high-accuracy op amps – such as the ultralow-offset-and-drift AD707, wideband transconductance op amps – both monolithic (AD5539) and hybrid (AD9611) and the 60-femtoampere AD549 electrometer – using ADI's patented Top-Gate FET process. Other new high-performance monolithic devices include the fast, accurate AD9686 comparator, the AD625 software-programmable-gain amplifier, the innovative AD693 4-to-20mA sensor transmitter, the AD834 ultimate analog multiplier, plus the AD9521 r-f log devices and the AD890/891 data-recovery chip set. Also of note are the 5B Series of compact modular isolated signal-conditioners, the AD210 high-performance isolator and the 1B series of DIP-packaged signal conditioners – all of which employ automated surface mount assembly for compactness, low cost and high reliability.

THE 1988 LINEAR PRODUCTS DATABOOK

This Volume provides complete technical data on Analog Devices "linear" products – designed to process, condition and otherwise operate on *analog signals* with *analog results*. One of a set of three volumes, it is accompanied by the *DSP Products Databook*, dedicated to products for high-performance digital signal-processing (i.e., *digital-to-digital*) and the *Conversion Products Databook*, which covers products involved in spanning the interface *between analog and digital*.

The product data in this book is intended primarily for the majority of users who are concerned with new designs. For this reason, those existing and available products that offer little if any unique advantage over newer products in future designs are included in the Index and their data sheets are available from us separately – but they aren't published in this book.

This book includes:

- Comprehensive data sheets on more than 160 significant product families;
- Orientation material and selection guides for rapid product finding;
- A representative list of available Analog Devices technical publications on real-world analog and digital signalprocessing;
- Worldwide Service Directory; and
- Product Index to all three volumes.

TECHNICAL SUPPORT

Our extensive technical literature discusses the technology and applications of products for precision measurement and control. Besides tutorial material and comprehensive data sheets, including a large amount in our Databooks, we offer Application Notes. Application Guides, Technical Handbooks (at reasonable prices). and several free serial publications; for example, Analog Productlog provides brief information on new products being introduced, and Analog Dialogue, our technical magazine, provides in-depth discussions of new developments in analog and digital circuit technology as applied to data acquisition, signal processing, control and test. DSPatch is a quarterly newsletter that brings its readers up-to-date applications information on our DSP products and the general field of digital signal processing. We maintain a mailing list of engineers, scientists, and technicians with a serious interest in our products. In addition to Databook catalogs, we also publish several short-form catalogs on specific product families. You will find Technical Publications described on pages 17-6 and 17-7 at the back of the book.

SALES OFFICES

Backing up our design and manufacturing capabilities and our extensive array of publications is a network of sales offices and representatives throughout the United States and most of the world. They are staffed by experienced sales and applications engineers, and many of them maintain a local stock of Analog Devices products. Our Worldwide Service Directory, as of the publication date, appears on pages 17-8 and 17-9 at the back of the book.

RELIABILITY

The manufacture of reliable products is a key objective at Analog Devices. The primary focus is the companywide Quality Improvement Process (OIP). In addition, we maintain facilities that have been qualified under such standards as MIL-M-38510 for ICs in the U.S. and Ireland and MIL-STD-1772 for hybrids. More than 20 of our products - both proprietary and second-source - have qualified for JAN part numbers; others are in the process. A larger number of products - including many of the newer ones just starting the JAN qualification process - are specifically characterized on Standard Military Drawings (SMDs). Most of our ICs are available in versions that comply with MIL-STD-883C Class B. We publish a Military Products Databook for designers who specify ICs and hybrids for military contracts (the 1987 issue contains data on nearly 150 available product families). A newsletter, Analog Briefings, provides current information about the status of reliability at ADI.

Our PLUS program makes available standard devices (commercial and industrial grades, plastic or ceramic packaging) for *any* user with demanding application environments, at a small premium. Subjected to stringent screening, similar to MIL-STD-883 test methods, they are often suffixed "/+" and are available from stock.

PRODUCTS NOT FOUND IN THE SELECTION GUIDES

For maximum usefulness to designers of new equipment, we have limited the contents of selection guides to products most likely to be used for the design of new circuits and systems. If the model number of a product you are interested in is not in the Index, turn to page 17-4 at the back of this volume where you will find a list of older products for which data sheets are available upon request. On page 17-5 you will find a guide to substitutions (where possible) for products no longer available.

PRICES

Accurate, up-to-date prices are an important consideration in making a choice among the many available product families. Since prices are subject to change, current price lists and/or quotations are available upon request from our sales offices.

Table of Contents

Page

1

Operational Amplifiers – Section 2
Selection Guide
Orientation
AD380 – Wideband Fast Settling, FET-Input Op Amp 2 – 15
AD381/382 – High Speed, Low Drift, FET Operational Amplifiers
AD507 - IC Wideband Fast Slewing, General Purpose Operational Amplifier
AD509 – High Speed, Fast Settling IC Op Amp 2 – 31
AD515A – Monolithic Precision, Low Power FET-Input Electrometer Op Amp
AD517 – Low Cost, Laser Trimmed Precision IC Op Amp
AD542/544/547 – High Performance, BiFET Operational Amplifiers
AD548 – Precision, Low Power BiFET Op Amp
AD549 – Monolithic Electrometer Operational Amplifier
AD642 – Precision Low Cost, Dual BiFET Op Amp
AD644 – Dual High Speed, Implanted BiFET Op Amp
AD647 – Ultralow Drift, Dual BiFET Op Amp
AD648 – Dual Precision, Low Power BiFET Op Amp
AD707 – Ultralow Drift Op Amp
AD708 – Dual Ultralow Drift Op Amp
AD711 – Precision Low Cost, High Speed BiFET Op Amp
AD712 – Dual Precision, High Speed BiFET Op Amp
AD713 – Quad Precision, High Speed BiFET Op Amp
AD741 Series – Low Cost, High Accuracy IC Op Amps
AD744 – Precision 500ns Settling BiFET Op Amp
AD746 – Dual Precision 500ns Settling BiFET Op Amp
AD821 – Single Supply, Low Power Precision Op Amp
AD840 – Wideband Fast Settling Op Amp
AD841 – Wideband, Unity Gain, Stable Fast Settling Op Amp
AD842 – Wideband, High Output Current, Fast Settling Op Amp
AD845 – Precision 16MHz CBFET Op Amp
AD846 – Very High Speed Operational Amplifier
AD847 – High Speed, Low Power Monolithic Op Amp 2 – 17
AD848 – High Speed, Low Power Monolithic Op Amp
AD849 – High Speed, Low Power Monolithic Op Amp 2 – 18
AD5539 – Ultrahigh Frequency Operational Amplifier
AD9610 – Wide Bandwidth, Fast Settling Operational Amplifier
AD9611 – Wide Bandwidth, Fast Settling Operational Amplifier
ADLH0032G/0032CG – Ultrafast FET Operational Amplifiers
ADLH0033G/0033CG – High Speed Buffer Amplifiers
AD OP-07 – Ultralow Offset Voltage Op Amp
AD OP-27 – Ultralow Noise, Precision Op Amp 2 – 22
AD OP-37 – Ultralow Noise, High Speed Precision Op Amp ($A_{VCL} \ge 5$)
HOS-050/050A/050C - Fast Settling Video Operational Amplifiers
HOS-060 – Low Offset, Fast Settling Video Operational Amplifier
HOS-100AH/100SH – Wide Bandwidth, High Speed Buffer Amplifiers 2 – 25
HOS-200 – Wide Bandwidth, High Speed Buffer Amplifier 2 – 25

Page

Comparators – Section 3 3	- 1
Selection Guide	- 2
Orientation	- 3
AD790 - Fast Single Supply Comparator	- 5
AD9685/9687 – High Speed Comparators	- 9
AD9686 - High Speed TTL Voltage Comparator	- 13
AD96685/96687 – Ultrafast Comparators	- 17
Testing and the American Section A	
Instrumentation Ampiniers – Section 4	- 1
Selection Guide	- 3
Orientation	- 4
AD365 – Programmable Gain & Track/Hold DAS Amplifier	- 7
AD521 - Integrated Circuit Precision Instrumentation Amplifier	- 15
AD522 - High Accuracy, Data Acquisition Instrumentation Amplifier	- 21
AD524 – Precision Instrumentation Amplifier	- 25
AD526 – Software Programmable Gain Amplifier	- 37
AD624 – Precision Instrumentation Amplifier	- 49
AD625 – Programmable Gain Instrumentation Amplifier	- 61
Isolation Amplifiers – Section 5	- 1
Selection Guide	- 3
Orientation	- 4
AD202/204 – Low Cost, Miniature Isolation Amplifiers	- 7
AD210 – Precision Wide Bandwidth 3-Port Isolation Amplifier	- 19
AD295 – Precision Hybrid Isolation Amplifier	- 27
284J – Economy High Performance, Self-Contained Isolation Amplifier	- 33
2861/281 – High CMV High Performance, Synchronized Isolation Amplifiers	- 39
289 – Precision Wide Bandwidth Synchronized Isolation Amplifier	- 45
290A/292A – Low Cost. Single and Multichannel Isolation Amplifiers	- 51
	- 51
Analog Multipliers/Dividers – Section 6	- 1
Selection Guide	- 3
Orientation	- 4
AD532 – Internally Trimmed Integrated Circuit Multiplier	- 7
AD534 – Internally Trimmed Precision IC Multiplier	- 13
AD538 – Real-Time Analog Computational Unit (ACU)	- 23
AD539 – Wideband Dual-Channel Linear Multiplier/Divider	- 31
AD632 – Internally Trimmed Precision IC Multiplier	_ 39
AD834 – High Frequency Four-Ouadrant Multiplier	_ 43
	τJ

۸.

Page

l

Log/Antilog Amplifiers – Section 7	. 7 – 1
Selection Guide	. 7 – 3
Orientation	. 7 – 4
AD9521 – 250MHz Wideband Logarithmic Amplifier	. 7 – 7
755/759 – 6-Decade, High Accuracy, Wideband Log, Antilog Amplifiers	. 7 – 11
757 – 6-Decade High Accuracy, Log Ratio Amplifier	. 7 – 15
RMS-to-DC Converters – Section 8	. 8 – 1
Selection Guide	. 8 – 2
Orientation	. 8 – 3
AD536A – Integrated Circuit, True rms-to-dc Converter	. 8 – 5
AD636 – Low Level True rms-to-dc Converter	. 8 – 11
AD637 – High Precision Wideband rms-to-dc Converter	. 8 – 17
AD736 – Low Cost, Low Power, True rms-to-dc Converter	. 8 – 25
AD737 – Low Cost, Low Power, True rms-to-dc Converter	. 8 – 29
Special Expertion Components Section 0	
Special Function Components – Section 9	. 9 – 1
	. 9 – 3
AD345 – High Speed Pin Driver with Inhibit Mode	. 9 – 5
AD630 – Balanced Modulator/Demodulator	. 9 - 9
AD639 – Universal Trigonometric Function Converter	. 9 – 17
AD890 – Precision Wideband Channel Processing Element	. 9 – 29
AD891 – Rigid Disk Data Channel Qualifier	. 9 – 35
AD9500 – Digitally Programmable Delay Generator	. 9 – 41
Temperature Transducers - Section 10	10 1
	10 - 1
	10 - 5
AC2626 Concert Durance Temperature Deale	10 - 4
AC2020 – General Furpose Temperature Probe	10 - 3
AD590 – Two-Terminal IC Temperature Transducer	10 - 7
AD32 – Low Cost, Frecision IC Temperature Transducer	10 - 17
Simul Conditioning Company & Subaratana Section 11	
Signal Conditioning Components & Subsystems – Section 11	11 – 1
Selection Guide	11 – 3
Orientation	11 – 4
AD594/595 – Monolithic Thermocouple Amplifiers with Cold Junction Compensation	11 – 5
AD596/597 – Thermocouple Conditioner and Set-Point Controller	11 – 13
AD693 – Loop Powered, 4-20mA Sensor Transmitter	11 – 19
1B21 – Isolated Loop Powered, Voltage-to-Current Converter	11 – 31
1B22 – Programmable Isolated Voltage-to-Current Converter	11 – 35
1B31 – Wide Bandwidth Strain Gage Signal Conditioner	11 – 37
1B32 – Bridge Transducer Signal Conditioner	11 – 45

Page

1B41 – Isolated RTD Signal Conditioner	11 – 53
1B51 – Isolated mV/Thermocouple Signal Conditioner	11 – 55
2B20 – High Performance, 4-20mA Output Voltage-to-Current Converter	11 – 59
2B22 – High Performance, Isolated Voltage-to-Current Converter	11 – 63
2B23 – Programmable Output, Isolated Voltage-to-Current Converter	11 – 67
2B30/2B31 – High Performance, Economy Strain Gage/RTD Conditioners	11 – 71
2B50 – Isolated Thermocouple Signal Conditioner	11 – 77
2B54/2B55 - Four-Channel Isolated Thermocouple/mV Conditioners	11 - 81
2B Series – Low Cost Two-Wire Transmitters	11 – 87
3B Series – Complete Signal Conditioning I/O Subsystem	11 - 89
4B Series – Alarm Limit Subsystem	11 – 93
5B Series – Compact, Low Cost Modular Signal Conditioners	11 – 95
Digital Panel Instruments - Section 12	12 1
Salastian Guida	12 - 1 12 2
	12 - 2
AD2010 Low Cost 2 1/2 Digit DBM for OEM Applications	12 - 4
AD2010 - Low Cost, 3 1/2 Digit Drive I one Permaned DDM with I ED Dignlaws	12 - 9
AD2021 - Low Cost, 5 1/2 Digit, Logic rowered DrM with LED Displays	12 - 11
AD2020 - Low Cost, 5 Digit, AC Line of Logic Powered DPM	12 - 15 12 15
AD2050/2051 - Microprocessor Based Automating BTD/Thempittan Nature	12 - 15 12 17
AD2080/2001 – Microprocessor Based Autoranging K1D/1 nermistor Meters	12 - 17
AD20/0/20/1 – Microprocessor Based Autoranging Thermocoupie Meters	12 - 19
Application Specific Integrated Circuits – Section 13	13 – 1
Power Supplies – Section 14	14 – 1
Component Test Systems – Section 15	15 – 1
F	
Package Information – Section 16	16 – 1
Appendix – Section 17	17 1
Ordering Guide	17 - 1
Product Families Still Available	17 - 2
Substitution Cuide for Braduet Femilies No. Langer Ausileble	17 - 4
Technical Publications	17 - 5
Worldwide Service Directory	17 0
wondwhite Scivice Diffetory	17 - 8
Index – Section 18	18 – 1

Operational Amplifiers Contents

Page

Selection Guide
Orientation
AD380 – Wideband Fast-Settling FET-Input Op Amp
AD381/382 – High Speed, Low Drift, FET Operational Amplifiers 2 – 21
AD507 - IC Wideband, Fast Slewing, General Purpose Operational Amplifier
AD509 – High Speed, Fast Settling IC Op Amp
AD515A – Monolithic Precision, Low Power FET-Input Electrometer Op Amp
AD517 – Low Cost, Laser Trimmed Precision IC Op Amp
AD542/544/547 – High Performance, BiFET Operational Amplifiers
AD548 – Precision, Low Power BiFET Op Amp
AD549 - Monolithic Electrometer Operational Amplifier
AD642 – Precision Low-Cost, Dual BiFET Op Amp
AD644 – Dual High Implanted BiFET Op Amp
AD647 – Ultralow Drift, Dual BiFET Op Amp
AD648 – Dual Precision, Low Power BiFET Op Amp
AD707 – Ultralow Drift Op Amp
AD708 – Dual Ultralow Drift Op Amp
AD711 – Precision Low Cost, High Speed BiFET Op Amp
AD712 – Dual Precision, High Speed BiFET Op Amp
AD713 - Quad Precision, High Speed BiFET Op Amp
AD741 Series - Low Cost, High Accuracy IC Op Amps 2 - 133
AD744 – Precision 500ns Settling BiFET Op Amp
AD746 - Dual Precision 500ns Settling BiFET Op Amp
AD821 – Single Supply, Low Power, Precision Op Amp
AD840 – Wideband Fast Settling Op Amp
AD841 – Wideband, Unity Gain, Stable Fast Settling Op Amp
AD842 – Wideband, High Output Current, Fast Settling Op Amp
AD845 – Precision 16MHz CBFET Op Amp
AD846 – Very High Speed Operational Amplifier
AD847 – High Speed, Low Power Monolithic Op Amp
AD848 – High Speed, Low Power Monolithic Op Amp
AD849 – High Speed, Low Power Monolithic Op Amp
AD5539 – Ultrahigh Frequency Operational Amplifier
AD9610 - Wide Bandwidth, Fast Settling Operational Amplifier
AD9611 - Wide Bandwidth, Fast Settling Operational Amplifier
ADLH0032G/0032CG - Ultrafast FET Operational Amplifiers
ADLH0033G/0033CG – High Speed Buffer Amplifiers
AD OP-07 – Ultralow Offset Voltage Op Amp
AD OP-27 - Ultralow Noise, Precision Op Amp 2 - 229
AD OP-37 – Ultralow Noise, High Speed Precision Op Amp (A _{VCL} ≥5)
HOS-050/050A/050C - Fast Settling Video Operational Amplifiers
HOS-060 – Low Offset, Fast Settling Video Operational Amplifier
HOS-100AH/100SH – Wide Bandwidth, High Speed Buffer Amplifiers
HOS-200 – Wide Bandwidth, High Speed Buffer Amplifier

Selection Guide Operational Amplifiers

Model	GBWP MHz	Slew Rate V/µs	Settli ns	ing Time to %	Load Current mA	Supply Current mA	Offset Voltage mV	Minimum Stable Gain	Page	Notes
AD5539	1400	600	12	1	20	14	3	3	2 - 183	
AD849	750	300	65	0.1	35	5	0.5	25	2 – 181	
AD846	450	450	110	0.01	50	5	0.075	1	2 – 165	Transimpedance amplifier
AD840	400	400	110	0.01	50	14	0.5	10	2 – 157	
AD9611	280	2100	13	0.1	50	25	0.5	1	2 – 207	Transimpedance amplifier
AD848	175	300	65	0.1	35	5	0.5	5	2 - 179	
AD9610	100	3500	20	0.1	50	25	0.5	1	2 – 199	Transimpedance amplifier
HOS-050	100	300	80	0.1	100	20	15	1	2 – 245	
HOS-060	100	300	80	0.1	100	20	1	1	2 - 251	,
AD842	80	375	110	0.01	100	17	1	2	2 – 161	
ADLH0032	70	500	300	0.1	50	20	2	1	2 - 215	FET input, external compensation
AD841	40	300	110	0.01	50	16	1	1	2 – 159	
AD847	50	300	65	0.1	35	5	0.5	1	2 – 177	
AD380	40	330	250	0.01	60	12	1	1	2 – 15	FET input, external compensation
AD507	35	35	900	0.1	20	4	3	10	2 – 27	
AD509	20	120	500	0.1	-	6	8	3	2 - 31	
AD845	16	100	300	0.01	50	10	0.25	1	2 – 163	FET input
AD744	13	75	500	0.01	10	3.5	0.25	1	2 – 137	FET input, dual available
AD381	5	30	750	0.1	10	5	1	1	2 – 21	FET input
AD382	5	30	750	0.1	50	6	1	1	2 – 21	FET input

HIGH SPEED AMPLIFIERS

UNITY GAIN BUFFERS

Model	– 3dB Bandwidth MHz	Slew Rate V/µs	Load Current mA	Supply Current mA	Offset Voltage mV	Page
HOS-200	200	1600	100	15	10	2 - 257
HOS-100	125	1500	100	15	5	2 - 255
ADLH0033	100	1500	100	20	5	2 – 219

PRECISION AMPLIFIERS

(low '	V	os,	low	drift,	high	dc ga	in)	
---	-------	---	-----	-----	--------	------	-------	-----	--

Model	Offset Voltage μV	Offset Drift µV/°C	Bias Current nA	Open-Loop Gain kV/V	Slew Rate V/µs	GBWP MHz	Page	Notes
AD707	15	0.1	1	13000	0.3	0.9	2 - 103	Dual available
AD OP-07	25	0.6	2	3000	0.17	0.6	2 – 223	
AD OP-37	25	0.6	40	1000	17	63	2 – 237	Decompensated AD OP-27
AD OP-27	25	0.6	40	1000	2.8	8	2 – 229	Low noise
AD517	50	1.3	1	1000	0.1	_	2 - 41	
AD821	250	3	0.01	300	3	1.3	2 - 153	Single-supply, low power
AD548	250	2	0.01	300	1	. 1	2 - 55	Low power, dual available
AD547	250	1	0.025	250	3	1	2 – 47	Dual available

LOW INPUT CURRENT AMPLIFIERS

Model	Input Current pA	Offset Voltage mV	Offset Drift µV/°C	Open-Loop Gain kV/V	Slew Rate V/µs	GBWP MHz	Page	Notes
AD549	0.06	0.25	5	300	3	1	2 - 63	
AD515A	0.075	1	15	40	0.3	0.35	2 - 35	
AD548	10	0.25	2	300	1	1	2 - 55	Dual available

LOW COST, GENERAL PURPOSE OPERATIONAL AMPLIFIERS

Model	Offset Voltage mV	Offset Drift µV/°C	Bias Current nA	Open-Loop Gain kV/V	Slew Rate V/µs	GBWP MHz	Settling Time to 0.01%	Page	Notes
AD711	2.	20	0.05	200	20	4	lµs	2 - 107	Dual, quad available
AD548	2	20	0.025	200	1	1	8µs	2 – 55	Dual available
AD OP-07	0.15	2.5	12	1000	0.17	0.6	_	2 – 223	
AD544	2	20	0.05	30	13	2	3µs	2 – 47	Dual available
AD542	2	20	0.05	100	3	1	-	2 – 47	Dual available
AD741	6	-	500	20	0.5	1	-	2 – 133	

DUAL OPERATIONAL AMPLIFIERS

Model	Offset Voltage mV	Offset Drift µV/°C	Bias Current nA	Open Loop Gain kV/V	Slew Rate V/µs	GBWP MHz	Settling Time to 0.01%	Page	Туре
AD642	0.5	5	0.035	250	3	1	-	2 – 75	Dual AD542
AD644	0.5	5	0.035	50	13	2	-	2 - 81	Dual AD544
AD647	0.25	1	0.025	250	3	1	-	2 – 87	Dual AD547
AD648	0.25	2	0.01	300	1	1	-	2 – 93	Dual AD548
AD708	0.03	0.3	1	13000	0.3	0.9	-	2 - 105	Dual AD707
AD712	0.25	3	0.035	200	20	4	lµs	2 - 119	Dual AD711
AD746	0.25	3	0.06	200	60	13	500ns	2 - 149	Dual AD744

QUAD OPERATIONAL AMPLIFIERS

	Offset Voltage	Offset Drift	Bias Current	Open-Loop Gain	Slew Rate	GBWP	Settling Time		
Model	mV	μV/°C	nA	kV/V	V/µs	MHz	to 0.01%	Page	Notes
AD713	0.25	3	0.035	200	20	4	lµs	2 - 131	Quad AD711

Orientation Operational Amplifiers

The amplifiers listed in this volume are intended to provide cost-effective solutions to the bulk of op-amp requirements in precision measurement and control, as well as to more general requirements in electronic circuits. The technical data included here* cover the properties of more than 40 op amp families, comprising about 100 distinct types. Some are general purpose; others provide near optimum performance for specific classes of application.

They differ in a variety of ways, for example, circuit technology, circuit architecture, package type and contents, input properties, output properties, operating temperature range and in terms of the many performance specifications. Most are monolithic ICs, including precision and high-speed dual devices; some are hybrid ICs.

The IC and hybrid amplifiers catalogued in this volume are available in a broad choice of packaging styles, temperature ranges, and performance grades. If your application calls for versions of these products that have been processed in accordance with MIL-STD-883, a wealth of relevant information can be found in the latest edition of the *Military Products Databook*, available free upon request from Analog Devices.

BACKGROUND

The operational amplifier is today the most widely used analog subassembly. It is safe to say that its *basic* properties and applications are sufficiently understood by most circuit designers and builders. However, the basis for choice, the subtleties of using op amps in circuits for best results (especially in precision measurement and control) and the varieties of possible applications are less clearly understood by op amp users, in varying degrees.

In these few pages, we shall address the question of making a proper choice of op amp type for an application, in relation to the extensive array of device properties presented in the data sheets that follow.

For those users requiring basic tutorial material, and detailed information on getting the most out of op amps, we have provided on page 2-14 a bibliography that should make available up to 99% of information needed now and then, with "fanout" to the vast body of literature that – with some redundancy – will provide the remainder. Analog Devices' op-amp data sheets are an excellent source of pertinent information.

SELECTION PRINCIPLES

In selecting the right device for a specific application, you should have clearly in mind your design objectives and a firm understanding of what published specifications mean. Beyond this, you should detail the significant variables that are pertinent to your application. The purpose of this section is to put these many decision factors into perspective to help you make the most meaningful buying decisions.

*In addition to the products listed here, which are recommended for new designs, a number of older products are still available (see page 17-4); data sheets are available upon request.

To make a proper choice of an operational amplifier for any given set of requirements, the designer must have:

- A complete definition of the design objectives. Signal levels, closed-loop gain, accuracy desired, bandwidth requirements, circuit impedance, environmental conditions and other factors must be well defined before selection can be effectively undertaken.
- 2. Firm understanding of what the manufacturer means by the numbers published for the parameters. Two manufacturers may have comparable published specifications, but they may have been arrived at using differing measurement techniques. This creates a pitfall in op amp selection. To avoid these difficulties, the designer must know what the published specifications mean and how these parameters are measured and then must be able to translate these published specifications in terms meaningful to the design requirements.

There are three fundamental aspects to the rational selection of an operational amplifier for a given application: (1) establishing the circuit architecture, (2) defining the performance levels and (3) choosing the amplifier(s).

- 1. To obtain a circuit building block to implement a defined functional job, the principal choices are either to purchase a committed functional device or to design a circuit employing op amps to perform the function. For example, to obtain a difference between two voltages, one may either purchase an instrumentation or isolation amplifier or design a suitable subtraction circuit using op amps. If a committed functional building block, with appropriate specs and price, is not available, the circuit designer must start by developing schematic diagrams of circuits that will perform the function simply using "ideal" operational amplifiers. Many commonly used circuits can be found in textbooks, "cookbooks" and linear circuit books as well as in application notes and data sheets.
- 2. Recognizing that the choice of an op amp depends on both the overall circuit requirements and the characteristics of available op amps, the designer should interpret the desired overall performance in terms of the parameters of op amps and establish acceptable ranges of parameters and their variation with time, temperature, supply voltage, etc. Examples of the key parameters are the input offset voltage, input bias and offset currents, and the high frequency performance and transient behavior of the op amp block (and its effect on the closed-loop circuit) for large and small signals. It will be helpful to develop an application checklist which includes such considerations as the character of the input signals and their impedance, the output load, the desired accuracy static and dynamic and the environmental conditions.
- 3. The designer must then relate acceptable performance of the op amp building block to the specifications and prices of available devices from preferred suppliers, bearing in mind a firm understanding of the way in which manufacturers define their specifications and how definitions can differ in a way that may be misleading. A set of definitions used by Analog Devices follows this discussion.

APPLICATION CHECKLIST

By way of an application checklist, the designer will need to account for the following:

Character of the application: The character of the application (inverter, follower, differential amplifier, etc.) will often influence the choice of amplifier. For example, an adjustable-gain wideband application may call for a *transimpedance* op amp to keep bandwidth independent of gain setting.

Accurate description of the input signal: It is extremely important that the input signal be thoroughly characterized. Is the input a voltage source or current source? Range of amplitude? Source impedance? Time/frequency characteristics?

Environmental conditions: What is the maximum range of temperature, time and supply voltage over which the circuits must operate (to the required accuracy) without readjustment?

Accuracy desired: The accuracy requirement determines the extent to which the foregoing considerations are critical, and ultimately points the way to a device (or series of devices) which are acceptable. Accuracy must, of course, be defined in terms meaningful to the application with regard to bandwidth, dc offset and other parameters.

SELECTION PROCESS

In general, the objective of amplifier selection should be to choose the least expensive device which will meet the physical, electrical and environmenal requirements imposed by the application. This suggests that a "General Purpose" amplifier will be the best choice in all applications where the desired performance requirements can be met. Where this is not possible, it is generally because of limitations encountered in two areas – bandwidth requirements and/or offset and drift parameters.

To make it easier to relate bandwidth requirements with the drift and offset characteristics, a capsule view of bandwidth considerations precedes the dc discussion below. The reader is then returned to an expanded discussion of gain bandwidth considerations.

Gain Bandwidth Considerations, A Capsule View

Although all selection criteria must be met simultaneously, determination of the bandwidth requirements is a logical starting point because:

- If dc information is not of interest, a suitable blocking capacitor can be connected at the amplifier input and/or output and all of the "drift" specifications may usually be ignored, and
- 2. Where high frequency (>10MHz) characteristics are of primary importance, the choice will be limited to those amplifiers designated "Wide Bandwidth/Fast Settling."

Where dc information is required and where frequency requirements are relatively modest (full power response below 100kHz, unity gain bandwidth of less than 1.5MHz) other criteria will probably influence the final choice. It is important, however, to choose an amplifier with which an adequate value of loop gain is assured (at the maximum frequency of interest) to obtain the desired accuracy. Loop gain is the excess of open-loop gain over closed-loop gain, and is responsible for the diminishing error due to fluctuations in the open-loop gain due to time, temperature, etc. For example, if the closed-loop gain is 1.000, the open-loop gain must be at least 100,000 to yield an error of no more than 1%, and 1,000,000 to yield an error no greater than 0.1%. Where undistorted response is required, the specifications for full linear response and slewing rate should be chosen such that they are not exceeded at the highest frequency of operation.

Most operational amplifiers are voltage-to-voltage amplifiers. However, for wide bandwidth applications, it is often useful to consider applying a class of current-to-voltage amplifiers called *transimpedance amplifiers*. They are characterized by *transresistance* $(\Delta V_o/\Delta I_i)$ instead of gain $(\Delta V_o/\Delta V_i)$. Unlike voltage amplifiers, with their high input impedance, transimpedance amplifiers have *low* (ideally zero) input impedance in order to minimize the gain-error voltage developed by their input current. Such amplifiers tend to be characterized by high slewing rates and high closed-loop bandwidth. In contrast to the *constant gain* × *bandwidth* of most voltage amplifiers, the closed-loop bandwidth of a transimpedance amplifier is essentially independent of closedloop gain – as long as the feedback resistance is kept constant when the gain is adjusted.

Offset and Drift Considerations

In the majority of op amp applications, final selection is determined by the dc offset and drift characteristics. To undertake amplifier selection in these cases, it is necessary to translate the requirements listed above as follows. (It is assumed that bandwidth requirements and temperature range have been established at this point.)

- 1. What input impedance must the circuit present to the signal source? This depends primarily on the source impedance, R_s , and the amount of loading error which is acceptable. Most amplifier circuits are designed around the inverting and noninverting circuits of Figure 1. The choice is often made between the two to accommodate the impedance requirement. Input impedance for the inverting circuit is approximately equal to the summing impedance, R_i , and the upper limit on the magnitude of R_i is determined by the allowable drift error because of input bias current as discussed below. The noninverting circuit offers inherently higher input impedance than the inverting circuit (due to "bootstrapping" feedback), and in this case input impedance of the amplifier R_{CM} .
- 2. How much drift error can be tolerated? The question is related to the input signal level, e_s , and the required accuracy. For example, to amplify or otherwise manipulate a dc input signal of one volt with an accuracy of 0.1%, the offset drift error, V_d , must be one millivolt or less. (This assumes that other sources of error such as input loading, noise and gain error have already been allowed for.) By the same reasoning, the allowable drift error for a 1 volt signal and 0.01% accuracy would be 100μ V.

When this has been defined, the allowable limits of offset voltage (e_{os}) , bias current (i_b) and difference current can be calculated by the equations of Figure 1.

Figure 1 gives the equations which relate offset voltage (e_{os}) , bias current (i_{b}) , difference current (i_{d}) and the external circuit impedances to the drift error, V_{d} , for both the inverting and the noninverting circuits. From these equations it can be seen how the input impedance requirements of the foregoing paragraphs are related to the drift error.

Input Impedance $\hat{R}_{IN} \approx R_{I}$

% Drift Error = $\frac{100V_d}{e_s}$

Figure 1a. Inverting Configuration

Figure 1b. Noninverting Configuration

For example, in the case of the inverting circuit, an offset error voltage, $i_b R_i$, is generated by the bias current flowing through the summing impedance. This error increases for increasing R_i . Since R_i also sets the input impedance, there is a conflict between high input impedance and low offset errors. Likewise, for a given offset error, higher values for R_i can be used with an amplifier which has lower bias current.

Where it will otherwise function properly, the noninverting circuit generally makes a better choice for high input impedance circuits. Also, for the same source and input impedance requirement, a given amplifier will generate lower offset errors for the noninverting circuit than for the inverting circuit. This is so because the bias current flows only through R_s for the noninverter

and this will always be less than the input impedance, R_i , of the inverter. Input impedance of the noninverter (approximately R_{CM}) is typically 10^7 ohms even for the least expensive bipolar amplifiers and up to 10^{11} ohms for FET types.

Unfortunately, however, the noninverting configuration cannot always be used since it is not convenient to use for many circuit functions such as integration or summation. A further limitation occurs in high accuracy applications where common-mode errors may rule out this circuit configuration. Transimpedance amplifiers in the noninverting configuration have high dynamic input impedance, but they must be driven from a source that can furnish the input current. This rules out the possibility of unloading some high impedance sources but still permits a single amplifier to be used for noninverting gains (as always, it is helpful to consult the data sheet).

Initial offsets can usually be zeroed at room temperature so that only the maximum temperature excursion (ΔT) from $+25^{\circ}C$ need be considered. For example, over the range of $-25^{\circ}C$ to $+85^{\circ}C$, the maximum temperature excursion (ΔT) from $+25^{\circ}C'$ would be 60°C. As a practical matter, offset errors due to supply voltage and time drift can generally be neglected since errors due to temperature drift are usually much greater.

Current Amplifier Considerations

Before leaving the subject of offset errors, we shall discuss briefly the current amplifier configuration which is shown in Figure 2a. The obvious approach to measuring current is to develop a voltage drop across a load resistor, $R_{\rm f}$, and to measure this potential with a high impedance amplifier as shown in Figure 2b.

Figure 2a. Current Amplifier

This approach has several disadvantages as compared to the circuit of Figure 2a. First, the noninverting amplifier introduces common-mode errors which do not occur for Figure 2a. Second, an ideal current meter would have zero impedance whereas R_f in Figure 2b may become very large since this resistor determines the sensitivity of the measurement. Third, the changes of input impedance, $R_{\rm cm}$, for the noninverting amplifier with temperature will cause variable loading on R_f and hence a change in sensitivity.

The current amplifier of Figure 2a circumvents all of these difficulties and approaches an ideal current meter; that is, there is essentially no voltage drop across the measuring circuit, since with enough open-loop gain, A, the input impedance $R_{\rm IN}$ becomes very small.

In selecting a current amplifier, the most important consideration is current noise, and bias current drift. Measuring accuracy is largely the ratio of current noise and drift to signal current, i_s. To obtain the drift of error current I_{ϵ} referred to the input, use the following expression.

$$\Delta \mathbf{I}_{\boldsymbol{\epsilon}} = \left[\frac{\Delta \boldsymbol{\epsilon}_{os}}{\Delta T} \left(\frac{\mathbf{R}_{f} + \mathbf{R}_{s}}{\mathbf{R}_{f} \mathbf{R}_{s}}\right) + \frac{\Delta \mathbf{i}_{B}}{\Delta T}\right] \Delta T$$

Now, to make a proper selection you must pick an amplifier with an error current, I_{ϵ} , over the operating temperature which is small compared to the signal current, i_s . Do not overlook current noise which may be more important than current drift in many applications.

Gain Bandwidth Considerations, Expanded Discussion

From the previous discussion, it is apparent that most general purpose operational amplifiers will usually give adequate performance for dc and audio-frequency-range applications. However, amplifiers having unity-gain bandwidth above 2MHz, full power response above 20kHz and slewing rate above $6V/\mu s$, in general, require special design techniques. Amplifiers with wideband, fast response characteristics have been listed in the Wide Bandwidth group to simplify the selection for higher frequency applications.

One factor often overlooked is that stray capacitance and impedance levels of the external feedback circuit can be the major limitation in high frequency applications. For example, in Figure 1a, if R_f were one megohm, and stray capacitance, C_S , were one picofarad, then the closed-loop bandwidth would be limited to 160kHz ($1/(2\pi R_F C_S)$) regardless of how fast the amplifier is. Moreover, output slewing rate will be limited by how fast C_S can be charged, which in turn is related to signal level, e_s , and input impedance, R_i , by $de_o/dt = -e_s/R_i C_S$. For these reasons it is usually not possible to obtain both fast response and high input impedance for an inverting circuit since both R_i and R_f must be large to obtain high input impedance.

Another advantage of the noninverting circuit (Figure 1b) is that input impedance, being determined by potentiometric feedback, is independent of the impedance levels for R_1 and R_2 . Therefore, a low impedance can be used for R_2 so that stray capacitance of C_S will not limit the circuit's bandwidth. In this case the minimum value for R_2 is constrained only by the output current rating of the amplifier. Again the trade-off between the frequency response and input impedance of the inverting and noninverting circuits must be evaluated in light of the common-mode rejection error (with frequency) introduced by the noninverter.

For greater emphasis, wideband applications can be separated into categories – steady state and transient. Since the amplifier requirements for the two are somewhat different, these categories will be discussed separately.

STEADY STATE APPLICATIONS

Steady state applications involve amplifying or otherwise manipulating *continuous* sinusoidal, complex or random waveforms. In these applications the significant issues in choosing an amplifier are as follows:

1. Is dc coupling required? If dc information is of no consequence, then the offset drift errors are not usually important and a capacitor can be used if necessary to block the output dc offset. Your only concern here is that dc offset at the output does not become so large, as might be the case with a high gain stage, that the output is saturated or the dynamic swing for ac signals is limited. One way to circumvent the latter problem is to use feedback to limit the gain at dc as shown in Figure 3. The gain of this kind of circuit can be small at dc but large at high frequencies.

Figure 3. DC Feedback Minimizes Output Offset for AC Applications

- 2. What closed-loop gain and bandwidth are required? Closed loop gain, G, is dictated by the application. For V/V amplifiers, to a first approximation the intersection of the open- and closed-loop gain curves in Figure 4 gives the closed loop bandwidth, $f_{c1}(-3dB)$. For high gain, wideband requirements, it may be necessary, or more economical, to use two amplifiers in cascade each at lower gain. For transimpedance amplifiers, f_{c1} changes little over a wide range of gain as set by the choice of R₁.
- 3. What loop gain is required or alternatively what gain stability, output impedance and/or linearity are necessary? The available loop gain at a particular frequency or over a range of frequencies is very often more important than closed-loop bandwidth in selecting an amplifier. Loop gain as illustrated in Figure 4, is defined as the difference, in dB, or as the ratio, arithmetically, of the open- to closed-loop gain $(A\beta = A/G)$. You will find in most of the equations defining the closed-loop characteristic of a feedback (V/V) amplifier that the loop gain $(A\beta)$ is the

determining factor in performance. Some of the more notable examples of this point are as follows:

Figure 4. Closed Loop Bandwidth and Loop Gain

- a. Closed-loop gain stability $=\Delta G/G$ $\Delta G/G = (\Delta A/A) [1/(1 + A\beta)]$ where $\Delta A/A$ is the open-loop gain stability, usually about 1%°C.
- b. Closed-loop output impedance = $Z_{ocl} = Z_o/(1 + A\beta)$, where Z_o is the open-loop output impedance, usually 200 to 5,000 ohms.
- c. Closed-loop nonlinearity = $L_{cl} = L_{ol}/(1 + A\beta)$, where L_{ol} is the open-loop linearity error, usually less than 5%.

Loop gain of 100, or 40dB, is adequate for most applications, and this is readily achievable at dc and low frequencies. But note that loop gain decreases with increasing frequency which makes it difficult to obtain large loop gains at high frequencies. For this reason it may be necessary to use a 10MHz unity gain amplifier in order to obtain adequate feedback over a 10kHz bandwidth.

4. What full power response and/or slew rate are required? You should examine your expected output waveform and select an amplifier whose slewing rate, with the expected capacitive output load, exceeds the maximum rate of change of output signal. For a sinusoidal waveform with a peak voltage output equal to the rated amplifier output the frequency should not exceed f_p, the full power response of the amplifier. As the output signal voltage is reduced below the rated output voltage, the usable maximum frequency can be extended proportionately. If you do not observe these restrictions, you will get distortion and unexpected dc offsets at the output of the amplifier.

For some monolithic amplifier designs intended for high-gain and wide-bandwidth applications, their frequency response is not a simple 6dB roll-off; the response may be shaped with external RC components for improved performance at lower closed-loop gains. Using feedforward or phase lag compensation networks, gain-bandwidth product and/or full power response may be shaped to meet varying design requirements. Most internally compensated V/V op amps offer a stable 6dB per octave roll-off with specified unity gain-bandwidth and slew rate thereby limiting maximum speed and response to those published specifications.

Figure 5. Typical Settling Time Characteristics

TRANSIENT APPLICATIONS

In applications such as A/D and D/A converters and pulse amplifiers, the *transient response* of the wideband amplifier is generally more important than the *gain bandwidth* characteristic described above. Slewing rate, overload recovery and settling time are the specifications which determine the transient response.

When applying the high frequency amplifier, it is important to understand how amplifier performance is affected by component selection as well as impedance levels used around the amplifier.

Settling Time

Settling time is defined as the time elapsed from the application of a perfect step input to the time when the amplifier output has entered and remained within a specified error band symmetrical about the final value (Figure 5). Settling time therefore includes the time required for the amplifier to slew from the initial value, recover from slew rate limited overload, and settle to a given error in the linear range.

The time and frequency response of a linear, bilateral network or amplifier are related by well know mathematics. For example, the step response for a well behaved, ideally linear, 6dB/octave amplifier with a closed-loop bandwidth of ω_{cl} is shown in Figure 6.

However, since settling time is determined by a combination of amplifier characteristics (both linear and nonlinear) and because it is a closed-loop parameter, it cannot be readily predicted from the open-loop specifications such as slew rate, small signal bandwidth, etc.

Analog Devices specifies settling time for the condition of unity gain, relatively low impedance levels and no capacitive loading (unless otherwise indicated). A full-scale step input is used to determine settling time and the step is generally unipolar -i.e., from zero to plus or minus full scale. The settling time indicated is generally the longest time resulting from a step of either polarity and is given as a percentage of the full-scale step transition.

Settling time is a nonlinear function. It varies with the input signal level and it is greatly affected by impedances external to the amplifier.

ERRORS DUE TO NOISE

A major criterion in the selection of an amplifier for low level signals is the amplifier input noise, since this is usually the limiting factor on system resolution. In the general case, amplifier noise can be characterized by a voltage source in series with the summing junction and a current source in parallel with the summing junction. Whenever high source impedance is encountered, current noise flowing through the source impedance will appear as an additional voltage noise, combining with the amplifier voltage noise. The sum of these noise sources will then be amplified along with the desired signal. For this reason, selection of a particular amplifier must consider both the amplifier noise performance as well as the source impedance.

Figure 6. Step Response for Linear 6dB/Octave Amplifier

Consideration must also be given to noise sources other than the amplifier whenever determining total system noise. RF and digital noise may be fed into an amplifier through any connecting wire, including power supply and output leads. Adequate shielding and low-pass filters on all incoming leads will greatly reduce noise pickup.

Thermal noise is generated in any conductor or resistor as a result of thermal agitation of the electrons. This noise voltage source, sometimes referred to as "Johnson Noise," is generated in the resistive component of any impedance and has a value:

 $e_n = \sqrt{4kTBR}$

where $e_n =$ the rms value of the noise voltage

k = Boltzman's Constant (1.38 \times 10²³ joules/K)

T = absolute temperature of the resistance, K

B = the bandwidth in which the noise is measured

Since noise is related to the bandwidth over which the measurement is made, no noise specification is meaningful unless the bandwidth for the specification is given. Although the thermal noise equation may appear unwieldy, for practical noise calculations, all that is required to enable rapid approximations is to apply a few simple rules of thumb.

Rules of Thumb

1. Remember that a $100k\Omega$ resistor generates 40nV rms in a 1Hz bandwidth. The noise voltages generated by other values

of resistances in other bandwidths can be calculated by remembering that the noise is proportional to the square root of the resistance and the bandwidth; i.e.

$$e_{n} (rms) = (40nV/\sqrt{Hz}) \left(\sqrt{\frac{R}{100k\Omega} (BW)} \right)$$

- To convert the rms noise to a p-p value, a conversion factor of 6.6µV p-p/µV rms is applied for less than 0.1% probability of noise peaks exceeding calculated limits.
- 3. The total rms noise contribution due to several noise sources is determined by the square root of the sum of the squares:

$$e_{t} = \sqrt{e_{a}^{2} + e_{b}^{2} + e_{c}^{2} + \dots + e_{n}^{2}}$$

If any noise source is less than a third of another, it may be neglected. The resulting error will be less than 5%.

 Restricting the bandwidth of a system to the minimum usable and using the lowest impedances possible are ways to reduce noise.

DESIGN EXAMPLE

Figure 7a illustrates a typical circuit with noise calculations shown for each noise source. The total of the noise sources is obtained by adding each of the individual sources in a rms fashion.

TOTAL NOISE = $\sqrt{(e_{R_{IN}} G)^2 + [e_{R_S} (G+1)]^2 + e_{R_F}^2 + [(i_{n_1} R_F)^2] + [(i_{n_2} R_S) (G+1)]^2 + [e_n (G+1)]^2}$

Figure 7a. Noise Components

Figure 7b illustrates how the Rules of Thumb may be applied in a practical case to approximate the total output noise. In this example, a low noise type amplifier (AD OP-37) is being used with a 50k Ω source impedance. The two major noise sources, in addition to the AD OP-37's input voltage noise of 0.18 μ V p-p, are the Johnson noise (59 μ V p-p) and current noise (83pA p-p).

Figure 7b. Design Example

HOW THE OPERATIONAL AMPLIFIERS ARE CLASSIFIED

To assist the designer in distinguishing among the many types available from Analog Devices, we have provided a Selection Guide in which amplifiers are grouped in terms of common properties which have been optimized in order to satisfy the needs of specific classes of applications. Once the choice has been narrowed to the manageable number of types in any group, distinctions can be drawn in terms of other requirements or considerations.

Temperature Range and Nomenclature: Analog Devices operationalamplifier nomenclature uses suffixes to permit ready identification of the temperature range for which device operation to meet critical specifications has been designed or selected. The most popular range comprises the "commercial" temperatures from 0 to 70°C; it is designated by suffixes such as J, K, L, M, in order of increasingly tighter specs (e.g., AD549L). Also popular is the "extended" range, -55°C to +125°C, designated by S, T, U, (e.g., AD510S); not all families have types with specified performance in this range. There are a few types designed for operation in the "industrial" range, -25°C to +85°C, designated by A, B. Wide-range types will generally meet the same or better specs in a narrower temperature range. A few types are second-sources for products originally introduced by other manufacturers. In those instances, the generic nomenclature is used (AD741C) or enlarged upon, if superior selections are offered (e.g., AD741L).

SELECTION GUIDES

Seven Selection Guides classify operational amplifiers within these categories:

High-Speed Amplifiers Unity-Gain Buffers Precision Amplifiers (low V_{OS}, low drift, high dc gain) Low-Input-Current Amplifiers Low-Cost, General-Purpose Op Amps Dual Op Amps Quad Op Amps

The choice of category depends on which class of specifications is most critical. Within these categories, the selection guides provide comparisons of salient specifications. These selection areas are pretty broad; they include various criteria, not all of which are central to the application. For example, if one is seeking a high-input-impedance amplifier for an ac application, voltage offset and drift may be far less critical than bias current, and both of these may be unimportant compared to bandwidth.

With the hope that it will be found useful, the following interpretive list identifies the best device choices in a variety of categories:

(At the extremes of performance are the *fastest* op amps and the *highest-precision* op amps.)

The fastest op amps include those having

- the highest slewing rates, the hybrid AD9610 (3,500V/μs) and AD9611 (2,100V/μs), and the monolithic AD5539 (600V/μs)
- the lowest settling time the monolithic CB (complementary bipolar) AD840/841/842/846 (110ns to ±0.01%), the hybrid AD9610 and AD9611 (20ns and 13ns to 0.1%) and (again) the AD5539 (12ns to 1.0%)
- the highest gain-bandwidth the AD5539 (1,400MHz) and the CB AD849 (725MHz) and AD840 (400MHz)

High-speed op amps are characterized by high slewing rates, fast settling time and wide bandwidth. Fast settling time is especially important in applications with rapidly changing or switched analog data in buffers, D/A converters, and multiplexer circuits; wide small-signal bandwidth is important in preamplification and in handling low-level wideband ac signals; high slewing rate is associated with fast settling time and is also important in handling ac signals having large magnitudes with minimum distortion since the large-signal bandwidth is closely related to the slewing rate.

ICs using the proprietary Analog Devices CB (complementary bipolar) process contain wideband PNP and NPN transistors that have similar characteristics – without the use of dielectric isolation. Since poor frequency response of lateral PNPs is the source of the bandwidth limitation in conventional linear bipolar processes, CB devices can have much faster response.

The highest-precision monolithic op amp families include those having

- the grades with the lowest untrimmed offset voltage- the AD707 (15μV) and AD OP-07/27/37 (25μV)
- the lowest *bias current* the revolutionary *electrometer* op amp using top-gate-FET inputs, the AD549 (60 femtoamperes)
- the lowest drift the AD707 (100nV/°C)
- the highest open-loop gain (hence highest accuracy as an integrator and high-gain amplifier) – again the AD707! (13×10⁶V/V) and the CB FET-input AD821 (3×10⁶V/V – also capable of single-supply operation)
- the highest common-mode rejection once again the AD707 (130dB), followed by the AD OP-27/37 (114dB) and the AD OP-07 (110dB)

Precision op amps (in this list) include those emphasizing

• Low bias current and high input impedance. These types use the inherently high input impedance and low leakage current of junction field-effect transistors (FETs) to deal with configurations that measure low currents or involve high resistance values. Applications range from general purpose high-impedance circuitry to integrators, currentto-voltage converters, and log-function generation, to measurements with high-impedance transducers such as photomultipliers, flame detectors, pH cells and radiation detectors.

 High accuracy through low offset and drift voltage, low voltage noise, high open-loop gain, and high commonmode rejection (CMR). Such types are used for highaccuracy instrumentation, low-level transducer circuitry, precision voltage comparison, and impedance buffering.

All FET-input op amps from Analog Devices are conservatively manufactured to meet their published bias-current specifications after full warmup (some manufacturers specify mitial current, which is lower than warmed-up bias current). Our published max bias-current specification applies to either input (some manufacturers call "bias current" the average of the two input currents).

For applications needing high, but not extreme, performance or where high speed and high precision must be combined, there are a number of device families to be considered. For example,

- the complementary-bipolar AD846 family combines low offset voltage (200µV) with high slewing rate (400V/µs)
- the AD744 BiFET family combines low input bias current (50pA) with low settling time (500ns to 0.01%)
- the AD OP-37 family combines low drift (600nV/°C) with wide gain bandwidth (63MHz)
- the hybrid AD381/382 combine 50pA bias current with 0.75µs settling time (to 0.1%) and 50mA output-current range

Fast amplifiers, which often boast output current ranges of 50mA or 100mA, include families with

- high slewing rate the CB monolithic AD846 (400V/µs) and AD840/841/842 (400/300/375V/µs), and the hybrid ADLH0032 (500V/µs), AD380 (330V/µs), and HOS-060 (300V/µs)
- low settling time the monolithic AD847/848/849 (65ns to 0.1%) and hybrid HOS-050 (80ns to 0.1%, 200ns to 0.01%), and the AD845 and AD744 families (300ns and 500ns to 0.01%)
- wide gain-bandwidth the monolithic AD848 (250MHz) and the hybrid AD9611 (280MHz) and HOS-050/060 (100MHz)

High-precision monolithic amplifier families start with lower grades of the highest-precision families; beyond this, they include the

- low-drift AD OP-07/27/37 families (600nV/°C)
- high-gain AD OP-07 (3×10^6) and AD OP-27/37 (1×10^6)
- high-CMR AD821 (90dB); low-Vos AD846 (200µV) and a
- wide selection of low-bias-current FET-input op amps the AD821 and AD548 (10pA), and the AD711 (25pA)

Many of these devices are duplicated in a single package; for example,

- the AD712 is a dual AD711
- the AD746 is a dual AD744
- the AD648 is a dual AD548
- the AD708 is a dual AD707
- the AD713 is a quad version of the AD711

Also included in this section are *buffers*, wideband amplifiers having slightly less than unity gain, low output impedance and high output-current availability (100mA). Although they can

stand alone, a more frequent use is inside-the-loop as a "booster" amplifier to magnify the output power capability of any op amp or reduce the dynamic output impedance without losing precision. A typical example is the HOS-100, which can follow slewing rates of up to $1,500V/\mu$ s with a full-power frequency of 125MHz and deliver voltages up to $\pm 12V$ and currents up to $\pm 100mA$.

DEFINITIONS OF SPECIFICATIONS

Absolute Maximum Differential Voltage

Under most operating conditions, feedback maintains the error voltage between inputs to nearly zero volts. However, under overload conditions or between applications, such as voltage comparators, the voltage between the inputs can be large. This specification defines the maximum voltage which can be applied between inputs without causing permanent damage to the amplifier.

Common-Mode Rejection

An ideal operational amplifier responds only to the difference voltage between inputs $(e^+ - e^-)$ and produces no output for a *common-mode voltage*, that is, when both inputs are at the same potential. However, due to slightly different gains between the plus and minus inputs, or variations in offset voltage as a function of common-mode level, common-mode input voltages, due to a known magnitude of common-mode voltage, is referred to the input (dividing by the closed-loop gain), it reflects the equivalent *common-mode error voltage* (CME) between the inputs. Common-mode rejection ratio (CMRR) is defined as the ratio of common-mode rejection is usually expressed logarithmically: CMR (in dB) = 20 log₁₀ (CMRR).

The precise specification of CMR is complicated by the fact that the common-mode voltage error can be a highly nonlinear function of common-mode voltage and also varies with temperature. As a consequence, CMR data published by Analog Devices are average figures, assuming an end-point measurement over the commonmode range specified. The incremental CMR about small values of common-mode voltage may be greater than the average CMR specified but decrease and become less in the neighborhood of large CMV. Published CMR specifications for op amps pertain to low-frequency voltages, unless specified otherwise: CMR decreases with frequency.

Common-Mode Voltage, Maximum

For differential-input amplifiers, the voltage at both inputs can swing about ground (power-supply common) level. *Common-mode voltage* is defined as any voltage (above or below ground) that could be observed at both inputs. The maximum common-mode voltage is defined as that voltage which will produce less than a specified value of common-mode error. This establishes the maximum input voltage for the voltage-follower connections.

Drift vs. Supply

Offset voltage, bias current and difference current vary as supply voltage is varied. Usually, dc errors due to this effect are negligible compared to drift with temperature. No inference may be drawn from this low-frequency specification concerning the effects of rapid variation of voltage at the supply terminals.

Drift vs. Temperature

Offset voltage, bias current and difference current all change, or "drift," from their initial values with temperature. This is by far the most important source of error in most precision applications. The temperature coefficients (tempcos) of those parameters are all defined as the average slope over a specified temperature range. Drift can be a nonlinear function of temperature (though it is often quite linear over limited temperature range); the slopes generally are greater at the extremes of temperature than around normal ambient ($+25^{\circ}$ C), which generally means that for small temperature excursions in the vicinity of $+25^{\circ}$ C, the specification is conservative.

Analog Devices precision operational amplifiers are specified by three- (or more) point measurements, at 25°C and at the high and low extremes of the range (T_H , T_L), with the amplifier adjusted to zero at room temperature. The sum of the magnitudes of the drift in the two ranges must be less than the specified drift rate (μ V/°C or nA/°C) multiplied by the total temperature range (modified "butterfly"), or, in some cases, the magnitude of the drifts in both ranges must be less than the specified drift rate multiplied by the respective temperature ranges ("true butterfly").

The lowest-cost second-source IC amplifiers are specified only in terms of the maximum value of the parameter (e.g., offset voltage) over temperature in the specified range.

Drift vs. Time

Offset voltage, bias current and difference current change with time as components age. It is important to realize that drift with time is random and rarely – if ever – accumulates linearly for healthy devices. For example, voltage drift might be quoted at 15μ V/month, whereas cumulative drift might not exceed 50μ V in a year. A convenient rule of thumb for extrapolation is to divide the drift for a stated interval by the square root of its ratio to any other interval of interest.

Full-Power Response

The large-signal and small-signal response characteristics of operational amplifiers differ substantially. An amplifier's output will not respond to large signal changes as fast as the small-signal bandwidth characteristics would predict, primarily because of slew-rate limiting in the output stages. Full-power response is specified in two ways: full linear response and full peak response. Full linear response is specified in terms of the maximum frequency, at unity closed-loop gain, for which a sinusoidal input signal will produce full output at rated load without exceeding a predetermined distortion level. There is no industrywide accepted value for the distortion level which determines the full-linearresponse limitation, but unless otherwise noted, we use 3% as a a maximum acceptable limit.

In many applications, the distortion caused by exceeding the full linear response can be comfortably ignored, but a more serious effect (often overlooked) is an effect equivalent to dc offset voltage that can be generated when full linear response is exceeded, due to rectification of the asymmetrical feedback waveform or overloading of the input stage by large distortion signals at the summing junction.

Another frequency response that is often of interest is the maximum frequency at which full output swing may be obtained, irrespective of distortion. This is termed "full peak response" and can often be found in a plot of output voltage swing vs. frequency.

Initial Bias Current

Bias current is defined as the current required at either input from an infinite source impedance to drive the output to zero (assuming zero common-mode voltage). For differential amplifiers, bias current is present at both the negative and the positive input. All Analog Devices specifications pertain to the *larger* of the two, *not the average*.

Analog Devices specifies initial bias current, I_b , as the bias current at either input, specified at +25°C ambient with the input junctions at normal operating temperature. (Some manufacturers specify initial bias current at power turn-on. Such specifications may be misleading. For example, in FET-input amplifiers, bias current is doubled for each 10°C increase; since junction temperatures may warm up to 20°C or more above ambient, the "initial bias current" specs used by some manufacturers may be met only during a brief interval after the power is burned on, and I_b may be quadrupled under ordinary operation conditions.)

Initial Difference Current

Difference current is defined as the difference between the bias currents at the two inputs. Uncompensated input circuitry of differential amplifiers is generally symmetrical, so that bias currents at both inputs tend to be equal and tend to track with changes in temperature and supply voltage. Therefore, difference current is often about 0.1 times the bias current at either input, assuming that initial bias current has not been compensated internally at the input terminals. For amplifiers in which bias currents track, it is often possible to reduce voltage errors due to bias current and its variations by the use of equal impedance loads at both inputs.

Input Impedance

Differential input impedance of voltage-input op amps is defined as the impedance between the two input terminals at $+25^{\circ}$ C, assuming that the error voltage is nulled or very near zero volts. To a first approximation, dynamic impedance can be represented by a capacitor in parallel with a resistor.

Common-mode impedance, expressed as a resistance in parallel with a capacitance, is defined as the impedance between each input and power-supply common, specified at +25°C. For most circuits, common-mode impedance on the negative input has little significance, except for the capacitance which it adds at the summing junction (one exception is electrometer circuitry). However, common-mode impedance on the plus input sets the upper limit on closed-loop input impedance for the noninverting configuration. Common-mode impedance is a nonlinear function of both temperature and common-mode voltage. For FET-input amplifiers, common-mode resistance is reduced by a factor of two for each 10° of temperature rise. As a function of commonmode voltage, the resistive component is defined as the average resistance for a common-mode change from zero to the maximum common-mode voltage. Incremental resistance may be less than the specified average value, especially at full-scale for some FET-input amplifiers.

Input Offset Voltage

Offset voltage is defined as the voltage required at the input from zero source impedance to drive the output to zero; its magnitude is measured by closing the loop (using low values of resistance) to establish a large fixed gain, measuring the amplified error at the output and dividing the measured value by the gain.

The initial offset voltage is specified at $+25^{\circ}$ C and rated supply voltage. In most amplifiers, provisions are made to adjust initial offset to zero with an external trim potentiometer.

Input Noise

Input voltage- and current-noise characteristics can be specified and analyzed in much the same way as offset-voltage and biascurrent characteristics. In fact, long-term drift can be considered as noise which occurs at very low frequencies. When evaluating noise performance, bandwidth or period must be considered. Also rms noise from different sources is summed by root-sum-ofsquares, rather than linear, addition. Depending on the amplifier design, noise may have differing characteristics as a function of frequency, being dominated by "1/f noise," resistor noise or junction noise, at various frequencies.

For this reason, several noise specifications are given. Low-frequency noise in the band 0.01 to 1Hz (or 0.1 to 10Hz) is specified as peak-to-peak, with a 3.3 σ uncertainty, signifying that 99.9% of the observed peak-to-peak excursions will fall within the specified limits. Wideband noise is specified as rms. For some amplifiers types, spectral-density plots or "spot noise," at specific frequencies, in $\mu V/\sqrt{Hz}$ or pA/\sqrt{Hz} , are provided.

Open-Loop Gain

Open-loop gain is defined as the ratio of a change of output voltage to the voltage applied between the amplifier inputs to produce the change. Gain is specified at dc. In many applications, the frequency dependence of gain is important; for this reason, the typical open-loop gain as a function of frequency is published for each amplifier type. See also *unity gain small-signal response*.

For transimpedance amplifiers, since the input is a current and the output is a voltage, the "gain" is expressed in ohms (R=V/I). Because small changes in current cause large voltage changes, the transimpedance can be quite large – e.g., 100M Ω for the AD846. As long as the amplifier's internal input impedance is very low, errors in closed-loop circuitry depend principally on the ratio, R_F/R_T , relative to unity – where R_F is the feedback resistance and R_T is the transimpedance. It will be recalled that, in V/V op amps, the increase in error depends mainly on $R_F/(AR_I)$, where A is the open-loop gain and R_I is the resistance of the external input resistor. The significant difference is that, as gain or transresistance decreases with increasing frequency, the error in transimpedance-amplifier circuits is independent of R_I ; hence closed-loop gain can be increased by reducing R_I without substantially affecting bandwidth.

Overload Recovery

Overload recovery is defined as the time required for the output voltage to recover to the rated output voltage from a saturated condition caused by a 50% overdrive. Published specifications apply for low impedances and contain the assumption that overload recovery is not degraded by stray capacitance in the feedback network.

Rated Output

Rated output *voltage* is the minimum peak output voltage which can be obtained at rated current or a specified value of resistive load before clipping or out-of-spec nonlinearity occurs. Rated output *current* is the minimum guaranteed value of current supplied at the rated output voltage (or other specified voltage). Load impedances less than the specified (or implied) value can be used, but the maximum output voltage will decrease, distortion may increase, and the open-loop gain will be reduced. (All models are short-circuit protected to ground, and many are safe against shorts to the supplies.)

Settling Time

Settling time is defined as the time elapsed from the application of a perfect step input to the time when the amplifier output has entered and remained within a specified error band symmetrical about the final value. Settling time, therefore, includes the time required: for the signal to propagate through the amplifier, for the amplifier to slew from the initial value, recover from slew-rate limited overload (if it occurs) and settle to a given error in the linear range. It may also include a "long tail" due to the time required to reach thermal equilibrium, or the settling time of compensation circuits. Settling time is usually specified for the condition of unity gain, relatively low impedance levels, and no (or a specified value of) capacitive loading, and any specified compensation. A full-scale unipolar step input is used, and both polarities are tested.

Although settling time can generally be grossly inferred from the other amplifier specifications (an amplifier that has extra-wide small-signal bandwidth, extra-fast slewing and excellent full-power response may reasonably – but not always – be expected to have fast settling), the settling time cannot usually be rationally predicted from the other dynamic specifications.

Slewing Rate

The slewing rate of an amplifier, usually in volts per microsecond $(V/\mu s)$, defines the maximum rate of change of output voltage for a large input step change.

Unity-Gain Small-Signal Response

Unity-gain small-signal response is the frequency at which the open-loop gain (or its projection on a Bodé plot) falls to 1V/V, or 0dB under a specified compensation condition. For amplifiers having 6 dB-per-octave rolloff, this frequency is also called

unity-gain bandwidth; for such amplifiers, the gain-bandwidth product is essentially constant. "Small signal" indicates that, in general, it is not possible to obtain large output voltage swing at high frequencies because of distortion due to slew-rate limiting or signal rectification.

For amplifiers with symmetrical response for signals applied to either input, the dynamic behavior will be consistent for both inverting and noninverting configurations. However, if feedforward compensation is used, fast response will be available only on the negative input, restricting fast applications of the device to the inverting mode.

For amplifiers having 6 dB-per-octave rolloff, this frequency is also called *unity-gain bandwidth*; for such amplifiers, the *gain-bandwidth product* is essentially constant.

A BRIEF BIBLIOGRAPHY ON OP AMPS

BOOKS (Not available from Analog Devices except where noted)

- A Designer's Guide to: Innovative Linear Circuits, by Jim Williams, Newton, MA, Cahners, 1985
- Analog Signal Processing and Instrumentation, by Arie F. Arbel, Cambridge (UK), Cambridge University Press, 1980
- Bipolar and MOS Analog Integrated Circuit Design, by Alan B. Greben, New York, Wiley-Interscience, 1984
- Electronics with Digital and Analog Integrated Circuits, by Richard J. Higgins, Englewood Cliffs, NJ, Prentice Hall, Inc., 1983
- IC Op-Amp Cookbook, by Walter Jung, Howard Sams & Co., Third Edition, 1986, down-to-earth and practical paperback
- Nonlinear Circuits Handbook, edited by D.H. Sheingold, 1976. \$5.95. Analog Devices, Box 796, Norwood, MA 02062
- Operational Amplifuer Circuits, Theory and Applications, by E.J. Kennedy, New York, Holt, Rinehart and Winston, Inc., 1988
- Operational Amplifiers and Linear ICs, by R.F. Coughlin and F.F. Driscoll, Prentice-Hall, Third Edition, 1987. Practical textbook

- Operational Amplifiers, Theory and Practice, by J.K. Roberge, J. Wiley & Sons, 1975. Authoritative book on op amp principles and circuitry: contains extensive material on compensation to optimize dynamic performance
- Transducer Interfacing Handbook, edited by D.H. Sheingold, 1980. \$14.50. Analog Devices, Box 796, Norwood, MA 02062

ARTICLES AND APPLICATION NOTES (Available upon request; ask for specific issue of Analog Dialogue)

- "Amplifier Noise Basics Revisited," Analog Dialogue 18-1, 1984
- "Analog Signal Handling for High Speed and Accuracy," by A.P. Brokaw, Analog Dialogue 11-2

"An IC Amplifier User's Guide to Decoupling, Grounding, and Making Things Go Right for a Change," by A.P. Brokaw, Application Note

- "Applications of High-Performance BiFET Op Amps," Application Note
- "Avoiding Passive-Component Pitfalls," Analog Dialogue 17-2, 1983
- "Current Inverter with Wide Dynamic Range," by Barrie Gilbert, Analog Dialogue 9-1, 1975
- "How to Select Operational Amplifiers," Application Note
- "How to Test Operational Amplifier Parameters," Application Note
- "Laser-Trimming on the Wafer, A Powerful New Tool for ICs," by R. Wagner, *Analog Dialogue* 9-3, 1975
- "Shielding and Guarding," by Alan Rich, Analog Dialogue 17-1, 1983
- "Simple Rules for Choosing Resistor Values in Adder-Subtractor Circuits," by D. Sheingold, Analog Dialogue 10-1, 1976
- "Understanding Interference-Type Noise," by Alan Rich, Analog Dialogue 16-3, 1982

AD380

FEATURES

High Output Current: 50mA $@ \pm 10V$ Fast Settling to 0.1%: 130ns High Slew Rate: 330V/ μ s High Gain-Bandwidth Product: 300MHz High Unity Gain Bandwidth: 40MHz Low Offset Voltage (1mV for AD380K, L, S)

PRODUCT DESCRIPTION

The AD380 is a hybrid operational amplifier that combines the low input bias current advantages of a FET input stage with the high slew rate and line driving capability of a fast, high power output amplifier.

The AD380 has a slew rate of $330V/\mu s$ and will output $\pm 10V$ at $\pm 50mA$. A single external compensation capacitor allows the user to optimize the bandwidth, slew rate, or settling time for the given application.

A true differential input ensures equally superior performance in all system designs whether they are inverting, noninverting, or differential.

The AD380 is especially designed for use in applications, such as fast A/D, D/A and sampling circuits, that require fast and smooth settling and FET input parameters.

The AD380 is offered in three commercial versions, J, K and L specified from 0 to $+70^{\circ}$ C and one extended temperature version, the S, specified from -55° C to $+125^{\circ}$ C. All grades are packaged in hermetically sealed TO-8 style cans.

PRODUCT HIGHLIGHTS

- 1. The AD380's high output current (50mA @ \pm 10V) makes it suitable for driving terminated 200 Ω twisted pairs.
- 2. The fast settling output (250ns to 0.01%) makes the AD380 an ideal choice for video A/D and D/A converters and sample and hold applications.
- 3. The settling wave forms are not only fast but are also very smooth. The absence of large overshoot and oscillations makes the AD380 a very predictable and dependable system element.
- 4. The high gain-bandwidth product (300MHz) ensures low distortion in high frequency applications.
- 5. Quick, symmetrical overdrive recovery time (250ns) is assured by an internal antisaturation diode. This is useful in applications where large transient signals may occur.
- The precision input (1mV offset, max), along with fast settling and high current output make the AD380 an excellent choice for:
 - ATE pin drivers
 - · precision coax buffers
 - · signal conditioning on pulse waveforms
 - high resolution graphics displays.

SPECIFICATIONS (typical $@ +25^{\circ}C$ and $V_s = \pm 15V$ dc unless otherwise specified)

MODEL	AD380JH	AD380KH	AD380LH	AD380SH	
OPEN LOOP GAIN				1	
$V_{OUT} = \pm 10V$, no load	40,000 min	*	*	*	
$V_{OUT} = \pm 10V, R_L \ge 200\Omega$	25,000 min	*	*	*	
OUTPUT CHARACTERISTICS					
Voltage @ $R_1 = 200\Omega$, $T_A = \min to \max$	$\pm 12V(\pm 10V \text{ min})$	*	*	*	
Output Impedance (Open Loop)	100Ω	*	*	*	
Short Circuit Current	100mA	*	*	*	
DVNAMIC RESPONSE					
Unity Gain, Small Signal	40MHz	*	*	*	
Gain-Bandwidth Product, $f = 100 \text{kHz}$ Co = 1pF	300MHz (200MHz min)	*	*	*	
Full Power Response	6MHz	*	*	*	
Slew Rate, $C_c = 1 \text{ pF}$, 20V Swing	$330V/\mu s(200V/\mu s min)$	*	*	*	
Settling Time: 10V Step to 1%	90ns	*	*	*	
10V Step to 0.1%	130ns	*	*	*	
10V Step to 0.01%	250ns	250ns (400ns max)	**	**	
INPUT OFFSET VOL TAGE	2.0mV max	1.0mV max	**	**	
$v_{\rm S}$ Temperature ¹ T min to may	50u V/°C may	20u V/°C max	10u V/°C max	50u V/°C max	
vs. Supply	ImV/V max	*	*	*	
INDUT DIAS CUDDENIT				<u> </u>	
Either Input Initial ²	10mA (100mA max)	*	*	*	
Input Offset Current	SnA	*	*	*	
	эрл				
INPUT IMPEDANCE					
Differential	10 ¹¹ Ω 6pF	*	*	*	
Common Mode	10 ¹¹ Ω 6pF	*	*	*	
INPUT VOLTAGE RANGE					
Differential ³	± 20V	*	*	*	
Common Mode	$\pm 12V(\pm 10V \min)$	*	*	*	
Common Mode Rejection, $V_{IN} = \pm 10V$	60dB min	*	*	*	
POWER SUPPLY					
Rated Performance	± 15V	*	*	*	
Operating	± (6 to 20)V	*	*	*	
Quiescent Current	12mA (15mA max)	*	*	*	
VOLTAGE NOISE					
0.1Hz to 100Hz	3.3µV p-p(0.5µV rms)	*	· *	*	
100Hz to 10kHz	$6.6\mu V p - p(1\mu V rms)$	*	*	*	
10kHz to 1MHz	40µV p-p(6µV rms)	*	*	*	
TEMPERATURE RANGE				1	
Operating, Rated Performance	0 to + 70°C	*	*	- 55°C to + 125°C	
Storage	-65°C to +150°C	*	*	*	
Thermal Resistance θ_{1A}	100°C/W	*	*	*	
θις	70°C/W	*	*	*	
PACKAGE OPTION ⁴	1	T		1	
TO-8 Style	H-12A	*	*	*	
		1		1	

⁴See Section 16 for package outline information

NOTES Input Offset Voltage Drift is specified with the offset voltage unnulled. Nulling will induce an additional $3\mu V/^{2}C/mV$ of offset nulled ^{2}Bas Current specifications are guaranteed maximum at either input at $T_{CASE} = +25^{\circ}C$. For higher temperatures see Figure 16. ³ Defined as the maximum safe voltage between inputs such that neither exceeds \pm 10V from ground.

**Specifications same as AD380JH **Specifications subject to change without notice.

Figure 1. Open Loop Frequency Response

Figure 4. Slew Rate vs. Differential Input Voltage

Figure 7. Settling Time vs. Closed Loop Gain

Figure 10. Supply Current vs. Temperature

Figure 2. CMRR vs. Frequency

Figure 5. Slew Rate vs. Compensation Capacitor

Figure 8. Gain vs. Temperature

Figure 11. Supply Current vs. Supply Voltage

Typical Characteristics

Figure 3. PSRR vs. Frequency

Figure 6. Output Settling Time vs. Output Voltage Swing and Error

Figure 9. Gain vs. Supply Voltage

Figure 12. I_{SC} vs. Temperature

OPERATIONAL AMPLIFIERS 2-17

Figure 13. Power Dissipation vs. Temperature

Figure 16. Input Bias Current vs. Temperature

Figure 19. Output Voltage Swing vs. Supply Voltage

Figure 14. Input Bias Current vs. Common Mode Voltage

Figure 17. Offset Voltage vs. Temperature

Figure 20. Output Voltage Swing vs. Load Resistance

Figure 22. Recommended Compensation Capacitor vs. Closed Loop Gain

Figure 15. Input Bias Current vs. Supply Voltage

Figure 18. Input Voltage Range vs. Supply Voltage

Figure 21. Large Signal Frequency Response

Figure 23. Input Noise Voltage Spectral Density

Figure 25a. Unity Gain Inverter Settling Time Test Circuit

Figure 26a. Unity Gain Buffer Circuit

Figure 24b. Overdrive Recovery Response (Symmetrial 20ns Version Available)

Figure 25c. Unity Gain Inverter Small Signal Response

Figure 26c. Unity Gain Small Signal Response

APPLICATIONS INFORMATION

Compensation Capacitor

For low gain applications a 5pF to 27pF capacitor between the frequency compensation input (pin 11) and the output (pin 9) will reduce the risk of oscillation by adding phase margin. A compensation capacitor is especially needed when driving capacitive loads. For gains greater than 30 a 1pF compensation capacitor is recommended; see Figure 22.

For unity gain buffer applications it may be necessary to add a small (10pF to 20pF) capacitor between pins 8 and 10 for improved phase margin; see Figure 26a.

Offset Null

Figure 25b. Unity Gain Inverter

Figure 26b. Unity Gain Buffer

Large Signal Response

Large Signal Response

If the initial offset voltage is not low enough for the user's application offset nulling is required. To null the offset tie a $20k\Omega$ potentiometer between the offset null pins (pins 2 and 8). The wiper of the potentiometer is tied to the positive supply. With the analog input signal to the circuit grounded, adjust the potentiometer for zero output.

To minimize the effects of offset voltage drift as a function of temperature, null the offset at the midpoint of the operating temperature range. For example, if the operating environment is 0°C to 70°C do the offset nulling at 35°C. This will insure a maximum offset voltage drift of 35 times the V_{OS} drift specification at either temperature extreme.

*Optional Differential Input Components Used to Reject Noise Between Input Ground and the A/D Analog Ground

Figure 27. Fast-Settling Buffer

Its quick recovery from load variations makes the AD380 an excellent buffer for fast successive approximation A/D converters; see Figure 27.

Many high speed A/D converters require a wideband buffer that can hold a constant output voltage under dynamically-changing load conditions that fluctuate at the bit decision rate.

Figure 28. 12-Bit Voltage Output DAC Circuit Settles to 1/2LSB in 300ns

The AD565A 12-bit digital to analog converter with an AD380 output amplifier will give a voltage output that typically settles to within 1/2LSB in less than 300ns. Total settling time is the root mean square of the DAC current output settling time and the output amplifier settling time.

Figure 29. CMOS DAC Output Amplifier

CMOS DAC output amplifiers require low offset voltage op amps. The output impedance of CMOS DACs varies with input code. This can cause a code dependent error term at the output that approaches the op amps' offset voltage. If the DAC has a differential nonlinearity of 1/2LSB, it will require an output amplifier with less than 1/2LSB offset error to remain monotonic. An LSB for a 12-bit DAC such as the AD7545 is 2.44mV (10 volts full scale/4096). Thus, the AD380KH, with only 1mV offset maximum, will contribute less than 1/2LSB to differential linearity error.

Figure 30. Video Amplifier

The high output current capability of the AD380 makes it suitable for video speed driver applications. In the circuit above the closed loop gain of 70 (37dB) is available over a bandwidth of 5MHz. Note that a 1pF compensation capacitor is required in this high gain application.

High Speed, Low Drift FET Operational Amplifiers

AD381/AD382

FEATURES

High Slew Rate 30V/µs Fast Settling to 0.1%: 700ns High Output Current: 50mA for AD382 (10mA for AD381) Low Drift (5µ/°C-L Grades) Low Offset Voltage (250µV-L Grades) Low Input Bias Currents Low Noise (2µV p-p)

PRODUCT DESCRIPTION

The AD381/AD382 are hybrid operational amplifiers combining the very low input bias current advantages of a FET input stage with high slew rate and line driving capability of a high power output stage.

The offset voltage (0.25mV maximum for the L grades) and offset voltage drift ($5\mu V/^{\circ}C$ maximum for the L grades) are exceptionally low for high speed operational amplifiers.

In addition to superior low drift performance, the AD381 and AD382 offer the lowest guaranteed input bias currents of any wideband FET amplifier with 100pA max for the J grades of each and 50pA max for the AD382 K, L and S grades. Since Analog Devices, unlike most other manufacturers, specifies input bias current with the amplifiers warmed-up, our FET amplifiers are specified under actual operating conditions.

The AD381 and AD382 are especially designed for use in applications, such as precision high speed data acquisition systems and signal conditioning circuits, that require excellent input parameters and a fast, high power output.

The AD381 and AD382 are offered in three commercial versions, J, K and L specified from 0 to $+70^{\circ}$ C, and one extended temperature version, the S specified from -55° C to $+125^{\circ}$ C. All grades are packaged in hermetically sealed metal cans.

PRODUCT HIGHLIGHTS

- 1. Laser trimming techniques reduce offset voltage drift to $5\mu V/^{\circ}C$ max and reduce offset voltage to only $250\mu V$ max on the L grade versions.
- 2. Analog Devices FET processing provides 100pA max (20pA typical) bias currents specified after 5 minutes of warm-up.

AD381 PIN CONFIGURATION

AD382 PIN CONFIGURATION

- Internal frequency compensation, low offset voltage, and full device protection eliminate the need for external components and adjustments. This reduces circuit size and complexity and increases reliability.
- 4. The fast settling output (700ns to 0.1%) makes the AD381 and AD382 ideal for D/A and A/D converter amplifier applications.
- 5. The AD382's high output current (50mA minimum at ± 10 volts) makes it suitable for driving terminated (200 Ω) twisted pair cables over the commercial temperature ranges.
- The high slew rate (30V/µs) and high gain bandwidth product (5MHz) make the AD381 and AD382 an ideal choice for sample and holds and for high speed integrator circuits.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $\pm 15V$ dc unless otherwise specified)

	AD2011U	AD301KH	AD2011 U	AD2016U
Model	AD387IH	AD387KH	AD382I H	AD382SH
	ADJOZJII	ADJOZNI	AL/ 3021.11	AD302311
OPEN LOOP GAIN				
$V_{OUT} = \pm 10V, R_L \ge 2k\Omega(AD381)$	60,000 min	100,000 min	**	**
$V_{OUT} = \pm 10V, R_L = 200\Omega (AD382)$	25,000 min	35,000 min	**	**
$\mathbf{R_L} = 10k\Omega (\mathrm{AD382})$	100,000 min	150,000 min	**	**
OUTPUT CHARACTERISTICS (AD382)				
Voltage @ $R_I = 200\Omega$	$\pm 12V(\pm 10V \min)$	*	*	Note 1
Voltage @ $R_{L} = 10k\Omega$	$\pm 13V(\pm 12V \min)$	*	*	*
Short Circuit Current, Continuous	80mA	*	*	*
OUTPUT CHARACTERISTICS (AD381)				
Voltage $@R_1 = 1k\Omega$, $T_2 = min to max$	+12V(+10V min)	*	*	Note 2
Voltage @ $R_{L} = 2k\Omega$. $T_{A} = \min to \max$	$\pm 12V(\pm 10V \min)$ + 12V(+ 10V min)	*	*	*
Voltage @ $R_{r} = 10k\Omega$, $T_{A} = min to max$	+ 13V(+ 12V min)	*	*	*
Short Circuit Current, Continuous	20mA	*	*	*
DVNA MIC DESPONSE			······	
Uniter Color Street Size 1	636TT-	•	•	•
Unity Gain, Smail Signal	500hII-	÷	-	-
Full Power Response	200KHZ 200V/s (200V/s min)	• •	÷	÷
Siew Kate, Unity Gain	$30v/\mu s (20v/\mu s mm)$	÷.	÷	÷
10V Step to 0.01%	700HS	1 2	**	**
107 Step 100.01%	1.2μs	1.2µs(2.0µs max)		
INPUT OFFSET VOLTAGE	1.0mV max	0.5mV max	0.25mV max	*
vs. Temperature, $T_A = \min to \max^3$	15µV/°C max	10µV/°C max	5µV/°C max	10μV/°C max
vs. Supply	200µV/V max	100µV/V max	**	**
INPUT BIAS CURRENT ⁴				
Either Input (AD381)	20pA (100pA max)	*	*	*
Either Input (AD382)	20pA (100pA max)	10pA (50pA max)	**	**
Input Offset Current	5pA	*	*	*
INPUTIMPEDANCE				
Differential	10 ¹² Ω 7pF	*	*	*
Common Mode	$10^{12}\Omega$ 7pF	*	*	*
NUT VOL TACEDANCE	20 10() P			
Differential ⁵	. 2017	•	+	•
Common Made	$\pm 10V$ $\pm 10V$ ± 10	•	•	÷
Common Mode	$\pm 12V (\pm 10V \text{ mm})$	90JB	**	**
Common-Mode Rejection, $v_{IN} = \pm 10v$	/odb min	800B min		
POWER SUPPLY				
Rated Performance	±15V	*	*	*
Operating	$\pm (5 \text{ to } 18) \text{V}$	*	*	
Quiescent Current AD382	3.4mA (6mA max)	*	*	*
AD381	3.2mA (5mA max)	*	*	*
VOLTAGE NOISE				
0.1Hz-10Hz	2µV p-p	*	*	*
10Hz	35nV/√Hz	*	*	*
100Hz	$22nV/\sqrt{Hz}$	*	*	*
lkHz	$18nV/\sqrt{Hz}$	*	*	*
10kHz	l6nV/VHz	*	*	*
TEMPERATURE RANGE ⁶				
Operating, Rated Performance	0 to + 70°C	*	*	- 55°C to + 125°C
Storage	-65°C to +150°C	*	*	*
Thermal Resistance – θ JA (AD382)	100°C/W	*	*	*
Thermal Resistance – $\theta JC(AD382)$	70°C/W	*	*	*

.

current is 35mA.

NOTES ¹The AD382SH has an output voltage of $\pm 12V (\pm 10V \text{ min})$ for a 2000 load from T_{min} to $+100^{\circ}$ C. To $+125^{\circ}$ C the output

current is 35mA. ²⁷The AD3815H has an output voltage of $\pm 12V(\pm 10V min)$ for a 1kΩ load from T_{mm} to + 70°C. From + 70°C to + 125°C the output current is 7mA. ³¹Jnput Ofset Voltage Drift is specified with the offset voltage unnulled. Nulling will induce an additional 3 μ V°C for every mV of offset nulled.

⁴Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25$ °C. For higher temperatures,

the current doubles every 10°C.

the current doubles every 10°C. ⁵Defined as the maximum ask voltage between inputs, such that neither exceeds ± 100 from ground. ⁶The S-grade is available in full compliance with MIL-STD-883 Rev C. Ask for the MIL-data sheet.

*Specifications same as J grade.

**Specifications same as K grade.

Specifications subject to change without notice.

ORDERING GUIDE

	Initial			Package
Model	Offset	Offset T.C.	Output	Options*
AD381JH	lmV	15µV/℃	10mA	H-08B
AD381KH	0.5mV	10µV/°C	10mA	H-08B
AD381LH	0.25mV	5µV/℃	10mA	H-08B
AD381SH	lmV	10μV/°C	10mA	H-08B
AD382JH	lmV	15µV/°C	50mA	H-12A
AD382KH	0 5mV ·	10µV/℃	50mA	H-12A
AD382LH	0.25mV	5µV/℃	50mA	H-12A
AD382SH	lmV	10µV/°C	50mA	H-12A

*See Section 16 for package outline information

Typical Characteristics

Figure 1. Input Voltage Range vs. Supply Voltage

Figure 3b. Output Voltage Swing vs. Load Resistor for AD382

Figure 5. Permitted Dissipation vs. Temperature for AD382

Temperature

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 4a. Short Circuit Current vs. Temperature for AD381

Supply Voltage

Figure 3a. Output Voltage Swing vs. Load Resistor for AD381

Figure 4b. Short Circuit Current vs. Temperature for AD382

Figure 7. Input Bias Current vs. Supply Voltage

Figure 10. Input Offset Voltage Turn On Drift vs. Time

Figure 11a. Open Loop Gain vs. Temperature for AD381

Figure 13a. Voltage Gain vs. Load Resistance for AD381

Figure 15. Phase Margin vs. Frequency

Figure 18. Large Signal Frequency Response

Figure 11b. Open Loop Gain vs. Temperature for AD382

Figure 13b. Voltage Gain vs. Load Resistance for AD382

Figure 16. Common-Mode Rejection vs. Frequency

Figure 19. Noise vs. Frequency

Figure 12. Open Loop Voltage Gain vs. Supply Voltage

Figure 14. Open Loop Gain vs. Frequency

Figure 17. Power Supply Rejection vs. Frequency

Figure 20a. AD381 Output Settling Time vs. Output Voltage Swing and Error (Circuit of Figure 22a)

Typical Characteristics

SCOPE VERTICAL TW/DIV VERNOR - VII - VII - VIII - VIIII - VIIII - VIIII - VIII - VIII - VIII - VIII - VII

Figure 20b. AD382 Settling Time vs. Output Swing and Error (Circuit of Figure 23a)

Figure 21. Settling Time vs. Closed Loop Gain (Circuits of Figures 22a & 23a)

Figure 22. AD381 Unity Gain Inverter Settling Time Test Circuit

2-26 OPERATIONAL AMPLIFIERS

IC, Wideband, Fast Slewing General Purpose Operational Amplifier

AD507

FEATURES

 $\begin{array}{l} \mbox{Gain Bandwidth: 100MHz} \\ \mbox{Slew Rate: } 20V/\mu s \mbox{min} \\ \mbox{Ig: 15nA max} (AD507K) \\ \mbox{V}_{os} : 3mV \mbox{max} (AD507K) \\ \mbox{V}_{os} \mbox{Drift: } 15\mu V/^{\circ} C \mbox{max} (AD507K) \\ \mbox{High Capacitive Drive} \end{array}$

PRODUCT DESCRIPTION

The Analog Devices AD507J, K and S are low cost monolithic operational amplifiers that are designed for general purpose applications where high gain bandwidth and high speed are significant requirements. The devices also provide excellent dc performance with low input offset voltage, low offset voltage drift and low bias current. The AD507 is a low cost, high performance alternative to a wide variety of modular and IC op amps; a brief review of the specifications confirms its outstanding price/performance characteristics.

The AD507 is recommended for use where low cost and all around performance, especially at high frequencies, are needed. It is particularly well suited as a fast, high impedance comparator, integrator or wideband amplifier and in sample/ hold circuits. It is unconditionally stable for all closed loop gains above 10 without external compensation; the frequency compensation terminal is used for stability at lower closed loop gains. The circuit is short circuit protected and offset voltage nullable. The AD507J and K are specified over the 0 to +70°C temperature range, the AD507S over the extended temperature range, -55° C to $+125^{\circ}$ C. All devices are packaged in the hermetic TO-99 metal can.

PRODUCT HIGHLIGHTS

1. Excellent dc and ac performance combined with low cost.

- 2. The AD507 will drive several hundred pF of output capacitance without oscillation.
- 3. All guaranteed dc parameters, including offset voltage drift, are 100% tested.
- 4. To insure compliance with gain bandwidth and slew rate specifications, all devices are tested for ac performance characteristics.
- 5. To take full advantage of the inherent high reliability of IC's, every AD507S receives a 24 hour stabilization bake at +150°C.

MIL-STANDARD-883

The AD507S/883 has the same electrical specifications as the AD507S, but is subjected to the 100% screening requirements specified in MIL-STD-883, Method 5004, Class B.

This procedure includes:

- 1. Pre-Cap Visual Inspection: Method 2010, Condition B.
- 2. Stabilization Bake: Method 1008, Condition C, 24 hours @ +150°C.
- 3. Temperature Cycle: Method 1010, Condition C, -65°C to +150°C, 10 cycles.
- 4. Centrifuge: Method 2001, Condition E, 30,000 g, Y₁ orientation.
- 5. Hermeticity, Gross Leak: Method 1014, Condition C, steps 1 and 2.
- Hermeticity, Fine Leak: Method 1014, Condition A, 5 x 10⁻⁸ atm/cc/sec.
- 7. Burn-In: Method 1015, 160 hours @ +125°C.
- 8. Final Electrical Test.
- 9. External Visual: Method 2009.

SPECIFICATIONS (typical at +25°C and ±15V dc, unless otherwise noted)

PARAMETER	AD507J	AD507K	AD507S(AD507S/883)**	
OPEN LOOP GAIN				
$R_{L} = 2k\Omega, C_{L} = 50pF$	80,000 min (150,000 typ)	100,000 min (150,000 typ)	100,000 min (150,000 typ)	
® T _{min} to T _{max}	70,000 min	85,000 min	70,000 min	
OUTPUT CHARACTERISTICS				
Voltage @ $R_I = 2k\Omega$, $C_I = 50pF$, T_{min} to T_{max}	±10V min (±12V tvp)	*	±10V min (±12V typ)	
Current @ $V_0 = \pm 10V$	± 10 mA min (± 20 mA typ)	*	±15mA min (±22mA typ)	
Short Circuit Current	25mA	*	25mA	
FREQUENCY RESPONSE				
Unity Gain, Small Signal				
$(\mathbf{a} \mathbf{A} = 1 (\text{open loop})$	35MHz	*	*	
(a) A = 100 (closed loop)	1 MHz	*	*	
Full Power Response	320kHz min (600kHz typ)	400kHz min (600kHz typ)	400kHz min (600kHz typ)	
Slew Rate	$+20V/\mu s \min(+35V/\mu s typ)$	$\pm 25 V/\mu s \min(\pm 35 V/\mu s typ)$	$20V/\mu s \min(\pm 35V/\mu s typ)$	
Settling Time (to 0.1%)	900ns	*	*	
INPUT OFFSET VOLTACE				
Initial	5.0mV max (3.0mV typ)	3 (mV max (1 5mV typ)	4mV max (0.5mV typ)	
$\Delta v \alpha v s Temp T to T$	$15_{\rm m} N^{\circ} C$	$15\mu V/^{\circ}C max (8\mu V/^{\circ}C tup)$	$20\mu V/^{\circ}C \max(8\mu V/^{\circ}C \tan)$	
vs Supply This to The	$200\mu V/V$ max	$100\mu V/V max$	100uV/V max	
vs supply, 1 _{min} to 1 _{max}	200μ V/V max	100µ v/ v max	100µ V/V max	
INPUT BIAS CURRENT				
Initial	25nA max	15nA max	15nA max	
T _{min} to T _{max}	40nA max	25nA max	35nA max	
INPUT OFFSET CURRENT				
Initial	25nA max	15nA max	15nA max	
T _{min} to T _{max}	40nA max	25nA max	35nA max	
Avg vs Temp, T _{min} to T _{max}	0.5nA/°C	0.2nA/°C	0.2nA/°C	
INPUT IMPEDANCE				
Differential	40MΩ min (300MΩ typ)	*	$65M\Omega$ min (500MΩ typ)	
Common Mode	1000ΜΩ	•	*	
INPUT VOLTAGE NOISE				
f = 10Hz	$100 n V / \sqrt{Hz}$	*	*	
f = 100Hz	30nV/5/Hz	*	*	
f = 100 kHz	$12nV/\sqrt{Hz}$	*	*	
INPUT VOLTACE PANCE				
Differential May Safe	+12 OV	•	*	
Common Mode Voltage Range T to T	+11 OV	•	*	
Common Mode Rejection @ ±5V. True to True	74dB min (100dB typ)	80dB min (100dB typ)	80dB min (100dB typ)	
	, (ab iiiii (100ab ()p)			
POWER SUPPLY Based Dauforman as	+1537	*	*	
Rated Performance	$\pm 15 V$	*	•	
Operating	$\pm (5 \text{ to } 20) \text{ v}$	*	*	
Current, Quiescent	4.0mA max (3.0mA typ)			
TEMPERATURE RANGE	<u>,</u>			
Rated Performance	0 to +70°C	•	-55°C to +125°C	
Operating	-25°C to $+85$ °C	•	-65°C to +150°C	
Storage	-65°C to +150°C	*	*	
PACKAGE OPTION ¹				
H-08A	AD507JH	AD507KH	AD507SH	
	· · · · · · · · · · · · · · · · · · ·			

NOTES ¹ See Section 16 for package outline information.

*Specifications same as AD507J. **AD507S/88 3 minimum order 10 pieces.

Specifications subject to change without notice.

4

Slew Rate Definition and Test Circuit

Applying the AD507

2

APPLICATION CONSIDERATIONS

The AD507 combines excellent dc characteristics and dynamic performance with ease of application. Because it is a wideband, high speed amplifier, care should be exercised in its stabilization. Several practical stabilization techniques are suggested to insure proper operation and minimize user experimentation.

GENERAL PURPOSE WIDEBAND COMPENSATION

The following considerations are intended to provide guidance in critical wideband applications. While not necessary in all cases, the considerations are of prime importance for the user attempting to obtain the highest performance from his circuit design.

High Gain Conditions

The AD507 is fully compensated *internally* for all closed loop gains above 10; however, it is necessary to load the amplifier with 50pF. In many applications this minimum capacitive load will be provided by the load or by a cable at the output of the AD507, making an additional 50pF unnecessary. Figure 1 shows the suggested configuration for general purpose use for closed loop gains above 10.

The 0.1μ F ceramic power supply bypass capacitors are considerably more important for the AD507 than for low frequency general purpose amplifiers. Their main purpose is to convert the distributed high frequency ground to a lumped single point (the V+ point). The V+ to V- 0.1μ F capacitor equalizes the supply grounds while the 0.1μ F capacitor from V+ to signal ground should be returned to signal common. The signal common, which is bypassed to pin 7, is defined as that point at which the input signal source, the feedback network, and the return side of the load are joined to the power common.

Note that the diagrams show each individual capacitor directly connected to the appropriate terminal (pin 7 [V+] and pin 6 [Output]). In addition, it is suggested that all connections be made short and direct, and as physically close to the can as possible, so that the length of any conducting path shared by external components will be minimized.

Figure 1. General Purpose Configuration to Closed Loop Gain > 10

Low Gain Conditions

For low closed loop gain applications, the AD507 should be compensated with a 20pF capacitor from pin 8 (frequency compensation) to signal common or pin 7 (V+). This configuration also requires a 30pF feedback capacitor from pin 6 (Output) to pin 8 (see Figure 2). The 50pF minimum load capacitance recommended for uncompensated applications is not required when the AD507 is used in the compensated mode. This compensation results in a unity gain frequency of approximately 10 to 12MHz. The excellent input characterisitcs of the AD507 make it useful in low frequency applications where both dc and ac performance superior to the 741 type of op amp is desired. Some experimentation may be necessary to optimize the AD507 for the specific requirement. The unity gain bandwidth can be reduced by increasing the value of the compensation capacitor in inverse proportion to the desired bandwidth reduction. It is advisable to increase the feedback capacitor at the same time, maintaining its value about 50% larger than the compensation capacitor. Because the AD507 is fundamentally a wideband amplifier, careful power supply decoupling and compensation component layout are required even in low bandwidth applications.

OFFSET VOLTAGE NULLING

Note that the offset voltage null circuit includes a $2k\Omega$ resistor in series with the wiper arm of the $100k\Omega$ potentiometer. This resistor is not absolutely required, but its use can prevent a condition of false null that can be obtained at the ends of the pot range. The knowledgeable user should have no trouble differentiating between nulling in the pot mid-range and erratic end-range behavior when the wiper is connected directly to V+.

Figure 2. Configuration for Unity Gain Applications

HIGH CAPACITIVE LOADING

Like all wideband amplifiers, the AD507 is sensitive to capacitive loading. Unlike many, however, the AD507 can be used to effectively drive reasonable capacitive loads in virtually all applications, and capacitive loads of several hundred picofarads in a number of specific configurations.

In an inverting gain of ten configuration, the internally compensated amplifier will drive more than 200pF in addition to the recommended 50pF load, or a total of over 250pF. Under such conditions, the slew rate will be only slightly reduced, and the overall settling time somewhat lengthened.

In general, the capacitive drive capability of the AD507 will increase in high gain configurations which reduce closed loop bandwidth.

In any wideband application, it is essential to return the load currents supplied by the amplifier to the power supply without sharing a path with input or feedback signals. This consideration becomes particularly important when driving capacitive loads which may resonate with short lengths of interconnecting wire.

FAST SETTLING TIME

A small capacitor (CS in Figure 3) will improve the settling time of the AD507, when it is used with large feedback resistors. The AD507 input capacitance (typically 2 or 3pF), together with additional circuit capacitance, will introduce an unwanted pole of open-loop response. The extra phase shift introduced, for example, by 4pF of input capacitance, and $5k\Omega$ input source impedance, will result in an underdamped transient response, and long settling time. A small (1.5 to 3.0pF) feedback capacitor will introduce a zero in the open-loop transfer function, reducing the phase shift and increasing the damping, which will more than compensate for the slight reduction in closed-loop bandwidth.

120

BIAS COMPENSATION NOT REQUIRED

Circuit applications using conventional op amps generally require that the source resistances be matched at the inputs to cancel the effects of the input currents and take advantage of low offset current. In circuits similar to that shown in Figure 3, the compensation resistance would be equal to the parallel combination of R_I and R_F , and for large values would require a bypass capacitor. The AD507 is specially designed to cancel the input currents so as to reduce them to the offset current level. As a result, optimum performance can be obtained even though no bias compensation is used, and the non-inverting input can be connected directly to the signal common.

Figure 3. Fast Settling Time Configuration

TYPICAL PERFORMANCE CURVES

AD509

FEATURES

Fast Settling Time 0.1% in 500ns max 0.01% in 2.5 μ s max High Slew Rate: 100V/ μ s min Low I_{OS}: 25nA max Guaranteed V_{OS} Drift: 30μ V/°C max High CMRR: 80dB min Drives 500pF Low Price

APPLICATIONS D/A and A/D Conversion Wideband Amplifiers Multiplexers Pulse Amplifiers

PRODUCT DESCRIPTION

The AD509J, AD509K and AD509S are monolithic operational amplifiers specifically designed for applications requiring fast settling times to high accuracy. Other comparable dynamic parameters include a small signal bandwidth of 20MHz, slew rate of $100V/\mu$ s min and a full power response of 150kHz min. The devices are internally compensated for all closed loop gains greater than 3, and are compensated with a single capacitor for lower gains.

The input characteristics of the AD509 are consistent with 0.01% accuracy over limited temperature ranges; offset current is 25nA max, offset voltage is 8mV max, nullable to zero, and offset voltage drift is limited to $30\mu V/^{\circ}$ C max. PSRR and CMRR are typically 90dB.

The AD509 is designed for use with high speed D/A or A/D converters where the minimum conversion time is limited by the amplifier settling time. If 0.01% accuracy of conversion is required, a conversion cannot be made in a shorter period than the time required for the amplifier to settle to within 0.01% of its final value.

All devices are supplied in the TO-99 package. The AD509J and AD509K are specified for 0 to $+70^{\circ}$ C temperature range; the AD509S for operation from -55° C to $+125^{\circ}$ C.

TOP VIEW

PRODUCT HIGHLIGHTS

- 1. The AD509 is internally compensated for all closed loop gains above 3, and compensated with a single capacitor for lower gains thus eliminating the elaborate stabilizing techniques required by other high speed IC op amps.
- 2. The AD509 will drive capacitive loads of 500pF without deterioration in settling time. Larger capacitive loads can be driven by tailoring the compensation to minimize settling time.
- 3. Common Mode Rejection, Gain and Noise are compatible with a 0.01% accuracy device.
- 4. The AD509K and AD509S are 100% tested for minimum slew rate and guaranteed to settle to 0.01% of its final value in less than $2.5\mu s$.

SPECIFICATIONS (@ +25°C and V_s = \pm 15V dc unless otherwise specified)

		AD5091			AD509K			AD509S		I
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
OPEN LOOP GAIN										
$V_{\Omega} = \pm 10V, R_{I} \ge 2k\Omega$	7,500	15,000		10,000	15,000		10,000	15,000		V/V
T_{min} to T_{max} , $R_1 = 2k\Omega$	5,000			7,500			7,500			V/V
OUTPUT CHARACTERISTICS										
Voltage ($\alpha R_{I} = 2k\Omega, T_{min}$ to T_{max}	±10	±12		±10	± 12		± 10	± 12		v
FREQUENCY RESPONSE										
Unity Gain Small Signal		20			20			20		MHz
Full Power Response	12	1.6		1.5	20		15	2.0		MHz
Slew Rate, Unity Gain	80	120		80	120		100	120		V/µs
Settling Time										
to 0.1%		200			200			200	500	ms
to 0.01%		10			1.0			10	2.5	μs
INPUT OFFSET VOLTAGE										
Initial Offset		5	10		4	8		4	8	mV
Input Offset Voltage T _{min} to T _{max}			14			11			11	mV
Input Offset Voltage vs. Supply,										
I min to I max			200			100			100	μν/ν
INPUT BIAS CURRENT										
Initial		125	250		100	200		100	200	nA
T _{min} to T _{max}			500			400			400	nA
INPUT OFFSET CURRENT										
Initial		20	50		10	25		10	25	nA
$T_A = min to max$			100			50			50	nA
INPUT IMPEDANCE										
Differential	40	100		50	100		50	100		ΜΩ
INPUT VOLTAGE RANGE										
Differential		± 15			±15			±15		v
Common Mode		±10			± 10			± 10		V
Common Mode Rejection	74	90		80	90		80	90		dB
INPUT NOISE VOLTAGE										
f = 10Hz		100			100			100		nV/\ Hz
f = 100Hz		30			30			30		nV/\ Hz
f = 100 kHz		19			19			19		nV/\sqrt{Hz}
POWER SUPPLY										
Rated Performance		±15			±15			±15		v
Operating	± 5		± 20	± 5		± 20	± 5		± 20	v
Quiescent Current		4	6		4	6		4	6	mA
TEMPERATURE RANGE										
Operating, Rated Performance	0		+ 70	0		+ 70	- 55		+ 70	°C
Storage	- 65		+ 150	- 65		+ 150	- 65		+ 150	°C
PACKAGE OPTION ¹										
TO-99 Style (H-08A)		AD509JH			AD509KH	ł		AD509SH		

NOTES

¹See Section 16 for package outline information

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final spectrications shown in boundee are tested on an production units at main electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

,

APPLYING THE AD509

MEASURING SETTLING TIME. Settling time is defined as that period required for an amplifier output to swing from 0 volts to full scale, usually 10 volts, and to settle to within a specified percentage of the final output voltage. For high accuracy systems, the accuracy requirement is normally specified as either 0.1% (10-bit accuracy) or 0.01% (12-bit accuracy) of the 10 volt output level. The settling time period is comprised of an initial propagation delay, an additional time for the amplifier to slew to the vicinity of 10 volts, and a final time period to recover from internal saturation and other effects, and settle within the specified error band. Because settling time depends on both linear and nonlinear factors, there is no simple approach to predicting its final value to different levels of accuracy. In particular, extremely high slew rates do not assure a rapid settling time, since this is only one of many factors affecting settling time. In most high speed amplifiers, after the amplifier has slewed to the vicinity of the final output voltage, it must recover from internal saturation and then allow any overshoot and ringing to damp out. These definitions are illustrated in Figure 1.

Figure 1. Settling Time

The AD509K and AD509S are guaranteed to settle to 0.1% in 500ns and 0.01% in 2.5 μ s when tested as shown in Figure 2. There is no appreciable degradation in settling time when the capacitive load is increased to 500pF, as discussed below. The settling time is computed by summing the output and the input into a differential amplifier, which then drives a scope

Figure 2. AD509 Settling Time Test Circuit

display. The resultant waveform of $(E_O - E_{IN})$ of a typical AD509 is shown in Figure 3. Note that the waveform crosses the 1mV point representing 0.01% accuracy in approximately 1.5 μ s. The top trace represents the output signal; the bottom trace represents the error signal.

Figure 3. Settling Time of AD509

SETTLING TIME VS. R_f AND R_i . Settling time of an amplifier is a function of the feedback and input resistors, since they interact with the input capacitance of the amplifier. When operating in the non-inverting mode, the source impedance should be kept relatively low; e.g., $5k\Omega$; in order to insure optimum performance. The small feedback capacitor (5pF) is used in the settling time test circuit in parallel with the feedback resistor to reduce ringing. This capacitor partially cancels the pole formed in the loop gain response as a result of the feedback and input resistors, and the input capacitance.

SETTLING TIME VS. CAPACITIVE LOAD. The AD509 will drive capacitive loads of 500pF without appreciable deterioration in settling time. Larger capacitive loads can be driven by tailoring the compensation to minimize settling time. Figure 4 shows the settling time of a typical AD509, compensated for unity gain with a 15pF capacitor, with a 500pF capacitive load on the output. Note that settling time to 0.01% is still under 2.0µs.

Figure 4. AD509 with 500pF Capacitive Load

SUGGESTIONS FOR MINIMIZING SETTLING TIME. The AD509 has been designed to settle to 0.01% accuracy in 1 to 2.5 μ s. However, this amplifier is only a building block in a circuit that also has a feedback network, input and output connections, power supply connections, and a number of external components. What has been painstakingly gained in amplifier design can be lost without careful circuit design. Some of the elements of a good high speed design are......

CONNECTIONS. It is essential that care be taken in the signal and power ground circuits to avoid inducing or generating extraneous voltages in the ground signal paths.

The 0.1μ F ceramic power supply bypass capacitors are considerably more important for the AD509 than for low frequency general purpose amplifiers. Their main purpose is to convert the distributed high frequency ground to a lumped single point (the V+ point). The V+ to V- 0.1μ F capacitor equalizes the supply grounds while the 0.1μ F capacitor from V+ to signal ground should be returned to signal common. The signal common, which is bypassed to pin 7, is defined as that point at which the input signal source, the feedback network, and the return side of the load are joined to the power common.

Note that the diagram shows each individual capacitor directly connected to the appropriate terminal (pin 7 [V+]).

Figure 5. Configuration for Unity Gain Applications

DYNAMIC RESPONSE OF AD509

Figure 6. Open Loop Frequency and Phase Response

THE AD509 AS AN OUTPUT AMPLIFIER FOR FAST CURRENT-OUTPUT D-TO-A CONVERTERS

Most fast integrated circuit digital to analog converters have current outputs. That is, the digital input code is translated to an output current proportional to the digital code. In many applications, that output current is converted to a voltage by connecting an operational amplifier in the current-tovoltage conversion mode.

The settling time of the combination depends on the settling time of the DAC and the output amplifier. A good approximation is:

$$t_s \text{ TOTAL} = \sqrt{(t_s \text{ DAC})^2 + (t_s \text{ AMP})^2}$$

Some IC DACs settle to final output value in 100-500 nanoseconds. Since most IC op amps require a longer time to settle to $\pm 0.1\%$ or $\pm 0.01\%$ of final value, amplifier settling time can dominate total settling time. And for a 12-bit DAC, one least significant bit is only 0.024% of full-scale, so low drift and high linearity and precision are also required of the output amplifier. In addition, it is suggested that all connections be short and direct, and as physically close to the case as possible, so that the length of any conducting path shared by external components will be minimized.

COMPONENTS. Resistors are preferably metal film types, because they have less capacitance and stray inductance than wirewound types, and are available with excellent accuracies and temperature coefficients.

Diodes are hot carrier types for the very fastest-settling applications, but 1N914 types are suitable for more routine uses.

Capacitors in critical locations are polystyrene, teflon, or polycarbonate to minimize dielectric absorption.

CIRCUIT. For the fastest settling times, keep leads short, orient components to minimize stray capacitance, keep circuit impedance levels as low as consistent with the output capabilities of the amplifier and the signal source, reduce all external load capacitances to the absolute minimum. Don't overlook sockets or printed circuit board mounting as possible sources of dielectric absorption. Avoid pole-zero mismatches in any feedback networks used with the amplifier. Minimize noise pickup.

Figure 7. Open Loop Frequency Response for Various Cc's

Figure 8 shows the AD509K connected as an output amplifier with the AD565K, high speed 12-bit IC digital-to-analog converter. The 10 picofarad capacitor, C1, compensates for the 25pF AD565 output capacitance. The voltage output of the AD565K/AD509K combination settles to $\pm 0.01\%$ in one microsecond. The low input voltage drift and high open loop gain of the AD509K assures 12-bit accuracy over the operating temperature range.

Figure 8. AD509 as an Output Amplifier for a Fast Current-Output D-to-A Converter

Monolithic Precision, Low-Power FET-Input Electrometer Op Amp

AD515A*

FEATURES

 $\begin{array}{c} \mbox{Ultralow Bias Current: 0.075pA max (AD515AL)} \\ 0.150pA max (AD515AK) \\ 0.300pA max (AD515AJ) \\ \mbox{Low Power: 1.5mA max Quiescent Current} \\ (0.6mA typ) \\ \mbox{Low Offset Voltage: 1.0mV max (AD515AK & L)} \\ \mbox{Low Drift: 15} \mu V/^{\circ}C max (AD515AK) \\ \mbox{Low Noise: 4} \mu V p-p, 0.1Hz to 10Hz \\ \end{array}$

PRODUCT DESCRIPTION

The AD515A is a monolithic FET-input operational amplifier with a guaranteed maximum input bias current of 75fA (AD515AL). The AD515A is a monolithic successor to the industry standard AD515 electrometer, and will replace the AD515 in most aplications. The AD515A also delivers lasertrimmed offset voltage, low drift, low noise and low power, a combination of features not previously available in ultralow bias current circuits. All devices are internally compensated, free of latch-up and short circuit protected.

The AD515A's combination of low input bias current, offset voltage and drift optimizes it for a wide variety of electrometer and very high impedance buffer applications including photocurrent detection, vacuum ion-gage measurement, long-term precision integration and low drift sample/hold applications. This amplifier is also an excellent choice for all forms of biomedical instrumentation such as pH/pIon sensitive electrodes, very low current oxygen sensors, and high impedance biological microprobes. In addition, the low cost and pin compatibility of the AD515A with standard FET op amps will allow designers to upgrade the performance of present systems at little or no additional cost. The $10^{15}\Omega$ common-mode input impedance ensures that the input bias current is essentially independent of common-mode voltage.

As with previous electrometer amplifier designs from Analog Devices, the case is brought out to its own connection (Pin 8) so that the case can be independently connected to a point at the same potential as the input, thus minimizing stray leakage to the case. This feature will also shield the input circuitry from external noise and supply transients.

The AD515A is available in three versions of bias current and offset voltage, the "J", "K" and "L"; all are specified for rated

*Covered by Patent No. 4,639,683.

performance from 0 to $+70^{\circ}$ C and supplied in a hermetically sealed TO-99 package. The industry standard hybrid version, AD515, will also be available.

PRODUCT HIGHLIGHTS

- 1. The AD515A provides subpicoampere bias currents in an integrated circuit amplifier.
 - The ultralow input bias currents are specified as the maximum measured at either input with the device fully warmed up on ±15V supplies at +25°C ambient with no heat sink. This parameter is 100% tested.
 - By using ±V supplies, input bias current can typically be brought below 50fA.
- The input offset voltage on all grades is laser trimmed to a level typically less than 500µV.
 - The offset voltage drift is $15\mu V/^{\circ}C$ maximum on the K grade.
 - If additional nulling is desired, the amount required will have a minimal effect on offset drift (approximately 3µV/°C per mV).
- 3. The low quiescent current drain of 0.6mA typical and 1.5mA maximum, keeps self-heating effects to a minimum and renders the AD515A suitable for a wide range of remote probe applications.
- 4. The combination of low input noise voltage and very low input noise current is such that for source impedances from much over $1M\Omega$ up to $10^{11}\Omega$, the Johnson noise of the source will easily dominate the noise characteristic.
- 5. Every AD515A receives a 24-hour stabilization bake at + 150°C, to ensure reliability and long-term stability.

$\label{eq:specific-specific-specified} SPECIFICATIONS \mbox{(typical @ +25 \mbox{``C with V}_s = \pm 15 \mbox{V dc, unless otherwise specified)}}$

		1	1
Model	AD515AJ	AD515AK	AD515AL
OPEN-LOOP GAIN ¹ $V_{OUT} = \pm 10V, R_L \ge 2k\Omega$ $R_L \ge 10k\Omega$ $T_A = \min to \max R_L \ge 2k\Omega$	20,000V/V min 40,000V/V min 15,000V/V min	40,000V/V min 100,000V/V min 40,000V/V min	25,000V/V min 50,000V/V min 25,000V/V min
OUTPUT CHARACTERISTICS Voltage($(R_L = 2k\Omega, T_A = \min to max)$ ($(R_L = 10k\Omega, T_A = \min to max)$ Load Capacitance ² Short-Circuit Current	± 10V min (± 12V typ) ± 12V min (± 13V typ) 1000pF 10mA min (20mA typ)	* *	*
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate Inverting Unity Gain Overload Recovery Inverting Unity Gain	1MHz 5kHz min (30kHz typ) 0.3V/µs min (2.0V/µs typ) 100µs max (2µs typ)	* * * *	* * * *
INPUT OFFSET VOLTAGE ³ vs. Temperature, $T_A = \min to \max$ vs. Supply, $T_A = \min to \max$	3.0mV max (0.4mV typ) 50µV/°C max 400µV/V max (50µV/V typ)	1.0mV max (0.4mV typ) 15µV/°C max 100µV/V max	1.0mV max (0.4mV typ) 25µV/°C max 200µV/V max
INPUT BIAS CURRENT Either Input ⁴	300fA max	150fA max	75fA max
$\label{eq:INPUT_IMPEDANCE} \begin{split} INPUT IMPEDANCE \\ Differential V_{DIFF} = \pm 1V \\ Common Mode \end{split}$	1.6pF 10 ¹³ Ω 0.8pF 10 ¹⁵ Ω	*	*
INPUT NOISE Voltage, 0.1Hz to 10Hz f = 10Hz f = 100Hz f = 1kHz Current, 0.1Hz to 10Hz 10Hz to 10kHz	4.0μV (p-p) 75nV/√Hz 55nV/√Hz 50nV/√Hz 0.003pA (p-p) 0.01pA rms	* * * *	* * * * * *
INPUT VOLTAGE RANGE Differential Common Mode, $T_A = min \text{ to max}$ Common-Mode Rejection, $V_{IN} = \pm 10V$ Maximum Safe Input Voltage ⁵	± 20V min ± 10V min (+ 12V, - 11 typ) 66dB min (94dB typ) ± V _S	* * 80dB min *	* * 70dB min *
POWER SUPPLY Rated Performance Operating Quiescent Current	± 15V ± 5V min (± 18V max) 1.5mA max (0.6mA typ)	* * *	* * *
TEMPERATURE Operating, Rated Performance Storage	0 to + 70°C - 65°C to + 150°C	*	*
PACKAGE OPTION ⁶ TO-99(H-08A)	AD515AJH	AD515AKH	AD515ALH

NOTES

*Specifications same as AD515AJ.

¹Open Loop Gain is specified with or without nulling of V_{OS}.

²A conservative design would not exceed 750pF of load capacitance.

³Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$.

⁴Bias Current specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}$ C. For

higher temperatures, the current doubles every +10°C.

⁵If it is possible for the input voltage to exceed the supply voltage, a series protection

resistor should be added to limit input current to 0.1mA. The input devices

can handle overload currents of 0.1mA indefinitely without damage. See next page. ⁶See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in **boldface** are tested on all production units at final test.

Applying the AD515A

LAYOUT AND CONNECTIONS CONSIDERATIONS

The design of very high impedance measurement systems introduces a new level of problems associated with the reduction of leakage paths and noise pickup.

- 1. A primary consideration in high impedance system designs is to attempt to place the measuring device as near to the signal source as possible. This will minimize current leakage paths, noise pickup and capacitive loading. The AD515A, with its combination of low offset voltage (normally eliminating the need for trimming), low quiescent current (minimal source heating, possible battery operation), internal compensation and small physical size lends itself very nicely to installation at the signal source or inside a probe. Also, as a result of the high load capacitance rating, the AD515A can comfortably drive a long signal cable.
- 2. The use of guarding techniques is essential to realizing the capability of the ultralow input currents of the AD515A. Guarding is achieved by applying a low impedance bootstrap potential to the outside of the insulation material surrounding the high impedance signal line. This bootstrap potential is held at the same level as that of the high impedance line; therefore, there is no voltage drop across the insulation and, hence, no leakage. The guard will also act as a shield to reduce noise pickup and serves an additional function of reducing the effective capacitance to the input line. The case of the AD515A is brought out separately to Pin 8 so that the case can also be connected to the guard potential. This technique virtually eliminates potential leakage paths across the package insulation, provides a noise shield for the sensitive circuitry and reduces common-mode input capacitance to about 0.8pF. Figure 1 shows a proper printed circuit board layout for input guarding and connecting the case guard. Figures 2 and 3 show guarding connections for typical inverting and noninverting applications. If Pin 8 is not used for guarding, it should be connected to ground or a power supply to reduce noise.

(BOTTOM VIEW)

Figure 1. Board Layout for Guarding Inputs with Guarded TO-99 Package

3. Printed circuit board layout and construction is critical for achieving the ultimate in low leakage performance that the AD515A can deliver. The best performance will be realized by using a teflon IC socket for the AD515A; but at least a teflon stand-off should be used for the high impedance lead. If this is not feasible, the input guarding scheme shown in Figure 1 will minimize leakage as much as possible; the guard ring should be applied to both sides of the board. The guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on a printed circuit; to minimize noise and leakage, they must be carried in rigid, shielded cables.

4. Another important concern for achieving and maintaining low leakage currents is complete cleanliness of circuit boards and components. Completed assemblies should be washed thoroughly in a low residue solvent such as TMC Freon or high-purity methanol followed by a rinse with deionized water and nitrogen drying. If service is anticipated in a high contaminant or high humidity environment, a high dielectric conformal coating is recommended. All insulation materials except Kel-F or teflon will show rapid degradation of surface leakage at high humidities.

Figure 2. Picoampere Current-to-Voltage Converter Inverting Configuration

Figure 3. Very High Impedance Noninverting Amplifier

INPUT PROTECTION

The AD515A is guaranteed for a maximum safe input potential equal to the power supply potential.

Many instrumentation situations, such as flame detectors in gas chromatographs, involve measurement of low level currents from high-voltage sources. In such applications, a sensor fault condition may apply a very high potential to the input of the current-to-voltage converting amplifier. This possibility necessitates some form of input protection. Many electrometer type devices, especially CMOS designs, can require elaborate Zener protection schemes which often compromise overall performance. The AD515A requires input protection only if the source is not current limited, and as such is similar to many JFET-input designs. The failure mode would be overheating from excess current rather than voltage breakdown. If the source is not current limited, all that is required is a resistor in series with the affected input terminal so that the maximum overload current is 0.1mA (for example, $1M\Omega$ for a 100V overload). This simple scheme will cause no significant reduction in performance and give complete overload protection. Figures 2 and 3 show proper connections.

COAXIAL CABLE AND CAPACITANCE EFFECTS

If it is not possible to attach the AD515A virtually on top of the signal source, considerable care should be exercised in designing the connecting lines carrying the high impedance signal. Shielded coaxial cable must be used for noise reduction, but use of coaxial cables for high impedance work can add problems from cable leakage, noise and capacitance. Only the best polyethylene or virgin teflon (not reconstituted) should be used to obtain the highest possible insulation resistance.

Cable systems should be made as rigid and vibration free as possible since cable movement can cause noise signals of three types, all significant in high impedance systems. Frictional movement of the shield over the insulation material generates a charge which is sensed by the signal line as a noise voltage. Low noise cable with graphite lubricant such as Amphenol 21-537 will reduce the noise, but short, rigid lines are better. Cable movements will also make small changes in the internal cable capacitance and capacitance to other objects. Since the total charge on these capacitances cannot be changed instantly, a noise voltage results as predicted from: $\Delta V = Q/\Delta C$. Noise voltage is also generated by the motion of a conductor in a magnetic field.

The conductor-to-shield capacitance of coaxial cable is usually about 30pF/foot. Charging this capacitance can cause considerable stretching of high impedance signal rise-time, thus cancelling the low input capacitance feature of the AD515A. There are two ways to circumvent this problem. For inverting signals or low-level current measurements, the signal is carried on the line connected to the inverting input and shielded (guarded) by the ground line as shown in Figure 2. Since the signal is always at virtual ground, no voltage change is required and no capacitances are charged. In many circumstances, this will destabilize the circuit; if so, capacitance from output to inverting input will stabilize the circuit.

Noninverting and buffer situations are more critical since the signal line voltage and therefore charge will change, causing signal delay. This effect can be reduced considerably by connecting the cable shield to a guard potential instead of ground, an option shown in Figure 3. Since such a connection results in positive feedback to the input, the circuit may be destabilized and oscillate. If so, capacitance from positive input to ground must be added to make the net capacitance at Pin 3 positive. This technique can considerably reduce the effective capacitance which must be charged.

Typical Performance Curves

Figure 6. Input Common-Mode Range vs. Supply Voltage

Figure 7. Peak-to-Peak Input Noise Voltage vs. Source Impedance and Bandwidth

ELECTROMETER APPLICATION NOTES

The AD515A offers subpicoampere input bias currents available in an integrated circuit package. This design will open up many new application opportunities for measurements from very high impedance and very low current sources. Performing accurate measurements of this sort requires careful attention to detail; the notes given here will aid the user in realizing the full measurement potential of the AD515A and perhaps extending its performance limits.

- As with all junction FET input devices, the temperature of the FETs themselves is all important in determining the input bias currents. Over the operating temperature range, the input bias currents closely follow a characteristic of doubling every 10°C; therefore, every effort should be made to minimize device operating temperature.
- 2. The heat dissipation can be reduced initially by careful investigation of the application. First, if it is possible to reduce the required power supplies, this should be done since internal power consumption contributes the largest component of self-heating. To minimize this effect, the quiescent current of the AD515A has been reduced to less than 1mA. Figure 8 shows typical input bias current and quiescent current versus supply voltage.
- 3. Output loading effects, which are normally ignored, can cause a significant increase in chip temperature and therefore bias current. For example, a $2k\Omega$ load driven at 10V at the output will cause at least an additional 25mW dissipation in the output stage (and some in other stages) over the typical 24mW, thereby at least doubling the effects of self-heating. The results of this form of additional power dissipation are demonstrated in Figure 9, which shows normalized input bias current versus additional power dissipated. Therefore, although many dc performance parameters are specified driving a 2k Ω load, to reduce this additional dissipation, we recommend restricting the load resistance to be at least $10k\Omega$.
- 4. Figure 10 shows the AD515A's input current versus differential input voltage. Input current at either terminal stays below a few hundred fA until one input terminal is forced higher than 1 to 1.5V above the other terminal. Input current limits at 30μ A under these conditions.

Figure 8. Input Bias Current and Supply Current vs. Supply Voltage

Figure 9. Input Bias Current vs. Additional Power Dissipation

Figure 10. Input Bias Current vs. Differential Input Voltage

AD515A CIRCUIT APPLICATION NOTES

The AD515A is quite simple to apply to a wide variety of applications because of the pretrimmed offset voltage and internal compensation, which minimize required external components and eliminate the need for adjustments to the device itself. The major considerations in applying this device are the external problems of layout and heat control which have already been discussed. In circuit situations employing the use of very high value resistors, such as low level current to voltage converters, electrometer operational amplifiers can be destabilized by a pole created by the small capacitance at the negative input. If this occurs, a capacitor of 2 to 5pF in parallel with the resistor will stabilize the loop. A much larger capacitor may be used if desired to limit bandwidth and thereby reduce wideband noise.

Selection of passive components employed in high impedance situations is critical. High M Ω resistors should be of the carbon film or deposited ceramic oxide to obtain the best in low noise and high stability performance. The best packaging for high M Ω resistors is a glass body sprayed with silicone varnish to minimize humidity effects. These resistors must be handled very carefully to prevent surface contamination. Capacitors for any high impedance or long-term integration situation should be of a polystyrene formulation for optimum performance. Most other types have too low an insulation resistance, or high dielectric absorption.

Unlike situations involving standard operational amplifiers with much higher bias currents, balancing the impedances seen at the input terminals of the AD515A is usually unnecessary and probably undesirable. At the large source impedances where these effects matter, obtaining quality, matched resistors will be difficult. More important, instead of a cancelling effect, as with bias current, the noise voltage of the additional resistor will add by root-sum-of-squares to that of the other resistor thus increasing the total noise by about 40%. Noise currents driving the resistors also add, but in the AD515A are significant only above $10^{11}\Omega$.

(ALL RESISTORS OF SAME NUMBER SHOULD BE MATCHED ±0.1%) (BUFFER A1 BOOSTS COMMON MODE Z_{IN} BY DRIVING CABLE SHIELDS AT COMMON MODE VOLTAGE AND NEUTRALIZING CM CAPACITANCE)

Figure 11. Very High Impedance Instrumentation Amplifier

Figure 12. Low Drift Integrator and Low-Leakage Guarded Reset

LOW-LEVEL CURRENT-TO-VOLTAGE CONVERTERS

Figure 2 shows a standard low-level current-to-voltage converter. To obtain higher sensitivity, it is obvious to simply use a higher value feedback resistor. However, high value resistors above $10^{9}\Omega$ tend to be expensive, large, noisy and unstable. To avoid this, it may be desirable to use a circuit configuration with output gain, as in Figure 13. The drawback is that input errors of offset voltage drift and noise are multiplied by the same gain, but the precision performance of the AD515A makes the tradeoff easier.

Figure 13. Picoampere to Voltage Converter with Gain

One of the problems with low-level leakage current testing or low-level current transducers (such as Clark oxygen sensors) is finding a way to apply voltage bias to the device while still grounding the device and the bias source. Figure 14 shows a technique in which the desired bias is applied at the noninverting terminal thus forcing that voltage at the inverting terminal. The current is sensed by R_F, and the AD524 instrumentation amplifier converts the floating differential signal to a single-ended output.

Figure 14. Current-to-Voltage Converters with Grounded Bias and Sensor

Low Cost, Laser Trimmed, Precision IC Op Amp

AD517

2

FEATURES

Low Input Bias Current: 1nA max (AD517L) Low Input Offset Current: 0.25nA max (AD517L) Low V_{OS} : 50 μ V max (AD517L), 150 μ V max (AD517J) Low V_{OS} Drift: 1.3 μ V/°C (AD517L) Internal Compensation MIL-Standard Parts Available 8-Pin TO-99 Hermetic Metal Can

PRODUCT DESCRIPTION

The AD517 is a high accuracy monolithic op amp featuring extremely low offset voltages and input currents. Analog Devices' thermally-balanced layout and superior IC processing combine to produce a truly precision device at low cost.

The AD517 is laser trimmed at the wafer level (LWT) to produce offset voltages less than 50μ V and offset voltage drifts less than 1.3μ V/⁶C unnulled. Superbeta input transistors provide extremely low input bias currents of 1nA max and offset currents as low as 0.25nA max. While these figures are comparable to presently available BIFET amplifiers at room temperature, the AD517 input currents decrease, rather than increase, at elevated temperatures. Open-loop gain in many IC amplifiers is degraded under loaded conditions due to thermal gradients on the chip. However, the AD517 layout is balanced along a thermal axis, maintaining open-loop gain in excess of 1,000,000 for a wide range of load resistances.

The input stage of the AD517 is fully protected, allowing differential input voltages of up to $\pm V_S$ without degradation of gain or bias current due to reverse breakdown. The output stage is short-circuit protected and is capable of driving a load capacitance up to 1000pF.

The AD517 is well suited to applications requiring high precision and excellent long-term stability at low cost, such as stable references, followers, bridge instruments and analog computation circuits. The circuit is packaged in a hermetically sealed TO-99 metal can, and is available in three performance versions (J, K, and L) specified over the commercial 0 to $+70^{\circ}$ C range; and one version (AD517S) specified over the extended temperature range, -55° C to $+125^{\circ}$ C.

PRODUCT HIGHLIGHTS

- 1. Offset voltage is 100% tested and guaranteed on all models.
- 2. The AD517 exhibits extremely low input bias currents without sacrificing CMRR (over 100dB) or offset voltage stability.
- The AD517 inputs are protected (to ±V_S), preventing offset voltage and bias current degradation due to reverse breakdown of the input transistors.
- Internal compensation is provided, eliminating the need for additional components (often required by high accuracy IC op amps).
- The AD517 can directly replace 725, 108, and AD510 amplifiers. In addition, it can replace 741-type amplifiers if the offset-nulling potentiometer is removed.
- Thermally-balanced layout insures high open-loop gain independent of thermal gradients induced by output loading, offset nulling, and power supply variations.
- 7. Chips are available.

SPECIFICATIONS (@ $+25^{\circ}$ C and V_s = $\pm 15^{\circ}$ dc)

Model	Min	AD517J Typ	Max	Min	AD517K Typ	Max	Min	AD517L Typ	Max	Min	AD517S Typ	Max	Units
$\begin{array}{l} OPEN \ LOOP \ GAIN \\ V_O = \ \pm \ 10V, \ R_L \geq 2k\Omega \\ T_{max}, \ r_D \ T_{max}, \ R_L = 2k\Omega \end{array}$	10 ⁶ 500,00	0		1 0 6 500,00	0		10⁶ 500,000	0		10 ⁶ 250,000	ð		V/V V/V
$\begin{array}{l} OUTPUT CHARACTERISTICS\\ Voltage (:t \ R_L = 2k\Omega, T_{mun} \ lo \ T_{max}\\ Load Capacitance\\ Output Current\\ Short Current\\ \end{array}$	± 10 10	1000 25		± 10 10	1000 25		± 10 10	1000 25		± 10 10	1000		V pF mA mA
FREQUENCY RESPONSE Unity Gan Small Signal Full Power Response Slew Rate, Unity Gan		250 1 5 0 10			250 1 5 0.10			250 1 5 0 10			250 1 5 0 10		kHz kHz V/µs
INPUT OFFSET VOLTAGE Initial Offset Input Offset vs Temp. Input Offset vs Supply Tmin to Tmax			150 3.0 25 40			75 1.8 10 15			50 1.3 10 15			75 1.8 10 20	μV μV/°C μV/V μV/V
INPUT BIAS CURRENT Initial T _{mun} to T _{max} vs. Temp, T _{mun} to T _{max}			5 8 ± 20			2 3 5 ± 10			1.0 15 ±4			2.0 10 ±10	nA nA pA/°C
INPUT OFFSET CURRENT Initial T _{mun} to T _{max}			1.0 1 5			0.75 1 25			0.25 0 4			2.0 10	nA nA
INPUT IMPEDANCE Differential Common Mode		15∥1 5 2 0×10″			20 1 5 2 0 × 10	"		20∥1 5 2.0×10	"		20∥1 5 2 0 × 10′	v	MΩ∥pF Ω
INPUT VOLTAGE RANGE Differential Common Mode Rejection Common Mode Rejection Ture to Tures	94 94	$\pm V_S$		110	$\pm V_S$		110	$\pm V_S$		110	$\pm V_S$		V dB dB
INPUT NOISE Voltage, 0. 1Hz to 10Hz f = 10Hz f = 10Hz f = 10Hz f = 1kHz Current, f = 10kHz f = 10Hz f = 10Hz f = 1kHz		2 35 25 20 0 05 0 03 0 03		y	2 35 25 20 0 05 0 03 0.03			2 35 25 20 0.05 0 03 0 03			2 35 25 20 0 05 0 03 0 03		$\begin{array}{c} \mu V \ p\text{-}p \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \end{array}$
POWER SUPPLY Rated Performance Operatung Quiescent Current	± 5	±15	±18 4	± 5	±15 ,	± 18 3	± 5 '	±15	±18 3	± 5	± 15	±18 3	V V mA
TEMPERATURE RANGE Operating, Rated Performance Storage	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	- 55 - 65		+ 125 + 150	°C °C
PACKAGE ¹ TO-99 Style (H-08B)		AD517JH			AD517KH	ł		AD517LF	ł		AD517SH		

NOTES 'See Section 16 for package outline information Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Typical Performance Curves

CMRR vs. Frequency

Open-Loop Gain vs. Load Resistance

Untrimmed Offset Voltage vs. Temperature

PSRR vs. Frequency

OPERATIONAL AMPLIFIERS 2-43

NEGATIVE SWING

POSITIVE SWING

10

14

12

10

\$

Maximum Undistorted Output vs. Frequency (Distortion $\leq 1\%$)

Input Current vs. Differential Input Voltage

Total Input Noise Voltage vs. Frequency

Warm-Up Offset Voltage Drift

Low Frequency Voltage Noise (0.1 to 10Hz)

Applying the AD517

2.

The internally-trimmed offset voltage of the AD517 will be low enough for most circuits without further nulling. However, in high precision applications, the AD517 may be nulled using either of the following methods:

Figure 1A shows a simple circuit using a $10k\Omega$, ten-turn potentiometer. This circuit allows nulling to within several microvolts.

The circuit of Figure 1B is recommended in applications where nulling to within $1\mu V$ is desired. This circuit has the advantage that potentiometer instability effects are reduced by a factor of ten. Values of R_1' and R_2' are calculated as follows:

- 1. Null the offset to zero using a standard 10k pot, as shown in Figure 1A.
- 2. Measure pot halves R_1 and R_2 .
- 3. Calculate:

$$R_1' = \frac{R_1 \times 50k\Omega}{50k\Omega - R_1} \qquad R_2' = \frac{R_2 \times 50k\Omega}{50k\Omega - R_2}$$

- 4. Replace the pot with R_1' and R_2' using the closest value 1% metal film resistors.
- 5. Use a 100k, ten-turn pot for R_p to complete the nulling.

B. High Precision

Figure 1. Nulling Circuits

AN INSTRUMENT INPUT AMPLIFIER USING THE AD517L. The circuit shown in Figure 2 represents a typical input stage for laboratory instruments and panel meters. The amplifier is non-inverting and offers selectable gains from 1 to 1000 in decade steps.

Figure 2. Stable Instrument Input Amplifier

Input impedance of this amplifier is 10 megohms, determined by resistor R_1 . The offset nulling network comprised of R_3 , R_4 and R_5 is the same one described earlier. If a less precise adjustment can be tolerated, a single 10k potentiometer can be substituted for R_3 , R_4 and R_5 .

Gain switching is accomplished in the feedback network. The divider consisting of R_{10} , R_{11} , R_{12} and R_{13} determines the gain by dividing the output and returning it to the inverting input of the amplifier. The ratio tolerances of these resistors uniquely determine the gain of the amplifier. The impedance seen by the inverting input is held constant at 10k ohms by R_6 , R_7 R_8 or R_9 depending on the gain selected. Since input bias currents flow through equal resistances, the offset voltages produced will cancel each other. The input offset currents will produce an insignificant offset voltage on the order of 1 microvolt. If this offset is nulled out at the highest gain selected, it will be nulled on all ranges.

The AD517 offers excellent temperature stability in this circuit. Once the offset has been zeroed, the error produced by offset current drift will remain quite low due to the extremely low offset current drift of the AD517. A FET-input op amp would not work well in this application, since the input offset currents would double for each 10° C increase in temperature, soon exceeding the input offset currents of the AD517.

CHIP DIMENSIONS AND BONDING DIAGRAM

Dimensions shown in inches and (mm).

THE AD517 IS AVAILABLE IN LASER-TRIMMED CHIP FORM.

High Performance BiFET Operational Amplifiers

AD542/AD544/AD547

FEATURES

Ultralow Drift: $1\mu V/^{\circ}C - AD547L$ Low Offset Voltage: 0.25mV - AD547L Low Input Bias Currents: 25pA max, Warmed-Up Low Quiescent Current: 1.5mA Low Noise: $2\mu V p$ -p High Open Loop Gain: 110dB High Slew Rate: $13V/\mu s$ Fast Settling to $\pm 0.01\%$: $3\mu s$ Low Total Harmonic Distortion: 0.0025%

AD542, AD544, AD547 FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The BiFET series are precision monolithic FET-input operational amplifiers fabricated with the most advanced BiFET and laser trimming technologies. The series offers bias currents significantly lower than currently available BiFET devices, 25pA max, warmedup.

In addition, the offset voltage is laser trimmed to less than 0.25mV on the AD547L which is achieved by utilizing Analog's exclusive laser-wafer trimming (LWT) process. When combined with the AD547's low offset voltage drift (1 μ V/°C), these features offer the user IC performance truly superior to existing BiFET op amps-and at low, BiFET pricing.

The AD542 or AD547 is recommended for any operational amplifier application requiring excellent dc performance at low to moderate costs. Precision instrument front ends requiring accurate amplification of millivolt level signals from megohm source impedances will benefit from the device's excellent combination of low offset voltage and drift, low bias current and low 1/f noise. High common mode rejection (80dB, min on the "K" and "L" versions) and high open-loop gain—even under heavy loading—ensures better than "12-bit" linearity in high impedance buffer applications.

The AD544 is recommended for any operational amplifier application requiring excellent ac and dc performance at low cost. The 2MHz bandwidth and low offset of the AD544 make it the first choice as an output amplifier for current output D/A converters such as the AD7541, 12-bit CMOS DAC.

Devices in this series are available in four versions: the "J", "K" and "L" are specified over the 0 to $+70^{\circ}$ C temperature range and the "S" over the -55° C to $+125^{\circ}$ C operating temperature range. All devices are packaged in the hermetically-sealed, TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. Improved bipolar and JFET processing results in the lowest bias current available in a monolithic FET op amp.
- 2. Analog Devices, unlike some manufacturers, specifies each device for the maximum bias current at either input in the warmed-up condition, thus assuring the user that the device will meet its published specifications in actual use.
- 3. Advanced laser wafer trimming techniques reduce offset voltage drift to $1\mu V/^{\circ}C$ max and offset voltage to only 0.25mV max on the AD547L.
- 4. Low voltage noise $(2\mu V, p-p)$, and low offset voltage drift enhance performance as a precision op amp.
- The high slew rate (13.0V/µs) and fast settling time to 0.01% (3.0µs) make the AD544 ideal for D/A, A/D, sample-hold circuits and high speed integrators.
- 6. Low harmonic distortion (0.0025%) make the AD544 an ideal choice for audio applications.
- 7. Unmounted chips available for hybrid circuit applications.

SPECIFICATIONS ($@ + 25^{\circ}C$ and $V_s = \pm 15V dc$)

M-d-1	r			
Model	AD542 Min Typ Max	AD544 Min Typ Max	AD547 Min Typ Max	Units
OPEN LOOP GAINI				· · · · · · · · · · · · · · · · · · ·
$V = \pm 10 V R > 2 k O$				
$v_{OUT} = \pm 100 \text{ KL} > 2832$	100.000	20.000	100.000	VAV
J	250,000	50,000	250,000	v/v V/V
K,L,S	250,000	50,000	250,000	v/v
$I_A = I_{min}$ to I_{max}	100.000	20.000	100.000	11.47
J	100,000	20,000	100,000	V/V
8	100,000	20,000	100,000	V/V
K,L	250,000	40,000	250,000	V/V
OUTPUT CHARACTERISTICS				
$V_{OUT} = R_L = 2k\Omega$				
$T_A = T_{min}$ to T_{max}	±10 ±12	±10 ±12	±10 ±12	Volts
$V_{OUT} = R_L = 10k\Omega$				
$T_A = T_{min}$ to T_{max}	±12 ±13	±12 ±13	±12 ±13	Volts
Short Circuit Current	25	25	25	mA
EDEOLIENICY DESPONSE				
Unity Core Small Street	1.0	2.0	1.0	MU-
Childy Gani, Shian Signal	1.0	20	1.0	hill.
Full Fower Response	30	200	20 20	NILZ Million
Siew Rate, Unity Gain	2.0 30	8.0 130	2.0 3.0	ν/μs
I otal Harmonic Distortion		0 0023		-78
INPUT OFFSET VOLTAGE ²				
l	2.0	2.0	1.0	mV
K	1.0	1.0	0.5	mV
L	0.5	0.5	0.25	mV
S	1.0	1.0	0.5	mV
vs Temperature ³				r
т. Т	20	20	5	µV/°C
ĸ	10	10	2	uV/°C
I	5	5	1	uV/°C
s	15	15	ŝ	μ.ν.ο
Supply T - T to T	15	15	,	μπε
vs Supply, $I_A = I_{min}$ to I_{max}	200	200	200	
J	200	200	200	μν/ν
K, L, 3	100	100	100	μν/ν
INPUT BIAS CURRENT ⁴				
Either Input				
J	50	50	50	pA
K, L, S	10 25	10 25	10 25	pA
Input Offset Current				
J	5 15	5 15	5 15	pA
K, L, S	2 15	2 15	2 15	pA
INPUT IMPEDANCE				,
Differential	10 ¹² Ω 6pF	10 ¹² Ω 6pF	10 ¹² Ω 6pF	
Common Mode	10 ¹² Ω 3pF	10 ¹² Ω 3pF	10 ¹² Ω 3pF	
DIDUTION TAOPS		·		
INPUT VOLTAGE	. 20	. 20	. 20	W-h-
Differential	± 20	± 20	± 20	Volts
Common Mode	±10 ±12	±10 ±12	±10 ±12	Volts
Common-Mode Rejection	1	<i>,</i>		
$V_{IN} = \pm 10V$				
J	76	76	76	dB
K,L,S	80	80	80	dB
POWER SUPPLY				
Rated Performance	± 15	± 15	± 15	Volts
Operating	±5 ±18	±5 ±18	±5 ±18	Volts
Oujescent Current	11 1.5	18 2.5	11 1.5	mA
VOLTACENOISE				
OLIAGENOISE				
0 1-10Hz	3.0	3.0	3.0	W
J	20	20	20	μv p-p
K, L, S	20	20	4.0	μν p-p
IUFIZ	/0	35	/0	
IUUHz	45	22	45	nv/ VHz
lkHz	30	18	30	nV/\ <u>Hz</u>
10kHz	25	16	25	nV/\ Hz
TEMPERATURE RANGE				
Operating, Rated Performance				
J, K, L	0 to + 70	0 to + 70	0 to + 70	"C
S	55 to + 125	55 to + 125	55 to + 125	°С
Storage	65 to + 150	65 to + 165	65 to + 165	°C
BACKACE OPTIONS				
TO 99/H 094	ADSA2ILL ADSA2VI	ADSAUL ADSAAVU	ADSIZIN ADSIZEN	
10-79(H-08A)	AD342JH, AD342KH	AD344JH, AD344KH	AD34/JH, AD34/KH	
	AD342LH, AD5425H	AD344LH, AD3448H	AD34/LH, AD34/SH	

NOTES ¹Open Loop Gain is specified with V_{os} both nulled and unnulled ²Input Offset Voltage specifications are guaranteed after 5 minutes of operation at T_A = +25°C. ³Input Offset Voltage Drift is specified with the offset voltage unnulled Nulling will induce an additional $3\mu V/^{\circ}C/mV$ of ³-¹Und offset

unnined rounning win induce an additional Sp. 7 Gin V of mulled offset. Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$. For higher temperatures, the current doubles every 10°C

 5Defined as the maximum safe voltage between inputs, such that neither exceeds $\pm\,10V$ from ground. éSee Section 16 for package outline information

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electri-cal test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Figure 10. Open Loop Voltage Gain vs. Supply Voltage

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 8. Open Loop Gain V Temperature

0

Figure 11. Power Supply Rejection vs. Frequency

Typical Characteristics

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current vs. CMV

Figure 9. Open Loop Frequency Response

Figure 12. Common Mode Rejection Ratio vs. Frequency

2

OPERATIONAL AMPLIFIERS 2-49

Figure 13. Quiescent Current vs. Supply Voltage

Figure 16. AD544 Total Harmonic Distortion vs. Frequency

a. Unity Gain Follower

Figure 21a. Unity Gain Follower Pulse Response (Large Signal)

Figure 22a. Unity Gain Inverter– AD542/AD547

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

ower b. Follower with Gain = 10 Figure 19. T.H.D. Test Circuits

Figure 21b. Unity Gain Follower Pulse Response (Small Signal)

Figure 22b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 15. AD544 Output Settling Time vs. Output Swing and Error

Figure 18. Total rms Noise vs. Source Resistance

Figure 20. Standard Null Circuit

Figure 21c. Unity Gain Follower– AD542/AD547

Figure 22c. Unity Gain Inverter Pulse Response (Small Signal)

Figure 23a. Unity Gain Follower Pulse Response (Large Signal)

Figure 24a. Unity Gain Inverter

Figure 23b. Unity Gain Follower Pulse Response (Small Signal)

Figure 24b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 23c. Unity Gain Follower

Figure 24c. Unity Gain Inverter Pulse Response (Small Signal)

Figure 25. Settling Time Test Circuit

The upper trace of the oscilloscope photograph of Figure 26 shows the settling characteristic of the AD544. The lower trace represents the input to Figure 27. The AD544 has been designed for fast settling to 0.01%, however, feedback components, circuit layout and circuit design must be carefully considered to obtain the optimum settling time.

Figure 26. Settling Characteristic Detail - AD544

Figure 27. Circuit for Driving a Large Capacitance Load

The circuit in Figure 27 employs a 100 Ω isolation resistor which enables the amplifier to drive capacitance loads exceeding 500pF; the resistor effectively isolates the high frequency feedback from the load and stabilizes the circuit. Low frequency feedback is returned to the amplifier summing junction via the low pass filter formed by the 100 Ω series resistor and the load capacitance, C_L.

Figure 28. Transient Response $R_L = 2k\Omega C_L = 500pF-AD544$

ORDERING GUIDE

Model	Initial Offset Voltage	Offset Voltage Drift	Settling Time to $\pm 0.012\%$ for 10V Step
AD542JH	2.0mV	20μV/°C	5µs
AD542KH	1.0mV	10μV/°C	5µs
AD542LH	0.5mV	5μV/°C	5µs
AD542SH	1.0mV	15μV/°C	5µs
AD547JH	1.0mV	5μV/°C	5µs
AD547KH	0.5mV	2μV/°C	5µs
AD547LH	0.25mV	1μV/°C	5µs
AD547SH	0.5mV	5μV/°C	5µs
AD544JH	2.0mV	20μV/°C	3µs
AD544KH	1.0mV	10μV/°C	3µs
AD544LH	0.5mV	5μV/°C	3µs
AD544SH	1.0mV	15μV/°C	3µs

BiFET Application Hints

APPLICATION NOTES

The BiFET series was designed for high performance op-amp applications that require true dc precision. To capitalize on all of the performance available from the BiFETs there are some practical error sources that should be considered.

The bias currents of JFET input amplifiers double with every 10°C increase in chip temperature. Therefore, minimizing the junction temperature of the chip will result in extending the performance limits of the device.

- Heat dissipation due to power consumption is the main contributor to self-heating and can be minimized by reducing the power supplies to the lowest level allowed by the application.
- The effects of output loading should be carefully considered. Greater power dissipation increases bias currents and decreases open loop gain.

GUARDING

The low input bias current (25pA) and low noise characteristics of the high performance BiFET op amp make it suitable for electrometer applications such as photo diode preamplifiers and picoampere current-to-voltage converters. The use of guarding techniques in printed circuit board layout and construction is critical for achieving the ultimate in low leakage performance available from these amplifiers. The input guarding scheme shown in Figure 29 will minimize leakage as much as possible; the guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on a printed circuit.

Figure 29. Board Layout for Guarding Inputs

INPUT PROTECTION

The BiFET series is guaranteed for a maximum safe input potential equal to the power supply potential. The input stage design also allows differential input voltages of up to ± 1 volt while maintaining the full differential input resistance of $10^{12}\Omega$. This makes the BiFET series suitable for comparator situations employing a direct connection to high impedance source.

Many instrumentation situations, such as flame detectors in gas chromatographs, involve measurement of low level currents from high-voltage sources. In such applications, a sensor fault condition may apply a very high potential to the input of the current-to-voltage converting amplifier. This possibility necessitates some form of input protection. Many electrometer type devices, especially CMOS designs, can require elaborate zener protection schemes which often compromise overall performance. The BiFET series requires input protection only if the source is not current-limited, and as such is similar to many IFET-input designs. The failure mode would be overheating from excess current rather than voltage breakdown. If the source is not current-limited, all that is required is a resistor in series with the affected input terminal so that the maximum overload current is 1.0mA (for example, $100k\Omega$ for a 100 volt overload). This simple scheme will cause no significant reduction in performance and give complete overload protection. Figure 30 shows proper connections.

Applications

D/A CONVERTER APPLICATIONS

The BiFET series of operational amplifiers can be used with CMOS DACs to perform both 2-quadrant and 4-quadrant operation. The output impedance of a CMOS DAC varies with the digital word, thus changing the noise gain of the amplifier circuit. The effect will cause a nonlinearity the magnitude of which is dependent on the offset voltage of the amplifier. The BiFET series with trimmed offset will minimize this effect. Additionally, the Schottky protection diodes recommended for use with many older CMOS DACs are not required when using one of the BiFET series amplifiers.

Figure 31a shows the AD547 and AD7541 configured for unipolar binary (2-quadrant multiplication) operation. With a dc reference voltage or current (positive or negative polarity) applied at pin 17, the circuit operates as a unipolar converter. With an ac reference voltage or current, the circuit provides 2-quadrant multiplication (digitally controlled attenuation).

Figure 31a. AD547 Used as DAC Output Amplifier

The oscilloscope photo of Figure 31b shows the output of the circuit of Figure 31a. The upper trace represents the reference input, and the bottom trace shows the output voltage for a digital input of all ones on the DAC (Gain $1-2^{-n}$). The 47pF capacitor across the feedback resistor compensates for the DAC output capacitance, and the 150pF load capacitor serves to minimize output glitches.

Figure 31b. Voltage Output DAC Settling Characteristic

Figure 32a illustrates the 10-bit digital-to-analog converter, AD7533, connected for bipolar operation. Since the digital input can accept bipolar numbers and $V_{\rm REF}$ can accept a bipolar analog input, the circuit can perform a 4-quadrant multiplying function.

Figure 32a. AD544 Used as DAC Output Amplifiers

The photos exhibit the response to a step input at V_{REF} . Figure 32b is the large signal response and Figure 32c is the small signal response. C1 phase compensation (15pF) is required for stability when using high speed amplifiers. C1 is used to cancel the pole formed by the DAC internal feedback resistance and the output capacitance of the DAC.

		E	ov				
 					١.,		
					Δ		
					\square		
 	1	 		••••			
1			V			2µS	

Figure 32b. Large Signal Response

		E		2			
	1				N		
	1						
 	J	 			- \		
		5	D. V			μS	

Figure 32c. Small Signal Response

USING THE AD547 IN LOG AMPLIFIER APPLICATIONS

Log amplifiers or log ratio amplifiers are useful in applications requiring compression of wide-range analog input data, linearization of transducers having exponential outputs, and analog computing, ranging from simple translation of natural relationships in log form (e.g., computing absorbence as the log-ratio of input currents), to the use of logarithms in facilitating analog computation of terms involving arbitrary exponents and multi-term products and ratios.

The picoamp level input current and low offset voltage of the AD547 make it suitable for wide dynamic range log amplifiers. Figure 33 is a schematic of a log ratio circuit employing the AD547 that can achieve less than 1% conformance error over 5 decades of current input, 1nA to 100μ A. For voltage inputs, the dynamic range is typically 50mV to 10V for 1% error, limited on the low end by the amplifiers' input offset voltage.

2

Figure 33. Log-Ratio Amplifier

The conversion between current (or voltage) input and log output is accomplished by the base emitter junctions of the dual transistor Q1. Assuming Q1 has β >100, which is the case for the specified transistor, the base-emitter voltage on side 1 is to a close approximation:

 $V_{BE A} = kT/q \ln I_1/I_{S1}$

This circuit is arranged to take the difference of the V_{BE} 's of Q1A and Q1B, thus producing an output voltage proportional

Figure 35. Low Drift Integrator and Low-Leakage Guarded Reset

Figure 36. Wien-Bridge Oscillator – f_o = 10kHz

to the log of the ratio of the inputs:

$$\begin{split} V_{\rm OUT} &= -K(V_{\rm BE A} - V_{\rm BE B}) = -\frac{Kkt}{q} (\ln I_1 / I_{\rm S1} - \ln I_2 / I_{\rm S2}) \\ V_{\rm OUT} &= -K \ kT/q \ \ln I_1 / I_2 \end{split}$$

The scaling constant, K is set by R1 and R_{TC} to about 16, to produce 1V change in output voltage per decade difference in input signals. R_{TC} is a special resistor with a +3500ppm/°C temperature coefficient, which makes K inversely proportional to temperature, compensating for the "T" in kT/q. The log-ratio transfer characteristic is therefore independent of temperature.

This particular log ratio circuit is free from the dynamic problems that plague many other log circuits. The -3dB bandwidth is 50kHz over the top 3 decades, 100nA to 100μ A, and decreases smoothly at lower input levels. This circuit needs no additional frequency compensation for stable operation from input current sources, such as photodiodes, that may have 100pF of shunt capacitance. For larger input capacitances a 20pF integration capacitor around each amplifier will provide a smoother frequency response.

This log ratio amplifier can be readily adjusted for optimum accuracy by following this simple procedure. First, apply V1 = V2 = -10.00V and adjust "Balance" for $V_{OUT} = 0.00V$. Next apply V1 = -10.00V, V2 = -1.00V and adjust gain for $V_{OUT} = +1.00V$. Repeat this procedure until gain and balance readings are within 2mV of ideal values.

Figure 37. Capacitance Multiplier

Figure 38. Long Interval Timer – 1,000 Seconds

Figure 39. Positive Peak Detector

ANALOG DEVICES

FEATURES

DC Performance: 200μA max Quiescent Current 10pA max Bias Current, Warmed Up (AD548C) 250μV max Offset Voltage (AD548C) 2μV/°C max Drift (AD548C) 2μV p-p Noise, 0.1 to 10Hz AC Performance: 1.8 V/μs Slew Rate 1MHz Unity Gain Bandwidth Available in Plastic, Hermetic Cerdip and Hermetic Metal Can Packages MIL-STD-883B Parts Available Dual Version Available: AD648

PRODUCT DESCRIPTION

The AD548 is a low-power, precision monolithic operational amplifier. It offers both low bias current (10pA max, warmed up) and low quiescent current (200 μ A max) and is fabricated with ion-implanted FET and laser wafer trimming technologies. Input bias current is guaranteed over the AD548's entire common-mode voltage range.

The economical J grade has a maximum guaranteed input offset voltage of less than 2mV and an input offset voltage drift of less than $20\mu V/^{\circ}C$. The C grade reduces input offset voltage to less than 0.25mV and offset voltage drift to less than $2\mu V/^{\circ}C$. This level of dc precision is achieved utilizing Analog's laser wafer drift trimming process. The combination of low quiescent current and low offset voltage drift minimizes changes in input offset voltage due to self-heating effects. Five additional grades are offered over the commercial, industrial and military temperature ranges.

The AD548 is recommended for any dual supply op amp application requiring low power and excellent dc and ac performance. In applications such as battery-powered, precision instrument front ends and CMOS DAC buffers, the AD548's excellent combination of low input offset voltage and drift, low bias current and low 1/f noise reduces output errors. High common-mode rejection (86dB, min on the "C" grade) and high open-loop gain ensures better than 12-bit linearity in high impedance, buffer applications.

The AD548 is pinned out in a standard op amp configuration and is available in seven performance grades. The AD548J and AD548K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD548A, AD548B and AD548C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD548S and AD548T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C.

Extended reliability PLUS screening is available for parts specified over the commercial and industrial temperature ranges. PLUS

AD548 CONNECTION DIAGRAMS Plastic Mini-DIP (N) Package

screening includes 168-hour burn-in, as well as other environmental and physical tests.

The AD548 is available in an 8-pin plastic mini-DIP, cerdip, small outline or TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. A combination of low supply current, excellent dc and ac performance and low drift makes the AD548 the ideal op amp for high-performance, low-power applications.
- The AD548 is pin compatible with industry standard op amps such as the LF441, TL061, and AD542, enabling designers to improve performance while achieving a reduction in power dissipation of up to 85%.
- Guaranteed low input offset voltage (2mV max) and drift (20μV/°C max) for the AD548J are achieved utilizing Analog Devices' laser drift trimming technology, eliminating the need for external trimming.
- Analog Devices specifies each device in the warmed-up condition, insuring that the device will meet its published specifications in actual use.
- 5. A dual version, the AD648 is also available.
- 6. The AD548 is available in chip form.

AD548

SPECIFICATIONS (@ + 25°C and $V_s = \pm 15V$ dc, unless otherwise noted)

Model	AI	0548J/A/S		A	D548K/B/7	Γ	AD548C			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset T _{min} to T _{max} vs Temp. vs. Supply vs. Supply, T _{min} to T _{max} Long-Term Offset Stability		0.75	2.0 3.0/3.0/3.0 20 80 76/76/76		0.3	0.5 0.7/0.8/1.0 5 86 80		0 10	0.25 0.4 2.0 86 80	mV mV μV/°C dB dB μV/month
$\label{eq:response} \begin{split} & INPUT BIAS CURRENT \\ & Either Input^2, V_{CM} = 0 \\ & Either Input^2 at T_{max}, V_{CM} = 0 \\ & Max Input Bias Current Over \\ & Common-Mode Voltage Range \\ & Offset Current, V_{CM} = 0 \\ & Offset Current at T_{max} \end{split}$		5	20 0.45/1.3/20 30 10 0.25/0 65/10		3	10 0.25/0 65/10 15 5 0 15/0.35/5		3	10 0 65 15 5 0 35	pA nA pA pA nA
INPUT IMPEDANCE Differential Common Mode		1×10^{12} 3×10^{12}	3		$\begin{array}{c} 1 \times 10^{12} \\ 3 \times 10^{12} \end{array}$	3 3		1×10^{12} 3×10^{12}	3	Ω∥pF Ω∥pF
INPUT VOL TAGE RANGE Differential ³ Common Mode Common-Mode Rejection $V_{CM} = \pm 10V$ T_{min} to T_{max} $V_{CM} = \pm 11V$	±11 76 76/76/76 70	± 20 ± 12 90 90 84		± 11 82 82 76	± 20 ± 12 92 92 86		± 11 86 86 76	±20 ±12 98 98 90		V V dB dB dB
$T_{min} \text{ to } T_{max}$ INPUT VOLTAGE NOISE Voltage 0 1Hz to 10Hz f = 10Hz	70/70/7 0	84 2 80 40 30 30		76	86 2 80 40 30 30		76	90 2 80 40 30 30	4.0	$dB \\ \mu V p \cdot p \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ N/\sqrt{Hz} \\ N/$
INPUT CURRENT NOISE f = 1kHz		1.8	,		18			1.8		fA/\sqrt{Hz}
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to ± 0.01%	0 8 1.0	1 0 30 1 8 8		0 8 1.0	1.0 30 1 8 8		08 1.0	1.0 30 1.8 8		MHz kHz V/µs µs
$\begin{array}{l} OPEN \ LOOP \ GAIN \\ V_O = \pm 10V, \ R_L \ge 10 k\Omega \\ T_{min} to \ T_{max} \ R_L \ge 10 k\Omega \\ V_O = \pm 10V, \ R_L \ge 5 k\Omega \\ T_{min} \ to \ T_{max}, \ R_L \ge 5 k\Omega \end{array}$	300 300/300/300 150 150/150/150	1000 700 500 300		300 300 150 150	1000 700 500 300		300 300 150 150	1000 700 500 300		V/mV V/mV V/mV V/mV
$\begin{array}{c} \textbf{OUTPUT CHARACTERISTICS}\\ \textbf{Voltage (a } R_{L} \geq 10 \text{k}\Omega,\\ T_{min} \text{ to } T_{max}\\ \textbf{Voltage (a } R_{L} \geq 5 \text{k}\Omega,\\ T_{min} \text{ to } T_{max}\\ \textbf{Short Current}\\ \end{array}$	$ \begin{array}{c} \pm 12 \\ \pm 12/\pm 12/\pm 12 \\ \pm 11 \\ \pm 11/\pm 11/\pm 11 \end{array} $	± 13 ± 12 3 15		±12 ±12 ±11 ±11	± 13 ± 12 3 15		±12 ±12 ±11 ±11	± 13 ± 12 3 15		V V mA
POWER SUPPLY Rated Performance Operating Range Quiescent Current	±4.5	± 15 170	±18 200	±4.5	± 15 170	±18 200	±4.5	± 15 170	±18 200	V V μA
$\label{eq:temperature} TEMPERATURE RANGE \\ Operating, Rated Performance \\ Commercial (0 to + 70^\circ C) \\ Industrial (-40^\circ C to + 85^\circ C) \\ Mihtary (-55^\circ C to + 125^\circ C) \\ \end{array}$		AD548J AD548A AD548S		×.	AD548K AD548B AD548T	5		AD548C	:	
PACKAGE OPTIONS ⁴ Plastic (N-8) Cerdip (Q-8) Metal Can (H-08A)	AD54 AD54 AD54	8JN 8AQ, AD 8AH, AD	548SQ 548SH	AD AD AD	548KN 548BQ, AD 548BH, AD	548TQ 548TH		AD5480 AD5480	Q CH	

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$ ²Base Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$

For higher temperature, the current doubles every 10°C

³Defined as voltages between inputs, such that neither exceeds $\pm 10V$ from ground.

⁴See Section 16 for package outline information

Specifications subject to change without notice.

Specifications in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage ²
Output Short Circuit Duration Indefinite
Differential Input Voltage + V_S and - V_S
Storage Temperature Range Q, H65°C to +150°C
N -65° C to $+125^{\circ}$ C
Operating Temperature Range
AD548J/K 0 to +70°C
AD548A/B/C
AD548S/T
Lead Temperature Range (Soldering 60sec)

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. $^{2}\rm{For}$ supply voltages less than \pm 18V, the absolute maximum input voltage is

equal to the supply voltage.

Supply Voltage

Figure 7. Input Bias Current Vs. Common-Mode Voltage

Figure 2. Output Voltage Swing Vs. Supply Voltage

Figure 5. Input Bias Current Vs. Supply Voltage

Figure 8. Change in Offset Voltage Vs. Warm-Up Time

Figure 11. Open Loop Voltage Gain Vs. Supply

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current Vs. Temperature

Figure 9. Open Loop Gain Vs. Temperature

Figure 12. PSRR Vs. Frequency

Typical Characteristics

Figure 13. CMRR Vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

Figure 19a. Unity Gain Follower

Figure 20a. Unity Gain Inverter

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

Figure 19b. Unity Gain Follower Pulse Response (Large Signal)

Figure 20b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 15. Output Settling Time Vs. Output Swing and Error Voltage

Figure 18. Total Noise Vs. Source Resistance

Figure 19c. Unity Gain Follower Pulse Response (Small Signal)

Figure 20c. Unity Gain Inverter Pulse Response (Small Signal)

Applying the AD548

APPLICATION NOTES

The AD548 is a JFET-input op amp with a guaranteed maximum I_B of less than 10pA, and offset and drift laser-trimmed to 0.25mV and 2\muV/°C respectively (AD548C). AC specs include 1MHz bandwidth, 1.8V/µs typical slew rate and 8µs settling time for a 20V step to $\pm 0.01\%$ – all at a supply current less than 200µA. To capitalize on the device's performance, a number of error sources should be considered.

The minimal power drain and low offset drift of the AD548 reduce self-heating or "warm-up" effects on input offset voltage, making the AD548 ideal for on/off battery powered applications. The power dissipation due to the AD548's 200 μ A supply current has a negligible effect on input current, but heavy output loading will raise the chip temperature. Since a JFET's input current doubles for every 10°C rise in chip temperature, this can be a noticeable effect.

The amplifier is designed to be functional with power supply voltages as low as ± 4.5 V. It will exhibit a higher input offset voltage than at the rated supply voltage of ± 15 V, due to power supply rejection effects. The common-mode range of the AD548 extends from 3V more positive than the negative supply to 1V more negative than the positive supply. Designed to cleanly drive up to 10k Ω and 100pF loads, the AD548 will drive a 2k Ω load with reduced open loop gain.

OFFSET NULLING

Unlike bipolar input amplifiers, zeroing the input offset voltage of a BiFET op amp will not minimize offset drift. Using balance Pins 1 and 5 to adjust the input offset voltage as shown in Figure 21 will induce an added drift of 0.24μ V/°C per 100 μ V of nulled offset. The low initial offset (0.25mV) of the AD548C results in only 0.6μ V/°C of additional drift.

Figure 21. Offset Null Configuration

LAYOUT

To take full advantage of the AD548's 10pA max input current, parasitic leakages must be kept below an acceptable level. The practical limit of the resistance of epoxy or phenolic circuit board material is between $1 \times 10^{12}\Omega$ and $3 \times 10^{12}\Omega$. This can result in an additional leakage of 5pA between an input of 0V and a -15V supply line. Teflon or a similar low leakage material (with a resistance exceeding $10^{17}\Omega$) should be used to isolate high impedance input lines from adjacent lines carrying high voltages. The insulator should be kept clean, since contaminants will degrade the surface resistance.

A metal guard completely surrounding the high impedance nodes and driven by a voltage near the common-mode input potential can also be used to reduce some parasitic leakages. The guarding pattern in Figure 22 will reduce parasitic leakage due to finite board surface resistance; but it will not compensate for a low volume resistivity board.

MINI-DIP

Figure 22. Board Layout for Guarding Inputs

INPUT PROTECTION

METAL CAN

The AD548 is guaranteed to withstand input voltages equal to the power supply potential. Exceeding the negative supply voltage on either input will forward bias the substrate junction of the chip. The induced current may destroy the amplifier due to excess heat.

Input protection is required in applications such as a flame detector in a gas chromatograph, where a very high potential may be applied to the input terminals during a sensor fault condition. Figure 23 shows a simple current limiting scheme that can be used. $R_{PROTECT}$ should be chosen such that the maximum overload current is 1.0mA (100k Ω for a 100V overload, for example).

Exceeding the negative common-mode range on either input terminal causes a phase reversal at the output, forcing the amplifier output to the corresponding high or low state. Exceeding the negative common-mode on both inputs simultaneously forces the output high. Exceeding the positive common-mode range on a single input doesn't cause a phase reversal, but if both inputs exceed the limit the output will be forced high. In all cases, normal amplifier operation is resumed when input voltages are brought back within the common-mode range.

Figure 23. Input Protection of IV Converter

D/A CONVERTER OUTPUT BUFFER

The circuit in Figure 24 shows the AD548 and AD7545 12-bit CMOS D/A converter in a unipolar binary configuration. V_{OUT} will be equal to V_{REF} attenuated by a factor depending on the digital word. V_{REF} sets the full scale. Overall gain is trimmed by adjusting R_{IN} . The AD548's low input offset voltage, low drift and clean dynamics make it an attractive low power output buffer.

Application Hints

Figure 24. AD548 Used as DAC Output Amplifier

The input offset voltage of the AD548 output amplifier results in an output error voltage. This error voltage equals the input offset voltage of the op amp times the noise gain of the amplifier. That is:

$$V_{\rm OS}$$
 Output = $V_{\rm OS}$ Input $\left(1 + \frac{R_{\rm FB}}{R_{\rm O}}\right)$

٦

 R_{FB} is the feedback resistor for the op amp, which is internal to the DAC. R_O is the DAC's R-2R ladder output resistance. The value of R_O is code dependent. This has the effect of changing the offset error voltage at the amplifier's output. An output amplifier with a sub millivolt input offset voltage is needed to preserve the linearity of the DAC's transfer function.

The AD548 in this configuration provides a 700kHz small signal bandwidth and $1.8V/\mu$ s typical slew rate. The 33pF capacitor across the feedback resistor optimizes the circuit's response. The oscilloscope photos in Figures 25 and 26 show small and

Figure 25. Response to ±20V p-p Reference Square Wave

Figure 26. Response to ± 100mV p-p Reference Square Wave

large signal outputs of the circuit in Figure 24. Upper traces show the input signal $V_{\rm IN}$. Lower traces are the resulting output voltage with the DAC's digital input set to all 1s. The AD548 settles to $\pm 0.01\%$ for a 20V input step in 14 μ s.

PHOTODIODE PREAMP

The performance of the photodiode preamp shown in Figure 27 is enhanced by the AD548's low input current, input voltage offset and offset voltage drift. The photodiode sources a current proportional to the incident light power on its surface. R_F converts the photodiode current to an output voltage equal to $R_F \times I_S$.

Figure 27.

An error budget illustrating the importance of low amplifier input current, voltage offset and offset voltage drift to minimize output voltage errors can be developed by considering the equivalent circuit for the small $(0.2mm^2$ area) photodiode shown in Figure 27. The input current results in an error proportional to the feedback resistance used. The amplifier's offset will produce an error proportional to the preamp's noise gain $(1 + R_F/R_{SH})$, where R_{SH} is the photodiode shunt resistance. The amplifier's input current will double with every 10°C rise in temperature, and the photodiode's shunt resistance halves with every 10°C rise. The error budget in Figure 28 assumes a room temperature photodiode R_{SH} of 500M Ω , and the maximum input current and input offset voltage specs of an AD548C.

TEMP ℃	R _{SH} (MΩ)	V _{os} (µV)	$(1 + R_F/R_{SH})V_{OS}$	I _B (pA)	I _B R _F	TOTAL
- 25	15,970	150	151µV	0.30	30µV	181µV
0	2,830	200	207µV	2.26	262µV	469µV
+ 25	500	250	300µV	10 00	1.0mV	1.30mV
+ 50	88.5	300	640µV	56.6	5.6mV	6.24mV
+ 75	15.6	350	2 6mV	320	32mV	34.6mV
+ 85	7.8	370	5.1mV	640	64mV	69.1mV

Figure 28. Photo Diode Pre-Amp Errors Over Temperature

The capacitance at the amplifier's negative input (the sum of the photodiode's shunt capacitance, the op amp's differential input capacitance, stray capacitance due to wiring, etc.) will cause a rise in the preamp's noise gain over frequency. This can result in excess noise over the bandwidth of interest. C_F reduces the noise gain "peaking" at the expense of bandwidth.

OPERATIONAL AMPLIFIERS 2-61
INSTRUMENTATION AMPLIFIER

The AD548C's maximum input current of 10pA makes it an excellent building block for the high input impedance instrumentation amplifier shown in Figure 29. Total current drain for this circuit is under 600μ A. This configuration is optimal for conditioning differential voltages from high impedance sources.

Figure 29. Low Power Instrumentation Amplifier

The overall gain of the circuit is controlled by R_G , resulting in the following transfer function:

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{(R_1 + R_2)}{R_G}$$

Gains of 1 to 100 can be accommodated with gain nonlinearities of less than 0.01%. Referred to input errors, which contribute an output error proportional to in amp gain, include a maximum untrimmed input offset voltage of 0.5mV and an input offset voltage drift over temperature of $4\mu V/^{\circ}C$. Output errors, which are independent of gain, will contribute an additional 0.5mV offset and $4\mu V/^{\circ}C$ drift. The maximum input current is 15pA over the common-mode range, with a common-mode impedance of over $1 \times 10^{12}\Omega$. Resistor pairs R3/R5 and R4/R6 should be ratio matched to 0.01% to take full advantage of the AD548's high common mode rejection. Capacitors C1 and C1' compensate for peaking in the gain over frequency caused by input capacitance when gains of 1 to 3 are used.

The -3dB small signal bandwidth for this low power instrumentation amplifier is 700kHz for a gain of 1 and 10kHz for a gain of 100. The typical output slew rate is $1.8V/\mu s$.

LOG RATIO AMPLIFIER

Log ratio amplifiers are useful for a variety of signal conditioning applications, such as linearizing exponential transducer outputs and compressing analog signals having a wide dynamic range. The AD548's picoamp level input current and low input offset voltage make it a good choice for the front-end amplifier of the log ratio circuit shown in Figure 30. This circuit produces an output voltage equal to the log base 10 of the ratio of the input currents I_1 and I_2 . Resistive inputs R1 and R2 are provided for voltage inputs.

Input currents I_1 and I_2 set the collector currents of Q1 and Q2, a matched pair of logging transistors. Voltages at points A and

B are developed according to the following familiar diode equation:

$$V_{BE} = (kT/q) \ln (I_C/I_{ES})$$

In this equation, k is Boltzmann's constant, T is absolute temperature, q is an electron charge, and I_{ES} is the reverse saturation current of the logging transistors. The difference of these two voltages is taken by the subtractor section and scaled by a factor of approximately 16 by resistors R9, R10, and R8. Temperature compensation is provided by resistors R8 and R15, which have a positive 3500 ppm/°C temperature coefficient. The transfer function for the output voltage is:

$$V_{OUT} = 1V \log_{10} (I_2/I_1)$$

Frequency compensation is provided by R11, R12, C1, and C2. Small signal bandwidth is approximately 300kHz at input currents above 100 μ A and will proportionally decrease with lower signal levels. D1, D2, R13, and R14 compensate for the effects of the two logging transistors' ohmic emitter resistance.

Figure 30. Log Ratio Amplifier

To trim this circuit, set the two input currents to 10μ A and adjust V_{OUT} to zero by adjusting the potentiometer on A3. Then set I₂ to 1 μ A and adjust the scale factor such that the output voltage is 1V by trimming potentiometer R10. Offset adjustment for A1 and A2 is provided to increase the accuracy of the voltage inputs.

This circuit ensures a 1% log conformance error over an input current range of 300pA to 1mA, with low level accuracy limited by the AD548's input current. The low level input voltage accuracy of this circuit is limited by the input offset voltage and drift of the AD548.

Monolithic Electrometer Operational Amplifier

AD549*

FEATURES

Ultralow Bias Current: 60fA max (AD549L) 250fA max (AD549J) Input Bias Current Guaranteed Over Common-Mode Voltage Range Low Offset Voltage: 0.25mV max (AD549K) 1.00mV max (AD549J) Low Offset Drift: 5µV/°C max (AD549J) 20µV/°C max (AD549J) Low Power: 700µA max Supply Current Low Input Voltage Noise: 4µV p-p 0.1 to 10Hz MIL-STD-883B Parts Available

APPLICATIONS

Electrometer Amplifiers Photodiode Preamp pH Electrode Buffer Vacuum Ion Gage Measurement

PRODUCT DESCRIPTION

The AD549 is a monolithic electrometer operational amplifier with very low input bias current. Input offset voltage and input offset voltage drift are laser trimmed for precision performance. The AD549's ultralow input current is achieved with "Topgate" JFET technology, a process development exclusive to Analog Devices. This technology allows the fabrication of extremely low input current JFETs compatible with a standard junction-isolated bipolar process. The $10^{15}\Omega$ common-mode impedance, a result of the bootstrapped input stage, insures that the input current is essentially independent of common-mode voltage.

The AD549 is suited for applications requiring very low input current and low input offset voltage. It excels as a preamp for a wide variety of current output transducers such as photodiodes, photomultiplier tubes, or oxygen sensors. The AD549 can also be used as a precision integrator or low droop sample and hold. The AD549 is pin compatible with standard FET and electrometer op amps, allowing designers to upgrade the performance of present systems at little additional cost.

The AD549 is available in a TO-99 hermetic package. The case is connected to Pin 8 so that the metal case can be independently connected to a point at the same potential as the input terminals, minimizing stray leakage to the case.

*Covered by Patent No. 4,639,683.

AD549 CONNECTION DIAGRAM

TOP VIEW

The AD549 is available in four performance grades. The J, K, and L versions are rated over the commercial temperature range -0 to $+70^{\circ}$ C. The S grade is specified over the military temperature range of -55° C to $+125^{\circ}$ C and is available processed to MIL-STD-883B, Rev C. Extended reliability PLUS screening is also available. PLUS screening includes 168-hour burn in, as well as other environmental and physical tests derived from MIL-STD-883B, Rev C.

PRODUCT HIGHLIGHTS

- 1. The AD549's input currents are specified, 100% tested and guaranteed after the device is warmed up. Input current is guaranteed over the entire common-mode input voltage range.
- The AD549's input offset voltage and drift are laser trimmed to 0.25mV and 5μV/°C (AD549K), 1mV and 20μV/°C (AD549J).
- 3. A maximum quiescent supply current of 700µA minimizes heating effects on input current and offset voltage.
- 4. AC specifications include 1MHz unity gain bandwidth and $3V/\mu s$ slew rate. Settling time for a 10V input step is $5\mu s$ to 0.01%.
- 5. The AD549 is an improved replacement for the AD515, OPA104, and 3528.

SPECIFICATIONS (@ $+25^{\circ}$ C and V_s = $\pm 15V$ dc, unless otherwise noted)

Model	1	AD549J		A	D549K			AD549L		A	D549S		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT BIAS CURRENT ¹													
Either Input, $V_{CM} = 0V$		150	250		75	100		40	60		75	100	fA
Either Input, $V_{CM} = \pm 10V$		150	250		75	100		40	60	l	75	100	fA
Either Input at T_{max} ,		11			12			28			420		-
V _{CM} =0V Offset Current		50			4.2			2.8			30		fA
Offset Current at Tmax		2.2			1.3			0.85			125		pA
INPUTOFESET VOL TAGE ²													·
Initial Offset		0.5	1.0	1	0.15	0.25		0.3	0.5		0.3	0.5	mV
Offset at T _{max}			1.9			0.4			0.9			2.0	mV
vs. Temperature		10	20		2	5		5	10		10	15	μV/⁰C
vs. Supply		32	100		10	32		10	32		10	32	μV/V
vs. Supply, T_{min} to T_{max}		32	100		10	32		10	32		32	50	$\mu V/V$
Long-Term Offset Stability		15			15			15			15		μv/month
INPUT VOLTAGE NOISE												4	
f = 0.1Hz to $10Hz$		4			4	0		4			4		$\mu V p - p$
f = 10Hz f = 100Hz		90 60			90 60			90 60			90 60		nV/\sqrt{Hz}
f = 1kHz		35]	35			35			35		nV/\sqrt{Hz}
f = 10 kHz		35			35		}	35			35		nV/VHz
INPUT CURRENT NOISE				1			<u> </u>						
f = 0.1Hz to 10Hz		0.7			0.5			0.36			0.5		fA p-p
f=1kHz		0.22			0.16			0.11			0.16		fA/VHz
INPUT IMPEDANCE													,
Differential													
$V_{DIFF} = \pm 1$		10^{13}			10^{13}			10^{13} 1			$10^{13} 1$		Ω∥pF
Common Mode		1015110.0			101510.0			1015110 0			1015110.0		
$V_{CM} = \pm 10$		1019 0.8			1019 0.8			1019 0.8			1019 0.8		Ω∥pF
OPEN LOOP GAIN													
$V_0(a) \pm 10V, R_L = 10k$	300	1000		300	1000		300	1000		300	1000		V/mV
$v_0 \underline{w} \pm 10v, \mathbf{R}_L = 10k,$ T to T	300	800		300	800		300	800		300	800		V/mV
$V_0 = \pm 10V, R_1 = 2k$	100	250		100	250		100	250		100	250		V/mV
$V_0 = \pm 10V, R_L = 2k,$													
T _{min} to T _{max}	80	200		80	200		80	200		25	150		V/mV
INPUT VOLTAGE RANGE													
Differential ³			± 20			± 20			± 20			± 20	v
Common-Mode Voltage	- 10		+ 10	-10		+10	- 10		+ 10	- 10		+ 10	v
Common-Mode Rejection Ratio		00			100		00	100		00	100		ан
v = +10v, -10v	80 76	90 80		90	90		90	90		90 80	90		dB
	/0			00			00	<i></i>		00	<i></i>		чв
Voltage @ P. = 10k													
The to T_{max}	-12		+12	-12		+12	-12		+ 12	- 12		+ 12	v
Voltage @ $R_L = 2k$,													
T _{min} to T _{max}	- 10		+ 10	-10		+10	- 10		+10	- 10		+ 10	v
Short Circuit Current	15	20	35	15	20	35	15	20	35	15	20	35	mA
T_{min} to T_{max}	9			9			9			6			mA
$C = \pm 1$		4000			4000			4000			4000		nF
		4000			+000			+000		<u> </u>			pr.
FREQUENCY RESPONSE	0.7	1.0		0.7	1.0		0.7	1.0		0.7	1.0		MU-
Full Power Response	0.7	50		0.1	50		0.7	50		0.7	50		kHz
Slew Rate	2	3		2	3		2	3		2	3		V/µs
Settling Time, 0.1%		4.5			4.5			4.5			4.5		μs
0.01%]	5			5			5			5		μs
Overload Recovery,	ł				•			•					
50% Overdrive, $G = -1$		2		 	2			2			2		μs
POWER SUPPLY		. 17		1	. 17		1	. 1."			. 15		. .
Rated Performance	4.5	±15	± 10	+-	±15	+ 10	+=	±15	± 10	.	±15	± 10	V
Operating Operating	* '	0.60	± 18 0.70	>	0.60	± 18 0.70	1 23	0.60	± 18 0.70	1 23	0.60	± 18 0.70	mA
							1						

Model	I	AD549J			AD549K			AD549L		A	D549S		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
TEMPERATURE RANGE Operating, Rated Performance Storage	0 - 65		70 + 150	0 - 65		70 + 150	0 - 65		70 + 150	- 55 - 65		+ 125 - 150	°C °C
PACKAGE OPTION ⁴ TO-99(H-08A)	I	AD549JH			AD549KH			AD549LH		A	D549SH		

NOTES

¹Bias current specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$. Bias current increases by a

factor of 2.3 for every 10°C rise in temperature.

²Input offset voltage specifictions are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$.

³Defined as max continuous voltage between the inputs such that neither input exceeds $\pm 10V$ from ground.

⁴See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V$
Internal Power Dissipation
Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V^2$
Output Short Circuit Duration Indefinite
Differential Input Voltage $+V_S$ and $-V_S$
Storage Temperature Range H65°C to +150°C
Operating Temperature Range
AD549J, K, L 0 to +70°C
AD549S
Lead Temperature Range (Soldering 60 sec)

NOTES

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 2 For supply voltages less than \pm 18V, the absolute maximum input voltage is equal to the supply voltage.

ESD PRECAUTIONS

Charges as high as 4000V readily accumulate on the human body and test equipment and discharge without detection. Therefore, reasonable ESD precautions are recommended to avoid functional damage or performance degradation. Unused devices should be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before devices are removed. For further information on ESD precautions, refer to Analog Devices' ESD Prevention Manual.

Figure 1. Input Voltage Range vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Open Loop Gain vs. Temperature

Figure 10. Input Bias Current vs. Supply Voltage

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. CMRR vs. Input Common-Mode Voltage

Figure 8. Change in Offset Voltage vs. Warm-Up Time

Figure 11. Input Voltage Noise Spectral Density

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Open Loop Gain vs. Supply Voltage

Figure 9. Input Bias Current vs. Common-Mode Voltage

Figure 12. Noise vs. Source Resistance

Figure 18. Unity Gain Follower

Figure 21. Unity Gain Inverter

Figure 19. Unity Gain Follower Large Signal Pulse Response

Figure 22. Unity Gain Inverter Large Signal Pulse Response

2

Figure 20. Unity Gain Follower Small Signal Pulse Response

Figure 23. Unity Gain Inverter Small Signal Pulse Response

MINIMIZING INPUT CURRENT

The AD549 has been optimized for low input current and offset voltage. Careful attention to how the amplifier is used will reduce input currents in actual applications.

The amplifier operating temperature should be kept as low as possible to minimize input current. Like other JFET input amplifiers, the AD549's input current is sensitive to chip temperature, rising by a factor of 2.3 for every 10°C rise. This is illustrated in Figure 24, a plot of AD549 input current versus ambient temperature.

Figure 24. AD549 Input Bias Current vs. Ambient Temperature

On-chip power dissipation will raise chip operating temperature causing an increase in input bias current. Due to the AD549's low quiescent supply current, chip temperature when the (unloaded) amplifier is operated with 15V supplies, is less than 3°C higher than ambient. The difference in input current is negligible.

However, heavy output loads can cause a significant increase in chip temperature and a corresponding increase in input current. Maintaining a minimum load resistance of $10k\Omega$ is recommended. Input current versus additional power dissipation due to output drive current is plotted in Figure 25.

Figure 25. AD549 Input Bias Current vs. Additional Power Dissipation

CIRCUIT BOARD NOTES

There are a number of physical phenomena that generate spurious currents that degrade the accuracy of low current measurements. Figure 26 is a schematic of an I-to-V converter with these parasitic currents modeled.

Figure 26. Sources of Parasitic Leakage Currents

Finite resistance from input lines to voltages on the board, modeled by resistor R_P, results in parasitic leakage. Insulation resistance of over $10^{15}\Omega$ must be maintained between the amplifier's signal and supply lines in order to capitalize on the AD549's low input currents. Standard PC board material does not have high enough insulation resistance. Therefore, the AD549's input leads should be connected to standoffs made of insulating material with adequate volume resistivity (e.g., Teflon*). The surface of the insulator's surface must be kept clean in order to preserve surface resistivity. For Teflon, an effective cleaning procedure consists of swabbing the surface with high-grade isopropyl alcohol, rinsing with deionized water, and baking the board at 80°C for 10 minutes.

In addition to high volume and surface resistivity, other properties are desirable in the insulating material chosen. Resistance to water absorption is important since surface water films drastically reduce surface resistivity. The insulator chosen should also exhibit minimal piezoelectric effects (charge emission due to mechanical stress) and triboelectric effects (charge generated by friction). Charge imbalances generated by these mechanisms can appear as parasitic leakage currents. These effects are modeled by variable capacitor C_P in Figure 26. The table in Figure 27 lists various insulators and their properties.¹

Material	Volume Resistivity (Ω – CM)	Minimal Triboelectric Effects	Minimal Piezoelectric Effects	Resistance to Water Absorption
Teflon	10 ¹⁷ -10 ¹⁸	W	W	G
Kel-F**	10 ¹⁷ -10 ¹⁸	w	м	G
Sapphire	10 ¹⁶ -10 ¹⁸	M	G	G
Polyethylene	10 ¹⁴ - 10 ¹⁸	M	G	M
Polystyrene	10 ¹² 10 ¹⁸	w	M	M
Ceramic	10 ¹² -10 ¹⁴	w	M	w
Glass Epoxy	10 ¹⁰ -10 ¹⁷	w	м	w
PVC	10 ¹⁰ - 10 ¹⁵	G	M	G
Phenolic	10 ⁵ -10 ¹²	Ŵ	G	Ŵ

G – Good with Regard to Property M – Moderate with Regard to Property W – Weak with Regard to Property

Figure 27. Insulating Materials and Characteristics

*Teflon is a registered trademark of E.I. du Pont Co.

**Kel-F is a registered trademark of 3-M Company.

¹Electrometer Measurements, pp. 15-17, Keithley Instruments, Inc., Cleveland, Ohio, 1977.

Guarding the input lines by completely surrounding them with a metal conductor biased near the input lines' potential has two major benefits. First, parasitic leakage from the signal line is reduced since the voltage between the input line and the guard is very low. Second, stray capacitance at the input node is minimized. Input capacitance can substantially degrade signal bandwidth and the stability of the I-to-V converter. The case of the AD549 is connected to Pin 8 so that it can be bootstrapped near the input potential. This minimizes pin leakage and input common-mode capacitance due to the case. Guard schemes for inverting and noninverting amplifier topologies are illustrated in Figures 28 and 29.

Figure 28. Inverting Amplifier with Guard

Figure 29. Noninverting Amplifier with Guard

Other guidelines include keeping the circuit layout as compact as possible and input lines short. Keeping the assembly rigid and minimizing sources of vibration will reduce triboelectric and piezoelectric effects. All precision high impedance circuitry requires shielding against interference noise. Low noise coax or triax cables should be used for remote connections to the input signal lines.

OFFSET NULLING

The AD549's input offset voltage can be nulled by using balance Pins 1 and 5, as shown in Figure 30. Nulling the input offset voltage in this fashion will introduce an added input offset voltage drift component of 2.4μ V/°C per millivolt of nulled offset (a maximum additional drift of 0.6μ V/°C for the AD549K, 1.2μ V/°C for the AD549L, 2.4μ V/°C for the AD549J).

Figure 30. Standard Offset Null Circuit

The approach in Figure 31 can be used when the amplifier is used as an inverter. This method introduces a small voltage

referenced to the power supplies in series with the amplifier's positive input terminal. The amplifier's input offset voltage drift with temperature is not affected. However, variation of the power supply voltages will cause offset shifts.

Figure 31. Alternate Offset Null Circuit for Inverter

AC RESPONSE WITH HIGH VALUE SOURCE AND FEEDBACK RESISTANCE

Source and feedback resistances greater than $100k\Omega$ will magnify the effect of input capacitances (stray and inherent to the AD549) on the ac behavior of the circuit. The effects of common mode and differential input capacitances should be taken into account since the circuit's bandwidth and stability can be adversely affected.

In a follower, the source resistance and input common-mode capacitance form a pole that limits the bandwidth to $1/2\pi$ R_SC_S. Bootstrapping the metal case by connecting Pin 8 to the output minimizes capacitance due to the package. Figures 32 and 33 show the follower pulse response from a 1M Ω source resistance with and without the package connected to the output. Typical common-mode input capacitance for the AD549 is 0.8pF. In an inverting configuration, the differential input capacitance forms a pole in the circuit's loop transmission. This can create peaking in the ac response and possible instability. A feedback capacitance can be used to stabilize the circuit. The inverter pulse response with R_F and R_S equal to 1M Ω appears in Figure 34. Figure 35 shows the response of the same circuit with a 1pF feedback capacitance. Typical differential input capacitance for the AD549 is 1pF.

Figure 32. Follower Pulse Response from 1 M Ω Source Resistance, Case Not Bootstrapped

Figure 33. Follower Pulse Response from 1 M Ω Source Resistance, Case Bootstrapped

2

OPERATIONAL AMPLIFIERS 2-69

Figure 34. Inverter Pulse Response with 1 $M\Omega$ Source and Feedback Resistance

Figure 35. Inverter Pulse Response with 1 M Ω Source and Feedback Resistance, 1pF Feedback Capacitance

COMMON-MODE INPUT VOLTAGE OVERLOAD

The rated common-mode input voltage range of the AD549 is from 3V less than the positive supply voltage to 5V greater than the negative supply voltage. Exceeding this range will degrade the amplifier's CMRR. Driving the common-mode voltage above the positive supply will cause the amplifier's output to saturate at the upper limit of output voltage. Recovery time is typically 2μ s after the input has been returned to within the normal operating range. Driving the input common-mode voltage within 1V of the negative supply causes phase reversal of the output signal. In this case, normal operation is typically resumed within 0.5 μ s of the input voltage returning within range.

DIFFERENTIAL INPUT VOLTAGE OVERLOAD

A plot of the AD549's input currents versus differential input voltage (defined as $V_{IN} + -V_{IN} -)$ appears in Figure 36. The input current at either terminal stays below a few hundred femtoamps until one input terminal is forced higher than 1 to 1.5V above the other terminal. Under these conditions, the input current limits at 30 μ A.

Figure 36. Input Current vs. Differential Input Voltage

INPUT PROTECTION

The AD549 safely handles any input voltage within the supply voltage range. Subjecting the input terminals to voltages beyond the power supply can destroy the device or cause shifts in input current or offset voltage if the amplifier is not protected.

A protection scheme for the amplifier as an inverter is shown in Figure 37. R_P is chosen to limit the current through the inverting input to ImA for expected transient (less than 1 second) overvoltage conditions, or to 100µA for a continuous overload. Since R_P is inside the feedback loop, and is much lower in value than the amplifier's input resistance, it does not affect the inverter's DC gain. However, the Johnson noise of the resistor will add root sum of squares to the amplifier's input noise.

Figure 37. Inverter with Input Current Limit

In the corresponding version of this scheme for a follower, shown in Figure 38, R_P and the capacitance at the positive input terminal will produce a pole in the signal frequency response at a $f = 1/2\pi RC$. Again, the Johnson noise R_P will add to the amplifier's input voltage noise.

Figure 38. Follower with Input Current Limit

Figure 39 is a schematic of the AD549 as an inverter with an input voltage clamp. Bootstrapping the clamp diodes at the inverting input minimizes the voltage across the clamps and keeps the leakage due to the diodes low. Low leakage diodes, such as the FD333's should be used, and should be shielded from light to keep photocurrents from being generated. Even with these precautions, the diodes will measurably increase the input current and capacitance.

Figure 39. Input Voltage Clamp with Diodes

SAMPLE AND DIFFERENCE CIRCUIT TO MEASURE ELECTROMETER LEAKAGE CURRENTS

There are a number of methods used to test electrometer leakage currents, including current integration and direct current to voltage conversion. Regardless of the method used, board and interconnect cleanliness, proper choice of insulating materials (such as Teflon or Kel-F), correct guarding and shielding techniques and care in physical layout are essential to making accurate leakage measurements.

Figure 40 is a schematic of the sample and difference circuit. It uses two AD549 electrometer amplifiers (A and B) as current to voltage converters with high value $(10^{10}\Omega)$ sense resistors (RSa and RSb). R1 and R2 provide for an overall circuit sensitivity of 10fA/mV (10pA full scale). C_C and C_F provide noise suppression and loop compensation. C_C should be a low-leakage polystyrene capacitor. An ultralow-leakage Kel-F test socket is used for contacting the device under test. Rigid Teflon coaxial cable is used to make connections to all high impedance nodes. The use of rigid coax affords immunity to error induced by mechanical vibration and provides an outer conductor for shielding. The entire circuit is enclosed in a grounded metal box.

Figure 40. Sample and Difference Circuit for Measuring Electrometer Leakage Currents

The test apparatus is calibrated without a device under test present. A five minute stabilization period after the power is turned on is required. First, V_{ERR1} and V_{ERR2} are measured. These voltages are the errors caused by offset voltages and leakage currents of the current to voltage converters.

 $\begin{aligned} V_{ERR1} &= 10 \; (V_{OS}A \; - \; I_BA \times RSa) \\ V_{ERR2} &= 10 \; (V_{OS}B \; - \; I_BB \times RSb) \end{aligned}$

Once measured, these errors are subtracted from the readings taken with a device under test present. Amplifier B closes the feedback loop to the device under test, in addition to providing current to voltage conversion. The offset error of the device under test appears as a common-mode signal and does not affect the test measurement. As a result, only the leakage current of the device under test is measured.

$$V_A - V_{ERR1} = 10[RSa \times I_B(+)]$$

$$V_X - V_{ERR2} = 10[RSb \times I_B(-)]$$

Although a series of devices can be tested after only one calibration measurement, calibration should be updated periodically to compensate for any thermal drift of the current to voltage converters or changes in the ambient environment. Laboratory results have shown that repeatable measurements within 10fA can be realized when this apparatus is properly implemented. These results are achieved in part by the design of the circuit, which eliminates relays and other parasitic leakage paths in the high impedance signal lines, and in part by the inherent cancellation of errors through the calibration and measurement procedure.

PHOTODIODE INTERFACE

The AD549's low input current and low input offset voltage make it an excellent choice for very sensitive photodiode preamps (Figure 41). The photodiode develops a signal current, I_S equal to:

$$I_S = R \times P$$

where P is light power incident on the diode's surface in Watts and R is the photodiode responsivity in Amps/Watt. R_F converts the signal current to an output voltage:

$$V_{OUT} = R_F \times I_S$$

Figure 41. Photodiode Preamp

DC error sources and an equivalent circuit for a small area (0.2mm square) photodiode are indicated in Figure 42.

Input current, $I_{\rm B},$ will contribute an output voltage error, $V_{\rm E1},$ proportional to the feedback resistance:

$$\mathbf{V}_{\mathbf{E}1} = \mathbf{I}_{\mathbf{B}} \times \mathbf{R}_{\mathbf{F}}$$

The op amp's input voltage offset will cause an error current through the photodiode's shunt resistance, R_s :

$$I = V_{OS}/R_S$$

Figure 42. Photodiode Preamp DC Error Sources

The error current will result in an error voltage $\left(V_{E2}\right)$ at the amplifier's output equal to:

$$V_{E2} = (1 + R_F/R_S) V_{OS}$$

Given typical values of photodiode shunt resistance (on the order of $10^9\Omega$), $R_{\rm F}/R_{\rm S}$ can easily be greater than one, especially if a large feedback resistance is used. Also, $R_{\rm F}/R_{\rm S}$ will increase with temperature, as photodiode shunt resistance typically drops by a factor of two for every 10° C rise in temperature. An op amp with low offset voltage and low drift must be used in order to maintain accuracy. The AD549K offers guaranteed maximum 0.25mV offset voltage, and $5\mu V/^{\circ}$ C drift for very sensitive applications.

Photodiode Preamp Noise

Noise limits the signal resolution obtainable with the preamp. The output voltage noise divided by the feedback resistance is the minimum current signal that can be detected. This minimum detectable current divided by the responsivity of the photodiode represents the lowest light power that can be detected by the preamp.

Noise sources associated with the photodiode, amplifier, and feedback resistance are shown in Figure 43; Figure 44 is the spectral density versus frequency plot of each of the noise source's contribution to the output voltage noise (circuit parameters in Figure 42 are assumed). Each noise source's rms contribution to the total output voltage noise is obtained by integrating the square of its spectral density function over frequency. The rms value of the output voltage noise is the square root of the sum of all contributions. Minimizing the total area under these curves will optimize the preamplifier's resolution for a given bandwidth.

Figure 43. Photodiode Preamp Noise Sources

Figure 44. Photodiode Preamp Noise Sources' Spectral Density vs. Frequency

The photodiode preamp in Figure 41 can detect a signal current of 26fA rms at a bandwidth of 16Hz, which assuming a photodiode responsivity of 0.5A/W, translates to a 52fW rms minimum detectable power. The photodiode used has a high source resistance and low junction capacitance. C_F sets the signal bandwidth with R_F and also limits the "peak" in the noise gain that multiplies the op amp's input voltage noise contribution. A single pole filter at the amplifier's output limits the op amp's output voltage noise bandwidth to 26Hz, a frequency comparable to the signal bandwidth. This greatly improves the preamplifier's signal to noise ratio (in this case, by a factor of three).

Log Ratio Amplifier

Logarithmic ratio circuits are useful for processing signals with wide dynamic range. The AD549L's 60fA maximum input current makes it possible to build a log ratio amplifier with 1% log conformance for input current ranging from 10pA to 1mA, a dynamic range of 160dB. The useful resolution of the log amplifier extends down to 100fA, for a total dynamic range of 10 decades or 200dB.

The log ratio amplifier in Figure 45 provides an output voltage proportional to the log base 10 of the ratio of the input currents I1 and I2. Resistors R1 and R2 are provided for voltage inputs. Since NPN devices are used in the feedback loop of the front-end amplifiers that provide the log transfer function, the output is valid only for positive input voltages and input currents. The input currents set the collector currents IC1 and IC2 of a matched pair of log transistors Q1 and Q2 to develop voltages VA and VB:

VA, $B = - (kT/q) \ln IC/IES$

where IES is the transistors' saturation current.

The difference of VA and VB is taken by the subtractor section to obtain:

$$VC = (kT/q) \ln (IC2/IC1)$$

VC is scaled up by the ratio of (R9 + R10)/R8, which is equal to approximately 16 at room temperature, resulting in the output voltage:

 $V_{OUT} = 1 \times \log(IC2/IC1) V.$

R8 is a resistor with a positive 3500ppm/°C temperature coefficient to provide the necessary temperature compensation. The parallel combination of R15 and R7 is provided to keep the subtractor section's gain for positive and negative inputs matched over temperature.

Frequency compensation is provided by R11, R12, and C1 and C2. The bandwidth of the circuit is 300kHz at input signals greater than 50μ A, and decreases smoothly with decreasing signal levels.

To trim the circuit, set the input currents to 10μ A and trim A3's offset using the amplifier's trim potentiometer so the output equals 0. Then set 11 to 1μ A and adjust the output to equal 1V by trimming R10. Additional offset trims on the amplifiers A1 and A2 can be used to increase the voltage input accuracy and dynamic range.

The very low input current of the AD549 makes this circuit useful over a very wide range of signal currents. The total input current (which determines the low-level accuracy of the circuit) is the sum of the amplifier input current, the leakage across the compensating capacitor (negligible if polystyrene or Teflon capacitor is used), and the collector to collector, and collector to base leakages of one side of the dual log transistors. The magnitude of these last two leakages depend on the amplifier's input offset voltage and are typically less than 10fA with 1mV offsets. The low-level accuracy is limited primarily by the amplifier's input current, only 60fA maximum when the AD549L is used.

The effects of the emitter resistance of Q1 and Q2 can degrade the circuit's accuracy at input currents above 100 μ A. The networks composed of R13, D1, R16, and R14, D2, R17 compensate for these errors, so that this circuit has less than 1% log conformance error at 1mA input currents. The correct value for R13 and R14 depends on the type of log transistors used. 49.9k Ω resistors were chosen for use with LM394 transistors. Smaller resistance values will be needed for smaller log transistors.

Figure 45. Log Ratio Amplifier

TEMPERATURE COMPENSATED pH PROBE AMPLIFIER

A pH probe can be modeled as a mV-level voltage source with a series source resistance dependent upon the electrode's composition and configuration. The glass bulb resistance of a typical pH electrode pair falls between 10^6 and $10^9\Omega$. It is therefore important to select an amplifier with low enough input currents such that the voltage drop produced by the amplifier's input bias current and the electrode resistance does not become an appreciable percentage of a pH unit.

The circuit in Figure 46 illustrates the use of the AD549 as a pH probe amplifier. As with other electrometer applications, the use of guarding, shielding, Teflon standoffs, etc., is a must in order to capitalize on the AD549's low input current. If an AD549L (60fA max input current) is used, the error contributed by input current will be held below $60\mu V$ for pH electrode source impedances up to $10^9\Omega$. Input offset voltage (which can be trimmed) will be below 0.5mV.

Figure 46. Temperature Compensated pH Probe Amplifier

The pH probe output is ideally zero volts at a pH of 7 independent of temperature. The slope of the probe's transfer function, though predictable, is temperature dependent (-54.2mV/pH at 0 and -74.04mV/pH at 100°C). By using an AD590 temperature sensor and an AD535 analog divider, an accurate temperature compensation network can be added to the basic pH probe amplifier. The table in Figure 47 shows voltages at various points and illustrates the compensation. The AD549 is set for a noninverting gain of 13.51. The output of the AD590 circuitry (point C) will be equal to 10V at 100°C and decrease by 26.8mV/ °C. The output of the AD535 analog divider (point D) will be a temperature compensated output voltage centered at zero volts for a pH of 7, and having a transfer function of -1.00V/pH unit. The output range spans from -7.00V (pH = 14) to +7.00V (oH = 0).

PROBE	A	B	C	D
TEMP	(PROBE OUTPUT)	(A × 13.51)	(590 OUTPUT)	(10B/C)
0	54.20mV	0.732V	7.32V	1.00V
25°C	59.16mV	0.799V	7.99V	1.00V
37°C	61.54mV	0.831V	8.31V	1.00V
60°C	66.10mV	0.893V	8.93V	1.00V
100°C	74.04mV	1.000V	10.00V	1.00V

Figure 47. Table Illustrating Temperature Compensation

2-74 OPERATIONAL AMPLIFIERS

.

Precision Low-Cost Dual BiFET Op Amp

AD642

FEATURES

Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Current Crosstalk-124dB at 1kHz Low Bias Current: 35pA max Warmed Up Low Offset Voltage: 500µV max Low Input Voltage Noise: 2µV p-p High Open Loop Gain Low Quiescent Current: 2.8mA max Low Total Harmonic Distortion Standard Dual Amplifier Pin Out

AD642 PIN CONFIGURATION

PRODUCT DESCRIPTION

The AD642 is a pair of matched high-speed monolithic Bi-FET operational amplifier fabricated with the most advanced bipolar, JFET and laser trimming technologies. The AD642 offers matched bias currents that are significantly lower than currently available monolithic dual FET input operational amplifiers: 35pA max matched to 25pA for the AD642K and L; 75pA max, matched to 35pA for the AD642J and S. In addition, the offset voltage is laser trimmed to less than 0.5mV and matched to 0.25mV for the AD642L, 1.0mV and matched to 0.5mV for the AD642K, utilizing Analog's laserwafer trimming (LWT) process.

The tight matching and temperature tracking between the operational amplifiers is achieved by ion-implanted JFETs and laser-wafer trimming. Ion-implantation permits the fabrication of precision, matched JFETs on a monolithic bipolar chip. This optimizes the process to product matched bias currents which have lower initial bias currents than other popular BiFET op amps. Laser-wafer trimming each amplifier's input offset voltage assures tight initial match and combined with superior IC processing guarantees offset voltage tracking over the temperature range.

The AD642 is recommended for applications in which excellent ac and dc performance is required. The matched amplifiers provide a low-cost solution for true instrumentation amplifiers, log ratio amplifiers, and output amplifiers for four quadrant multiplying D/A converters such as the AD7541. The AD642 is available in three versions: the "J", "K" and "L", all specified over the 0 to $+70^{\circ}$ C temperature range and one version, "S", over the -55° C to $+125^{\circ}$ C extented operating temperature range. All devices are packaged in the hermetically-sealed, TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD642 has tight matching specifications to ensure high performance, eliminating the need to match individual devices.
- Analog Devices, unlike some manufacturers, specifies each device for the maximum bias current at either input in the warmed-up condition, thus assuring the user that the AD642 will meet its published specifications in actual use.
- 3. Laser-wafer-trimming reduces offset voltage to as low as 0.5mV max and matched side to side to 0.25mV (AD642L), thus eliminating the need for external nulling.
- Low voltage noise (2μV, p-p), and high open loop gain enhance the AD642's performance as a precision op amp.
- 5. The standard dual amplifier pin out allows the AD642 to replace lower performance duals without redesign.
- 6. The AD642 is available in chip form.

SPECIFICATIONS	(@ +25°C and $V_s = \pm 15V$ dc)
-----------------------	----------------------------------

		AD642J			AD642K			AD642L			AD642S		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
$\begin{array}{l} OPEN LOOP GAIN \\ V_O = \ \pm \ 10V, R_L \geq 2k\Omega \\ T_{min} \ to \ T_{max}, R_L = 2k\Omega \end{array}$	100,000 100,000			250,000 250,000	1		250,000 250,000	1		250,000 100,000			V/V V/V
$\begin{array}{l} OUTPUT CHARACTERISTICS\\ Voltage ({\it ct} \; R_L = 2k\Omega, T_{min} \mbox{ to } T_{max}\\ Voltage ({\it ct} \; R_L = 10k\Omega, T_{min} \mbox{ to } T_{max}\\ Short Circuit Current \end{array}$	±10 ±12	± 12 ± 13 25		±10 ±12	±12 ±13 25		±10 ±12	± 12 ± 13 25		±10 ±12	± 12 ± 13 25		V V mA
FREQUENCY RESPONSE Unity Gain Small Signal Full Power Response Slew Rate, Unity Gain	2.0	1 0 50 3.0		2.0	1 0 50 3 0		2.0	1 0 50 3 0		2.0	1 0 50 3.0		MHz kHz V/µs
INPUT OFFSET VOLTAGE ¹ Initial Offset Input Offset Voltage T _{min} to T _{max} Input Offset Voltage vs Supply, T _{min} to T _{max}			2.0 3 5 200			1.0 2.0 100			0.5 1.0 100			1.0 3.5 100	mV mV μV/V
INPUT BIAS CURRENT ² Either Input Offset Current		10 5	75		10 2	35		10 2	35		10 2	35	pA pA
MATCHING CHARACTERISTICS ³ Input Offset Voltage Input Offset Voltage T _{min} to T _{max} Input Bias Current Crosstalk		- 124	1.0 3 5 35		124	0.5 2.0 25		124	0.25 1.0 25		- 124	0.5 3.5 35	mV mV pA dB
INPUT IMPEDANCE Differential Common Mode		10 ¹² 6 10 ¹² 6			10 ¹² 6 10 ¹² 6			10 ¹² 6 10 ¹² 6			10 ¹² 6 10 ¹² 6		MΩ∥pF MΩ∥pF
INPUT VOLTAGE RANGE Differential ⁴ Common Mode Common Mode Rejection	±10 76	± 20 ± 12		±10 80	± 20 ± 12		± 10 80	± 20 ± 12		±10 80	± 20 ± 12		V V dB
INPUT NOISE Voltage 0 1Hz to 10Hz f = 10Hz f = 100Hz f = 11kHz f = 10kHz		2 70 45 30 25			2 70 45 30 25			2 70 45 30 25		,	2 70 45 30 25		$\begin{array}{c} \mu V p \text{-} p \\ n V / \sqrt{Hz} \end{array}$
POWER SUPPLY Rated Performance Operating Quiescent Current	± 5	± 15	± 18 2.8	± 5	±15	±15 2.8	± 5	± 15	± 15 2.8	±5	±15	±15 2.8	V V mA
TEMPERATURE RANGE Operating, Rated Performance Storage	0 65		+ 70 + 150	0 65		+ 70 + 150	0 65		+ 70 + 150	- 55 - 65		+ 125 + 150	°C °C
PACKAGE OPTION ⁵ TO-99 Style (H-08B)		AD642JH			AD642KF	ł		AD642LH	ł		AD642SH		

.

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$ ²Bias Current specifications are guaranteed at maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$ For higher temperatures, the current doubles every 10°C ³Matching is defined as the difference between parameters of the two smallflers

the two amplifiers

⁴Defined as the maximum safe voltage between inputs, such that neither exceeds + 10V from ground ⁵See Section 16 for package outline information

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm)

Typical Characteristics

Figure 10. Open Loop Frequency Response

2

Temperature

Figure 9. Open Loop Gain vs. Temperature

Figure 12. Power Supply Rejection vs. Frequency

OPERATIONAL AMPLIFIERS 2-77

Figure 13. Common Mode Rejection vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

a. Unity Gain Follower

Figure 21a. Unity Gain Follower Pulse Response (Large Signal)

Figure 22a. Unity Gain Inverter

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

Follower b. Follower with Gain = 10 Figure 19. T.H.D. Test Circuits

Figure 21b. Unity Gain Follower Pulse Response (Small Signal)

Figure 22b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 15. Output Settling Time - µs Output Swing and Error (Circuit of Figure 23)

Figure 18. Total Noise vs. Source Resistance

Figure 20. Crosstalk Test Circuit

Figure 21c. Unity Gain Follower

Figure 22c. Unity Gain Inverter Pulse Response (Small Signal)

Figure 23. Settling Time Test Circuit

Fast settling time (8µs to 0.01% for 20V p-p step), low power and low offset voltage make the AD642 an excellent choice for use as an output amplifier for current output D/A converters such as the AD7541.

Figure 24. Settling Characteristic Detail

The upper trace of the oscilloscope photograph of Figure 24 shows the settling characteristic of the AD642. The lower trace represents the input to Figure 23. The AD642 has been designed for fast settling to 0.01%, however, feedback components, circuit layout and circuit design must be carefully considered to obtain optimum settling time.

Figure 25. 0.1Hz to 10Hz 2nd Order Bandpass Filter, Maximally Flat

The low frequency (1/f) noise has a power spectrum that is inversely proportional to frequency. Typically this noise is not important above 10Hz, but it can be important for low frequency-high gain applications.

The low noise characteristics of the AD642 make it ideal for 1/f noise testing circuits. The circuit of Figure 25 is a 0.1Hz to 10Hz bandpass filter with second order filter characteristics.

The circuit illustrated in Figure 26 uses two AD642s to construct an instrumentation amplifier with low input current (35pA max), high linearity and low offset voltage and offset voltage drift. The AD644 may be substituted for increased speed, but the higher open-loop gain of the AD642 maintains better linearity over the gain range of 1 to 1000. Amplifier A1 is an AD642L for low input offset voltage ($250\mu V$ max) and low input offset voltage drift at high gains because matching and tracking are very important for the balanced input stage. Amplifier A2 serves two nonrelated functions, output amplifier and active data-guard drive, and does not require close matching between sections; thus it may be an AD642J.

Figure 26. Precision FET Input Instrumentation Amplifier

The output impedance of a CMOS DAC varies with the digital word thus changing the noise of the amplifier circuit. This effect will cause a nonlinearity whose magnitude is dependent on the offset voltage of the amplifier. The AD642K with trimmed offset will minimize the effect. The Schottky protection diodes recommended for use with many older CMOS DACs are not required when using the AD642.

Figure 27a. AD642 Used as DAC Output Amplifier

Figure 27a illustrates the AD7541 12-bit digital-to-analog converter, connected for bipolar operation. Since the digital input can accept bipolar numbers and $V_{\rm REF}$ can accept a bipolar analog input, the circuit can perform a 4-quadrant multiplication.

Figure 27b. Voltage Output DAC Settling Characteristic

The photo above shows the output of the circuit of Figure 27a. The upper trace represents the reference input, and the bottom trace shows the output voltage for a digital input of all ones on the DAC. The 47pF capacitor across the feedback

resistor compensates for the DAC output capacitance, and the 150pF load capacitor serves to minimize output glitches.

Log amplifiers or log ratio amplifiers are useful in applications requiring compression of wide-range analog input data, linearization of transducers having exponential outputs, and analog computing, ranging from simple translation of natural relationships in log form (e.g., computing absorbance as the logratio of input currents), to the use of logarithms in facilitating analog computation of terms involving arbitrary exponents and multi-term products and ratios.

The picoamp level input current and low offset voltage of the AD642 make it suitable for wide dynamic range log amplifiers. Figure 28 is a schematic of a log ratio circuit employing the AD642 that can achieve less than 1% conformance error over 5 decades of current input, 1nA to 100μ A. For voltage inputs, the dynamic range is typically 50mV to 10V for 1% error, limited on the low end by the amplifiers' input offset voltage.

The conversion between current (or voltage) input and log output is accomplished by the base emitter junctions of the dual transistor Q1. Assuming Q1 has β >100, which is the case for the specified transistor, the base-emitter voltage on side 1 is to a close approximation:

 $V_{BEA} = kT/q \ln I_1/I_{S1}$

This circuit is arranged to take the difference of the V_{BE} 's of Q1A and Q1B, thus producing an output voltage proportional to the log of the *ratio* of the inputs:

$$V_{OUT} = -K (V_{BE A} - V_{BE B}) = -\frac{KkT}{q} (\ln I_1 / I_{S1} - \ln I_2 / I_{S2})$$

 $V_{OUT} = -K kT/q \ln I_1 / I_2$

The scaling constant, K is set by R1 and R_{TC} to about 16, to produce 1V change in output voltage per decade difference in input signals. R_{TC} is a special resistor with a +3500ppm/°C temperature coefficient, which makes K inversely proportional to temperature, compensating for the "T" in kT/q. The logratio transfer characteristic is therefore independent of temperature.

This particular log ratio circuit is free from the dynamic problems that plague many other log circuits. The -3dB bandwidth is 50kHz over the top 3 decades, 100nA to 100 μ A, and decreases smoothly at lower input levels. This circuit needs no additional frequency compensation for stable operation from input current sources, such as photodiodes, that may have 100pF of shunt capacitance. For larger input capacitances a 20pF integration capacitor around each amplifier will provide a smoother frequency response.

2-80 OPERATIONAL AMPLIFIERS

This log ratio amplifier can be readily adjusted for optimum accuracy by following this simple procedure. First, apply V1 = V2 = -10.00V and adjust "Balance" for V_{OUT} = 0.00V. Next apply V1 = -10.00V, V2 = -1.00V and adjust gain for V_{OUT} = +1.00V. Repeat this procedure until gain and balance readings are within 2mV of ideal values.

The low input bias current (35pA) and low noise characteristics of the AD642 make it suitable for electrometer applications such as photo diode preamplifiers and picoampere current-to-voltage converters. The use of guarding techniques in printed circuit board layout and construction is critical for achieving the ultimate in low leakage performance that the AD642 can deliver. The input guarding scheme shown in Figure 29 will minimize leakage as much as possible; the guard ring should be applied to both sides of the board. The guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on a printed circuit; to minimize noise and leakage, they must be carried in rigid shielded cables.

Figure 29. Board Layout for Guarding Inputs

INPUT PROTECTION

The AD642 is guaranteed for a maximum safe input potential equal to the power supply potential. The input stage design also allows differential input voltages of up to ± 0.5 volts while maintaining the full differential input resistance of $10^{12}\Omega$. This makes the AD642 suitable for low speed voltage comparators directly connected to a high impedance source.

Many instrumentation situations, such as flame detectors in gas chromatographs, involve measurement of low level currents from high-voltage sources. In such applications, a sensor fault condition may apply a very high potential to the input of the current-to-voltage converting amplifier. This possibility necessitates some form of input protection. Many electrometer type devices, especially CMOS designs, can require elaborate zener protection schemes which often compromise overall performance. The AD642 requires input protection only if the source is not current-limited, and as such is similar to many JFET-input designs. The failure mode would be overheating from excess current rather than voltage breakdown. If the source is not current-limited, all that is required is a resistor in series with the affected input terminal so that the maximum overload current is 1.0mA (for example, 100k Ω for a 100 volt overload). This simple scheme will cause no significant reduction in performance and give complete overload protection. Figure 30 shows proper connections.

AD644

FEATURES

Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk -124dB at 1kHz Low Bias Current: 35pA max Warmed Up Low Offset Voltage: 500 μ V max Low Input Voltage Noise: 2μ V p-p High Slew Rate: 13V/ μ s Low Quiescent Current: 4.5mA max Fast Settling to $\pm 0.01\%$: 3μ s Low Total Harmonic Distortion: 0.0015% at 1kHz Standard Dual Amplifier Pin Out

PRODUCT DESCRIPTION

The AD644 is a pair of matched high-speed monolithic FETinput operational amplifiers fabricated with the most advanced bipolar, JFET and laser-trimming technologies. The AD644 offers matched bias currents that are significantly lower than currently available monolithic dual BiFET operational amplifiers: 35pA max, matched to 25pA for the AD644K and L, 75pA max matched to 35pA for the AD644J and S. In addition, the offset voltage is laser trimmed to less than 0.5mV, and matched to 0.25mV for the AD644L, 1.0mV and matched to 0.5mV for the AD644K, utilizing Analog Devices' laserwafer trimming (LWT) process.

The tight matching and temperature tracking between the operational amplifiers is achieved by ion-implanted JFETs and laser-wafer trimming. Ion-implantation permits the fabrication of precision, matched JFETs on a monolithic bipolar chip. This process optimizes the ability to produce matched amplifiers which have lower initial bias currents than other popular BiFET op amps. Laser-wafer trimming each amplifier's input offset voltage assures tight initial match and superior IC processing guarantees offset voltage tracking over the temperature range.

The AD644 is recommended for applications in which both excellent ac and dc performance is required. The matched amplifiers provide a low cost solution to true wideband instrumentation amplifiers, low dc drift active filters and output amplifiers for four quadrant multiplying D/A converters such as the AD7541, 12-bit CMOS DAC.

The AD644 is available in four versions: the "J", "K" and "L" are specified over the 0 to $+70^{\circ}$ C temperature range and the "S" over the -55° C to $+125^{\circ}$ C operating temperature range. All devices are packaged in the hermetically-sealed, TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD644 has tight side to side matching specifications to ensure high performance without matching individual devices.
- Analog Devices, unlike some manufacturers, specifies each device for the maximum bias current at either input in the warmed-up condition, thus assuring the user that the AD644 will meet its published specifications in actual use.
- 3. Laser-wafer-trimming reduces offset voltage to as low as 0.5mV max matched side to side to 0.25mV (AD644L), thus eliminating the need for external nulling.
- 4. Improved bipolar and JFET processing on the AD644 result in the lowest matched bias current available in a high speed monolithic FET op amp.
- 5. Low voltage noise $(2\mu V p-p)$ and high open loop gain enhance the AD644's performance as a precision op amp.
- 6. The high slew rate $(13.0V/\mu s)$ and fast settling time to 0.01% (3.0 μs) make the AD644 ideal for D/A, A/D, sample-hold circuits and dual high speed integrators.
- 7. Low harmonic distortion (0.0015%) and low crosstalk (-124dB) make the AD644 an ideal choice for stereo audio applications.
- 8. The standard dual amplifier pin out allows the AD644 to replace lower performance duals without redesign.
- 9. The AD644 is available in chip form.

SPECIFICATIONS	(@ +25°C and $V_s = \pm 15V$ dc)
-----------------------	----------------------------------

Model	Min	AD644J Typ	Max	Min	AD644K Typ	Max	Min	AD644L Typ	Max	Min	AD644S Typ	Max	Units
$\begin{array}{l} OPENLOOPGAIN\\ V_O=\pm10V, R_L \geq 2k\Omega\\ T_{mun}toT_{max}, R_L = 2k\Omega \end{array}$	30,000 20,000			50,000 40,000			50,000 40,000			50,000 20,000			V/V V/V
$\begin{array}{l} OUTPUT CHARACTERISTICS\\ Voltage (\!\alpha R_L \!=\! 2k\Omega, T_{min} \text{ to } T_{max}\\ Voltage (\!\alpha R_L \!=\! 10k\Omega, T_{min} \text{ to } T_{max}\\ Short Circuit Current \end{array}$	± 10 ± 12	± 12 ± 13 25		± 10 ± 12	±12 ±13 25		±10 ±12	±12 ±13 25		±10 ±12	±12 ±13 25		V V mA
FREQUENCY RESPONSE Unity Gain Small Signal Full Power Response Slew Rate, Unity Gain Total Harmonic Distortion	8.0	2 0 200 13 0 0 0015		8.0	2.0 200 13 0 0 0015		8.0	2 0 200 13 0 0.0015		8.0	2.0 200 13 0 0 0015		MHz kHz V/µs %
INPUT OFFSET VOLTAGE ¹ Initial Offset Input Offset Voltage T _{min} to T _{max} Input Offset Voltage vs Supply,			2.0 3 5 200			1.0 2.0			0.5 1.0			1.0 3.5	mV mV
INPUT BIAS CURRENT ² Either Input Offset Current	1	10 10	75		10 5	35		10 5	35		10 5	35	pA pA
MATCHING CHARACTERISTICS ³ Input Offset Voltage Input Offset Voltage T _{min} to T _{max} Input Bias Current Crosstalk		- 124	1.0 3.5 35		- 124	0.5 2.0 25		- 124	0.25 1.0 25		- 124	0.5 3.5 35	mV mV pA dB
INPUT IMPEDANCE Differential Common Mode		10 ¹² 6 10 ¹² 3			10 ¹² #6 10 ¹² #3			10 ¹² 6 10 ¹² 3			10 ¹² 6 10 ¹² 3		MΩ∥pF MΩ∥pF
INPUT VOLTAGE RANGE Differential ⁴ Common Mode Common Mode Rejection	±10 76	± 20 ± 12		±10 80	± 20 ± 12		± 10 80	± 20 ± 12		± 10 80	± 20 ± 12		V V dB
INPUT NOISE Voltage 0 1Hz to 10Hz f = 10Hz f = 10Hz f = 10Hz f = 1kHz f = 10kHz		2 35 22 18 16			2 35 22 18 16			2 35 22 18 16			2 35 22 18 16		μV p-p_ nV/√ <u>Hz</u> nV/√ <u>Hz</u> nV/√ <u>Hz</u> nV/√ <u>Hz</u>
POWER SUPPLY Rated Performance Operating Quiescent Current	± 5	±15 35	± 18 4.5	± 5	± 15 3 5	±18 4.5	±5	± 15 3 5	±18 4.5	±5	±15 35	±18 4.5	V V mA
TEMPERATURE RANGE Operating, Rated Performance Storage	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	- 55 - 65		+ 125 + 150	°C ℃
PACKAGE OPTION ⁵ TO-99 Style (H-08B)		AD644JH			AD644KI	4		AD644LI	ł		AD644SH	t	

NOTES

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$ ²Bias Current specifications are guaranteed at maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$ For higher temperatures, the current doubles every 10°C ³Matching is defined as the difference between parameters of the two amplifiers

⁴Defined as voltage between inputs, such that neither exceeds ± 10V from ground

⁵See Section 16 for package outline information

Specifications subject to change without notice

Specifications shown in **boldface** are tested on all production units at final electrical test Results from those tests are used to calculate outgoing quality levels All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).

Figure 10. Open Loop Voltage Gain vs. Supply Voltage

Figure 11. Power Supply Rejection vs. Frequency

Typical Characteristics

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current vs. CMV

Figure 9. Open Loop Frequency Response

Figure 12. Common Mode Rejection Ratio vs. Frequency

OPERATIONAL AMPLIFIERS 2-83

Figure 13. Large Signal Frequency Response

Figure 16. Total Harmonic Distortion vs. Frequency

a. Unity Gain Follower

Figure 21a. Unity Gain Follower Pulse Response (Large Signal)

Figure 22a. Unity Gain Inverter

Figure 14. Output Settling Time vs. Output Swing and Error (Circuit of Figure 23a)

Figure 17. Closed Loop Gain & Phase vs. Frequency

b. Follower with Gain = 10

Figure 19. T.H.D. Test Circuits

Figure 21b. Unity Gain Follower Pulse Response (Small Signal)

Figure 22b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 15. Noise Spectral Density

Figure 18. Slew Rate vs. Error Signal

Figure 20. Crosstalk Test Circuit

Figure 21c. Unity Gain Follower

Figure 22c. Unity Gain Inverter Pulse Response (Small Signal)

Figure 23a. Settling Time Test Circuit

Figure 23b. Settling Characteristic Detail

The fast settling time $(3.0\mu \text{s} \text{ to } 0.01\% \text{ for } 20\text{V} \text{ p-p step})$ and low offset voltage make the AD644 an excellent choice as an output amplifier for current output D/A converters such as the AD7541. The upper trace of the oscilloscope photograph of Figure 23b shows the settling characteristics of the AD644. The lower trace represents the input to Figure 23a. The AD644 has been designed for fast settling to 0.01%, however, feedback components, circuit layout and circuit design must be carefully considered to obtain the optimum settling time.

Figure 24. Circuit for Driving a Large Capacitive Load

Transient Response $R_L = 2k\Omega C_L = 500pF$

The circuit in Figure 24 employs a 100Ω isolation resistor which enables the amplifier to drive capacitive loads exceeding 500pF; the resistor effectively isolates the high frequency feedback from the load and stabilizes the circuit. Low frequency feedback is returned to the amplifier summing junction via the low pass filter formed by the 100 Ω series resistor and the load capacitance, C_L.

The low input bias current (35pA), low noise, high slew rate and high bandwidth characteristics of the AD644 make it suitable for electrometer applications such as photodiode preamplifiers and picoampere current-to-voltage converters. The use of guarding techniques in printed circuit board layout and construction is critical for achieving the ultimate in low leakage performance that the AD644 can deliver. The input guarding scheme shown in Figure 25 will minimize leakage as much as possible. The same layout should be used on both sides of a double side board. The guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on a printed circuit; to minimize noise and leakage, such conductors should be replaced by rigid shielded cables.

Figure 25. Board Layout for Guarding Inputs

INPUT PROTECTION

The AD644 is guaranteed for a maximum safe input potential equal to the power supply potential. The input stage design also allows differential input voltages of up to ± 1 volt while maintaining the full differential input resistance of $10^{12} \Omega$. This makes the AD644 suitable for comparator situations employing a direct connection to high impedance source.

Many instrumentation situations, such as flame detectors in gas chromatographs, involve measurement of low level currents from high-voltage sources. In such applications, a sensor fault condition may apply a very high potential to the input of the current-to-voltage converting amplifier. This possibility necessitates some form of input protection. Many electrometer type devices, especially CMOS designs, can require elaborate zener protection schemes which often compromise overall performance. The AD644 requires input protection only if the source is not current-limited, and as such is similar to many JFET-input designs. The failure mode would be overheating from excess current rather than voltage breakdown. If the source is not current-limited, all that is required is a resistor in series with the affected input terminal so that the maximum overload current is 1.0mA (for example, $100k\Omega$ for a 100 volt overload). This simple scheme will cause no significant reduction in performance and give complete overload protection. Figure 26 shows proper connections.

OPERATIONAL AMPLIFIERS 2-85

Figure 27a. AD644 Used as DAC Output Amplifiers

Figure 27b. Large Signal Response

Figure 27c. Small Signal Response

Figure 27a illustrates the 10-bit digital-to-analog converter, AD7533, connected for bipolar operation. Since the digital input can accept bipolar numbers and V_{REF} can accept a bipolar analog input, the circuit can perform a 4-quadrant multiplying function. The photos exhibit the response to a step input at V_{REF} . Figure 27b is the large signal response and Figure 27c is the small signal response.

The output impedance of a CMOS DAC varies with the digital word thus changing the noise gain of the amplifier circuit. The effect will cause a nonlinearity the magnitude of which is dependent on the offset voltage of the amplifier. The AD644K with trimmed offset will minimize the effect. The Schottky protection diodes recommended for use with many older CMOS DACs are not required when using the AD644.

ACTIVE FILTERS

Literature on active filter techniques and characteristics based on operational amplifiers is readily available. The successful application of an active filter however, depends on the component selection to achieve the desired performance. The AD644 is recommended for filters in medical, instrumentation, data acquisition and audio applications, because of its high gain bandwidth figure, symmetrical slewing, low noise, and low offset voltage. The state variable filter (Figure 28) is stable, easily tuned and is independent of circuit Q and gain. The use of the AD644 with its low input bias current simplifies the resistor (R3, R4) selection for the passband center frequency, circuit Q and voltage gain.

Figure 29. Sample and Hold Circuit

The sample and hold circuit, shown in Figure 29 is suitable for use with 8-bit A/D converters. The acquisition time using a 3900pF capacitor and fast CMOS SPST (ADG200) switch is 15μ s.

The droop rate is very low 25×10^{-9} V/ μ s due to the low input bias currents of the AD644. Care should be taken to minimize leakage paths. Leakages around the hold capacitor will increase the droop rate and degrade performance.

Figure 30. Wide Bandwidth Instrumentation Amplifier

The AD644 in the circuit of Figure 30 provides highly accurate signal conditioning with high frequency input signals. It provides an offset voltage drift of 10μ V/°C, CMRR of 80dB over the range of dc to 10kHz and a bandwidth of 200kHz (-3dB) at 1V p-p output. The circuit of Figure 30 can be configured for a gain range of 2 to 1000 with a typical nonlinearity of 0.01% at a gain of 10.

Ultralow-Drift Dual BiFET Op Amp

AD647

FEATURES

Low Offset Voltage Drift Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Current Crosstalk -124dB at 1kHz Low Bias Current: 35pA max Warmed Up Low Offset Voltage: 250µV max Low Input Voltage Noise: 2µV p-p High Open Loop Gain: 108dB Low Quiescent Current: 2.8mA max Low Total Harmonic Distortion Standard Dual Amplifier Pin Out

AD647 PIN CONFIGURATION

PRODUCT DESCRIPTION

The AD647 is an ultralow-drift dual JFET amplifier that combines high performance and convenience in a single package.

The AD647 uses the most advanced ion-implantation and laser wafer drift trimming technologies to achieve the highest performance currently available in a dual JFET. Ion-implantation permits the fabrication of matched JFETs on a monolithic bipolar chip. Laser wafer drift trimming trims both the initial offset voltage and its drift with temperature to provide offsets as low as $100\mu V (250\mu V max)$ and drifts of $2.5\mu V/^{\circ}C$ max.

In addition to outstanding individual amplifier performance, the AD647 offers guaranteed and tested matching performance on critical parameters such as offset voltage, offset voltage drift and bias currents.

This high level of performance makes the AD647 especially well suited for high precision instrumentation amplifier applications that previously would have required the costly selection and matching of space wasting single amplifiers.

The AD647 also offers high levels of performance for Digital to Analog Converter output amplifiers, and filtering applications.

The AD647 is offered in four performance grades, three commercial (the J, K, and L) and one extended (the S). All are supplied in hermetically sealed 8-pin TO-99 packages.

PRODUCT HIGHLIGHTS

- 1. The AD647 is guaranteed and tested to tight matching specifications to ensure high performance and to eliminate the selection and matching of single devices.
- 2. Laser wafer drift trimming reduces offset voltage and offset voltage drifts to 250μ V and 2.5μ V/°C max.
- 3. Voltage noise is guaranteed at $4\mu V$ p-p max (0.1 to 10Hz) on K, L and S grades.
- 4. Bias current (35pA K, L, S; 75pA J) is specified after five minutes of operation.
- 5. Total supply current is a low 2.8mA max.
- 6. High open loop gain ensures high linearity in precision instrumentation amplifier applications.
- 7. The standard dual amplifier pin out permits the direct substitution of the AD647 for lower performance devices.
- 8. The AD647 is available in chip form.

SPECIFICATIONS (@ $+25^{\circ}C$ and $V_s = \pm 15V dc$)

		AD647J			AD647K			AD647L			AD647S		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
$\begin{array}{l} \textbf{OPEN LOOP GAIN} \\ \textbf{V}_{O} = ~\pm~10 \textbf{V}, \textbf{R}_{L} \geq 2 k \Omega \\ \textbf{T}_{min} ~ to~ \textbf{T}_{max}, \textbf{R}_{L} = 2 k \Omega \end{array}$	100,000 100,000			250,000 250,000			250,000 250,000			250,000 100,000			V/V V/V
$\begin{array}{l} OUTPUT CHARACTERISTICS\\ Voltage (\overline{a}, $R_L = 2k\Omega$, T_{mun} to T_{max} \\ Voltage (\overline{a}, $R_L = 10k\Omega$, T_{mun} to T_{max} \\ Short Curcuit Current \end{array}$	±10 ±12	±12 ±13 25		±10 ±12	±12 ±13 25		±10 ±12	±12 ±13 25		±10 ±12	±12 ±13 25		V V mA
FREQUENCY RESPONSE Unity Gain Small Signal Full Power Response Slew Rate, Unity Gain	2.0	1.0 50 3 0		2.0	1.0 50 3.0		2.0	1.0 50 3 0		2.0	1.0 50 3 0		MHz kHz V/µs
INPUT OFFSET VOLTAGE ¹ Initial Offset Input Offset Voltage vs Temp Input Offset Voltage vs Supply,			1.0 10			0.5 5	8		0.25 2.5	r		0.5 5.0	mV µV/℃
T _{min} to T _{max}			200			100			100			100	μV/V
INPUT BIAS CURRENT ² Either Input Offset Current		10 5	75		10 2	35		10 2	35		10 2	35	pA pA
MATCHING CHARACTERISTICS ³ Input Offset Voltage Input Offset Voltage T _{min} to T _{max} Input Bias Current Crosstalk		- 124	1.0 10 35		- 124	0.5 5 25		- 124	0.25 2.5 25		- 124	0.5 10.0 25	mV μV/°C pA dB
INPUT IMPEDANCE Differential Common Mode		10 ¹² 6 10 ¹² 6			10 ¹² 6 10 ¹² 6			10 ¹² 6 10 ¹² 6	ŀ		10 ¹² 6 10 ¹² 6		MΩ∥pF MΩ∥pF
INPUT VOLTAGE RANGE Differential ⁴ Common Mode Common-Mode Rejection	±10 76	±20 ±12		±10 80	± 20 ± 12		±10 80	± 20 ± 12		±10 80	± 20 ± 12		V V dB
INPUT NOISE Voltage 0 1Hz to 10Hz f = 10Hz f = 10Hz f = 1kHz f = 10kHz		2 70 45 30 25			70 45 30 25	4		70 45 30 25	4		70 45 30 25	4	$\begin{array}{c} \mu V p - p \\ n V / \sqrt{Hz} \end{array}$
POWER SUPPLY Rated Performance Operating Quiescent Current	± 5	± 15	±18 2.8	± 5	· ±15	±18 2.8	± 5	± 15	±18 2.8	± 5	± 15	±18 2.8	V V mA
TEMPERATURE RANGE Operating, Rated Performance Storage	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	0 - 65		+ 70 + 150	- 55 - 65		+ 125 + 150	°C °C
PACKAGE OPTION ⁵ TO-99 Style (H-08B)		AD647JH			AD647KF	I		AD647LF	I		AD647SH	[

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$ ²Bas Current specifications are guaranteed at maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$. For higher temperatures, the current doubles every 10°C. For higher temperatures, the current doubles every 10°C.

³Matching is defined as the difference between parameters of the two amplifiers

⁴Defined as the maximum safe voltage between inputs, such that

neither exceeds ±10V from ground

⁵See Section 16 for package outline information

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test Results from those tests are used to calculate outgoing quality levels All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).

Figure 1. Input Voltage Range vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Input Bias Current vs. CMV

Figure 10. Open Loop Frequence Response

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Supply Voltage

Figure 11. Open Loop Voltage Gain vs. Supply Voltage

Figure 3. Output Voltage Swing vs. Resistive Load

Temperature

Figure 9. Open Loop Gain vs. Temperature

Figure 12. Power Supply Rejection vs. Frequency

OPERATIONAL AMPLIFIERS 2-89

Figure 13. Common Mode Rejection vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

a. Unity Gain Follower b. Fol Figure 19. T.H.D. Test Circuits

Figure 21a. Unity Gain Follower Pulse Response (Large Signal)

Figure 22a. Unity Gain Inverter

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

b. Follower with Gain = 10 Fest Circuits

Figure 21b. Unity Gain Follower Pulse Response (Small Signal)

Figure 22b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 15. Output Settling Time vs. Output Swing and Error (Circuit of Figure 23)

Figure 20. Crosstalk Test Circuit

Figure 21c. Unity Gain Follower

Figure 22c. Unity Gain Inverter Pulse Response (Small Signal)

APPLICATION NOTES

The AD647 is fully specified under actual operating conditions to insure high performance in any application, but there are some steps that will improve on even this high level of performance.

The bias current of a JFET amplifier doubles with every 10° C increase in junction temperature. Any heat source that can be eliminated or minimized will significantly improve bias current performance. To account for normal power dissipation, the largest contributor to chip self-heating, the bias currents of the AD647 are guaranteed fully warmed up with ±15V supplies. A decrease in supply voltage will decrease power consumption, resulting in a corresponding drop in bias currents.

Open loop gain and bias currents, to some extent, are affected by output loading. In applications where high linearity is essential, load impedance should be kept as high as possible to minimize degradation of open loop gain.

The outstanding ac and dc performance of the AD647 make it an ideal choice for critical instrumentation applications. In such applications, leakage paths, line losses and external noise sources should be considered in the layout of printed circuit boards. A guard ring surrounding the inputs and connected to a low impedance potential (at the same level as the inputs) should be placed on both sides of the circuit board. This will eliminate leakage paths that could degrade bias current performance. All signal paths should be shielded to minimize noise pick-up.

Figure 23. AD647 Used as DAC Output Amplifier

A CMOS DAC AMPLIFIER

The output impedance of a CMOS DAC, such as the AD7541, varies with digital input code. This causes a corresponding variation in the noise gain of the DAC-amplifier combination. This noise gain modulation introduces a nonlinearity whose magnitude is dependent on the amount of offset voltage present.

Laser wafer drift trimming lowers the initial offset voltage and the offset voltage drift of the AD647, therefore minimizing the effect of this nonlinearity and its drift with temperature. This, in conjunction with the low bias current and high open loop gain, makes the AD647 ideal for DAC output amplifier applications.

THE AD647 USED WITH THE AD7546

Figure 24 shows the AD647 used with the AD7546 16-bit segment DAC. In this application, amplifier performance is critical to the overall performance of the AD7546. A1 is used as a dual precision buffer. Here the offset voltage match, low offset voltage and high open loop gain of the AD647 ensure monotonicity and high linearity over the entire operating temperature range. A2 serves a dual function: amplifier A is a Track and Hold circuit that deglitches the DAC output and amplifier B acts as an output amplifier. The performance of the amplifiers of A2 is crucial to the accuracy of the system. The errors of these amplifiers are added to the errors due strictly to DAC imperfections. For this reason great care should be used in the selection of these amplifiers. The matching characteristics, low bias current and low temperature coefficients of the AD647 make it ideal for this application.

Figure 24. AD647 Used with AD7546 16-Bit DAC

USING THE AD647 IN LOG AMPLIFIER APPLICATIONS

Log amplifiers or log ratio amplifiers are useful in a wide range of analog computational applications, ranging from the simple linearization of exponential transducer outputs to the use of logarithms in computations involving multi-term products or arbitrary exponents. Log amps also facilitate the compression of wide ranging analog input signals into a range that can be easily handled using standard circuit techniques.

The picoamp level input current and low offset voltage of the AD647 make it suitable for wide dynamic range log amplifiers. Figure 27 is a schematic of a log ratio circuit employing the AD647 that can achieve less than 1% conformance error over 5 decades of current input, 1nA to 100μ A. For voltage inputs, the dynamic range is typically 50mV to 10V for 1% error, limited on the low end by the amplifiers' input offset voltage.

Figure 25. Log-Ratio Amplifier

The conversion between current (or voltage) input and log output is accomplished by the base-emitter junctions of the dual transistor Q1. Assuming Q1 has β >100, which is the case for the specified transistor, the base-emitter voltage on side 1 is to a close approximation.

 $V_{BEA} = kT/q \ln I_1/I_{S1}$

This circuit is arranged to take the difference of the V_{BE} 's of Q1A and Q1B, thus producing an output voltage proportional to the log of the *ratio* of the inputs:

$$V_{OUT} = -K (V_{BE A} - V_{BE B}) = -\frac{KkT}{q} (\ln I_1 / I_{S1} - \ln I_2 / I_{S2})$$

 $V_{OUT} = -K kT/q \ln I_1 / I_2$

The scaling constant, K is set by R1 and R_{TC} to about 16, to produce a 1V change in output voltage per decade difference in input signals. R_{TC} is a special resistor with a +3500ppm^{°C}C temperature coefficient, which makes K inversely proportional to temperature, compensating for the "T" in kT/q. The logratio transfer characteristic is therefore independent of temperature.

This particular log ratio circuit is free from the dynamic problems that plague many other log circuits. The -3dB bandwidth is 50kHz over the top 3 decades, 100nA to 100 μ A, and decreases smoothly at lower input levels. This circuit needs no additional frequency compensation for stable operation from input current sources, such as photodiodes, which may have 100pF of shunt capacitance. For larger input capacitances a 20pF integration capacitor around each amplifier will provide a smoother frequency response.

This log ratio amplifier can be readily adjusted for optimum accuracy by following this simple procedure. First, apply V1 = V2 = -10.00V and adjust "Balance" for V_{OUT} = 0.00V. Next apply V1 = -10.00V, V2 = -1.00V and adjust gain for V_{OUT} = +1.00V. Repeat this procedure until gain and balance readings are within 2mV of ideal values.

ACTIVE FILTERS

In active low pass filtering applications the dc accuracy of the amplifiers used is critical to the performance of the filter circuits. DC error sources such as offset voltage and bias currents represent the largest individual contributors to output error. Offset voltages will be passed by the filtering network and may, depending on the design of the filter circuit, be amplified and generate unacceptable output offset voltages. In filter circuits for low frequency ranges large value resistors are used to generate the low pass filter function. Input bias currents passing through these resistors will generate an additional offset voltage that will also be passed to the output of the filter.

The use of the AD647 will minimize these error sources and, therefore, maximize filter accuracy. The wide variety of performance levels of the AD647 allows for just the amount of accuracy required for any given application.

AD647 AS AN INSTRUMENTATION AMPLIFIER

The circuit shown in Figure 26 uses the AD647 to construct an ultra high precision instrumentation amplifier. In this type of application the matching characteristics of a monolithic dual amplifier are crucial to ensure high performance.

Figure 26. Precision FET Input Instrumentation Amplifier

The use of an AD647L as the input amplifier A1, guarantees maximum offset voltage of 250μ V, drift of 2.5μ V/°C and bias currents of 35pA. A2 serves two less critical functions in the amplifier and, therefore can be an AD647J. Amplifier A is an active data guard which increases ac CMRR and minimizes extraneous signal pickup and leakage. Amplifier B is the output amplifier of the instrumentation amplifier. To attain the precision available from this configuration, a great deal of care should be taken when selecting the external components. CMRR will depend on the matching of resistors R1, R2, R3, and R4. The gain drift performance of this circuit will be affected by the matching TC of the resistors used.

AD648

FEATURES

DC Performance: 400μA max Quiescent Current 10pA max Bias Current, Warmed Up (AD648C) 300μV max Offset Voltage (AD648C) 3μV/°C max Drift (AD648C) 2μV p-p Noise, 0.1 to 10Hz AC Performance: 1.8 V/μs Slew Rate 1MHz Unity Gain Bandwidth Available in Plastic, Hermetic Cerdip and Hermetic Metal Can Packages MIL-STD-883B Parts Available

PRODUCT DESCRIPTION

The AD648 is a matched pair of low-power, precision monolithic operational amplifiers. It offers both low bias current (10pA max, warmed up) and low quiescent current (400 μ A max) and is fabricated with ion-implanted FET and laser wafer trimming technologies. Input bias current is guaranteed over the AD648's entire common-mode voltage range.

The economical J grade has a maximum guaranteed offset voltage of less than 2mV and an offset voltage drift of less than $20\mu V/^{\circ}C$. The C grade reduces offset voltage to less than 0.30mV and offset voltage drift to less than $3\mu V/^{\circ}C$. This level of dc precision is achieved utilizing Analog's laser wafer drift trimming process. The combination of low quiescent current and low offset voltage drift minimizes changes in input offset voltage due to self-heating effects. Five additional grades are offered over the commercial, industrial and military temperature ranges.

The AD648 is recommended for any dual supply op amp application requiring low power and excellent dc and ac performance. In applications such as battery-powered, precision instrument front ends and CMOS DAC buffers, the AD648's excellent combination of low input offset voltage and drift, low bias current and low 1/f noise reduces output errors. High common mode rejection (86dB, min on the "C" grade) and high open-loop gain ensures better than 12-bit linearity in high impedance, buffer applications.

The AD648 is pinned out in a standard dual op amp configuration and is available in seven performance grades. The AD648J and AD648K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD648A, AD648B and ... D648C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD648S and AD648T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C.

AD648 CONNECTION DIAGRAM

Plastic Mini-DIP (N) Package and

Cerdip (Q) Package

Extended reliability PLUS screening is available for parts specified over the commercial and industrial temperature ranges. PLUS screening includes 168-hour burn-in, as well as other environmental and physical tests.

The AD648 is available in an 8-pin plastic mini-DIP, cerdip or TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. A combination of low supply current, excellent dc and ac performance and low drift makes the AD648 the ideal op amp for high-performance, low-power applications.
- The AD648 is pin compatible with industry standard dual op amps such as the LF442, TL062, and AD642, enabling designers to improve performance while achieving a reduction in power dissipation of up to 85%.
- Guaranteed low input offset voltage (2mV max) and drift (20μV/°C max) for the AD648J are achieved utilizing Analog Devices' laser drift trimming technology.
- Analog Devices specifies each device in the warmed-up condition, insuring that the device will meet its published specifications in actual use.
- Matching characteristics are excellent for all grades. The input offset voltage matching between amplifiers in the AD648J is within 2mV, for the C grade matching is within 0.4mV.
- 6. Crosstalk between amplifiers is less than -120dB at 1kHz.
- 7. The AD648 is available in chip form.

SPECIFICATIONS (@ + 25°C and $V_s = \pm 15V$ dc, unless otherwise noted)

Model	AI Min	0648J/A/S Тур	Max	Min	AD648K/B/T Typ	Max	Min	AD648C Typ	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset T _{mun} to T _{max} vs Temp vs Supply vs Supply, T _{mun} to T _{max} Long-Term Offset Stabulity		0 75	2.0 3.0/3.0/3.0 20 80 76/76/76		0.3	1.0 1.5/1.5/2.0 10 86 80		0.10	0.3 0.5 3.0 86 80	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT Either Input ² , $V_{CM} = 0$ Either Input ² at T _{max} , $V_{CM} = 0$ Max Input Bias Current Over Common-Mode Voltage Range		5	20 0.45/1 3/20 30		3	10 0.25/0 65/10 15		3	10 0 65 15	pA nA pA
Offset Current, $V_{CM} = 0$ Offset Current at T_{max}		5	10 0.25/0.7/10		2	5 0 15/0 35/5		2	5 0 35	pA nA
MATCHING CHARACTERISTICS ³ Input Offset Voltage T _{min} to T _{max} Input Offset Voltage vs Temp Input Bias Current Crosstalk		1 0 8 - 120	2.0 3 0/3 0/3.0 10		0.5 5 - 120	1.0 1.5/1.5/2.0 5		0 2 2.5 - 120	0.4 0.5 5	mV mV µV/℃ pA dB
INPUT IMPEDANCE Differential Common Mode		1×10^{12} 3×10^{12}	3		1×10^{12} 3×10^{12}	3		1×10^{12} 3×10^{12}	3 3	Ω∥pF Ω∥pF
INPUT VOLTAGE RANGE Differential ⁴ Common Mode Common-Mode Rejection	±11	± 20 ± 12		±11	± 20 ± 12		±11	± 20 ± 12		V V
	76 76/76/76 70 70/70/70			82 82 76 76			86 86 76 76			dB dB dB dB
INPUT VOLTAGE NOISE Voltage $0.1Hz$ to $10Hz$ f = 10Hz f = 100Hz f = 1kHz f = 1kHz f = 10kHz		2 80 40 30 30			2 80 40 30 30			2 80 40 30 30	4	$\begin{array}{c} \mu V p \cdot p \\ n V / \sqrt{Hz} \end{array}$
INPUT CURRENT NOISE $f = 1kHz$		18			18		•	18		fA/\sqrt{Hz}
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to ± 0 01%	08 1.0	1 0 30 1 8 8		0.8 1.0	1 0 30 1 8 8		0.8 1.0	1 0 30 1.8 8		MHz kHz V/µs µs
$\begin{split} OPEN \ LOOP GAIN \\ V_O = \pm 10V, R_L \ge 10k\Omega \\ T_{max} \ bT_{max}, R_L \ge 10k\Omega \\ V_O = \pm 10V, R_L \ge 5k\Omega \\ T_{max} \ to \ T_{max}, R_L \ge 5k\Omega \end{split}$	300 300/300/300 150 150/150/150	1000 700 500 300		300 300 150 150	1000 700 500 300		300 300 150 150	1000 700 500 300		V/mV V/mV V/mV V/mV V/mV
$\begin{array}{l} \text{OUTPUT CHARACTERISTICS} \\ \text{Voltage} (\Bar{u}, R_L \geq 10 \text{k} \Omega, \\ T_{\text{min}} \text{ to } T_{\text{max}} \\ \text{Voltage} (\Bar{u}, R_L \geq 5 \text{k} \Omega, \\ \end{array}$	$\pm 12/\pm 12/\pm 12$	± 13		±12	±13		±12	±13		v
T _{mun} to T _{max} Short Circuit Current	±11/±11/ ±11	± 12 15		±11	± 12 15		±11	± 12 15		mA
POWER SUPPLY Rated Performance Operating Range Quiescent Current (Both Amplifiers)	±4.5	±15 340	±18 400	±4.5	± 15 340	±18 400	±4.5	±15 340	±18 400	V V μΑ
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Mihtary (- 55°C to + 125°C)		AD648J AD648A AD648S			AD648K AD648B AD648T			AD648C	:	
PACKAGE OPTIONS ⁵ Plastic (N-8) Cerdip (Q-8) Metal Can (H-08A)	AD6- AD6- AD6-	48JN 48AQ, AC 48AH, AC	0648SQ 0648SH	A	D648KN D648BQ, AD D648BH, AD	0648TQ 0648TH		AD648 AD648	CQ CH	

NOTES

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = \pm 25^{\circ}C$ ³Bas Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = \pm 25^{\circ}C$ For higher temperature, the current doubles every 10°C ³Matching is defined as the difference between parameters of the two amplifiers ⁴Defined as voltages between inputs, such that neither exceeds \pm 10V from ground ⁵See Section 16 for package outline information

Specifications subject to change without notice

Specifications in boldface are tested on all production units at final electrical test Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V$
Internal Power Dissipation
Input Voltage ²
Output Short Circuit Duration Indefinite
Differential Input Voltage + V_S and - V_S
Storage Temperature Range Q, H65°C to +150°C
N $\ldots \ldots \ldots -65^{\circ}$ C to $+125^{\circ}$ C
Operating Temperature Range
AD648J/K 0 to $+70^{\circ}$ C
AD648A/B/C
AD648S/T
Lead Temperature Range (Soldering 60sec)

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ²For supply voltages less than \pm 18V, the absolute maximum input voltage is

equal to the supply voltage.

CHIP DIMENSIONS AND PAD LAYOUT

Dimensions shown in inches and (mm).

Figure 1. Input Voltage Range vs. Supply Voltage

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Input Bias Current vs. Common-Mode Voltage

Figure 10. Open Loop Frequency Response

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Supply Voltage

Figure 8. Change in Offset Voltage vs. Warm-Up Time

Figure 11. Open Loop Voltage Gain vs. Supply

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current vs. Temperature

Figure 9. Open Loop Gain vs. Temperature

Figure 12. PSRR vs. Frequency

Typical Characteristics

Figure 13. CMRR vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

Figure 19a. Unity Gain Follower

Figure 20a. Unity Gain Inverter

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

Figure 19b. Unity Gain Follower Pulse Response (Large Signal)

Figure 20b. Unity Gain Inverter Pulse Response (Large Signal)

2

Figure 15. Output Settling Time vs. Output Swing and Error Voltage

Figure 18. Total Noise vs. Source Resistance

Figure 19c. Unity Gain Follower Pulse Response (Small Signal)

Figure 20c. Unity Gain Inverter Pulse Response (Small Signal)

OPERATIONAL AMPLIFIERS 2-97
Applying the AD648

APPLICATION NOTES

The AD648 is a pair of JFET-input op amps with a guaranteed maximum I_B of less than 10pA, and offset and drift laser-trimmed to 0.3mV and 3 μ V/°C respectively (AD648C). AC specs include 1MHz bandwidth, 1.8V/ μ s typical slew rate and 8 μ s settling time for a 20V step to \pm 0.01% – all at a supply current less than 400 μ A. To capitalize on the device's performance, a number of error sources should be considered.

The minimal power drain and low offset drift of the AD648 reduce self-heating or "warm-up" effects on input offset voltage, making the AD648 ideal for on/off battery powered applications. The power dissipation due to the AD648's 400μ A supply current has a negligible effect on input current, but heavy output loading will raise the chip temperature. Since a JFET's input current doubles for every 10°C rise in chip temperature, this can be a noticeable effect.

The amplifier is designed to be functional with power supply voltages as low as ± 4.5 V. It will exhibit a higher input offset voltage than at the rated supply voltage of ± 15 V, due to power supply rejection effects. Common mode range extends from 3V more positive than the negative supply to 1V more negative than the positive supply. Designed to cleanly drive up to 10k Ω and 100pF loads, the AD648 will drive a 2k Ω load with reduced open loop gain.

Figure 21 shows the recommended crosstalk test circuit. A typical value for crosstalk is -120dB at 1kHz.

Figure 21. Crosstalk Test Circuit

LAYOUT

To take full advantage of the AD648's 10pA max input current, parasitic leakages must be kept below an acceptable level. The practical limit of the resistance of epoxy or phenolic circuit board material is between $1 \times 10^{12}\Omega$ and $3 \times 10^{12}\Omega$. This can result in an additional leakage of 5pA between an input of 0V and a -15V supply line. Teflon or a similar low leakage material (with a resistance exceeding $10^{12}\Omega$) should be used to isolate high impedance input lines from adjacent lines carrying high voltages. The insulator should be kept clean, since contaminants will degrade the surface resistance.

A metal guard completely surrounding the high impedance nodes and driven by a voltage near the common mode input potential can also be used to reduce some parasitic leakages. The guarding pattern in Figure 22 will reduce parasitic leakage due to finite board surface resistance; but it will not compensate for a low volume resistivity board.

Figure 22. Board Layout for Guarding Inputs

INPUT PROTECTION

The AD648 is guaranteed to withstand input voltages equal to the power supply potential. Exceeding the negative supply voltage on either input will forward bias the substrate junction of the chip. The induced current may destroy the amplifier due to excess heat.

Input protection is required in applications such as a flame detector in a gas chromatograph, where a very high potential may be applied to the input terminals during a sensor fault condition. Figures 23a and 23b show simple current limiting schemes that can be used. $R_{PROTECT}$ should be chosen such that the maximum overload current is 1.0mA (for example 100k Ω for a 100V overload).

Figure 23a. Input Protection of I-to-V Converter

Figure 23b. Voltage Follower Input Protection Method

Figure 23b shows the recommended method for protecting a voltage follower from excessive currents due to high voltage breakdown. The protection resistor, R_p , limits the input current. A nominal value of $100k\Omega$ will limit the input current to less than 1mA with a 100 volt input voltage applied.

The stray capacitance between the summing junction and ground will produce a high frequency roll-off with a corner frequency equal to:

$$f_{corner} = \frac{1}{2\pi R_p C_{stray}}$$

Accordingly, a $100k\Omega$ value for R_p with a 3pF C_{stray} will cause a 3dB corner frequency to occur at 531kHz.

Figure 23c. I-to-V Converter with Diode Input Protection

D/A CONVERTER BIPOLAR OUTPUT BUFFER

The circuit in Figure 24 provides 4 quadrant multiplication with a resolution of 12 bits. The AD648 is used to convert the AD7545 CMOS DAC's output current to a voltage and provides the Figure 23c shows a diode clamp protection scheme for an I-to-V converter using low leakage diodes. Because the diodes are connected to the op amp's summing junction, which is a virtual ground, their leakage contribution is minimal.

Exceeding the negative common mode range on either input terminal causes a phase reversal at the output, forcing the amplifier output to the corresponding high or low state. Exceeding the negative common mode on both inputs simultaneously forces the output high. Exceeding the positive common mode range on a single input doesn't cause a phase reversal, but if both inputs exceed the limit the output will be forced high. In all cases, normal amplifier operation is resumed when input voltages are brought back within the common mode range.

necessary level shifting to achieve a bipolar voltage output. The circuit operates with a 12-bit plus sign input code. The transfer function is shown in Figure 25.

Figure 24. 12-Bit Plus Sign Magnitude D/A Converter

SIGN BIT	BINARY NUMBER IN DAC REGISTER	ANALOG OUTPUT
0	1111 1111 1111	+V _{IN} × (4095/4096)
0	0000 0000 0000	0 VOLTS
1	0000 0000 0000	0 VOLTS
1	1111 1111 1111	-V _{IN} × (4095/4096)

NOTE: SIGN BIT AT "0" CONNECTS THE NONINVERTING INPUT OF A2 TO ANALOG COMMON

The AD7592 is a fully protected dual CMOS SPDT switch with data latches. R4 and R5 should match to within 0.01% to maintain the accuracy of the converter. A mismatch between R4 and R5 introduces a gain error. Overall gain is trimmed by adjusting $R_{\rm IN}$. The AD648's low input offset voltage, low drift over temperature, and excellent dynamics make it an attractive low power output buffer.

The input offset voltage of the AD648 output amplifier results in an output error voltage. This error voltage equals the input offset voltage of the op amp times the noise gain of the amplifier. That is:

$$V_{OS}$$
 Output = V_{OS} Input $\left(1 + \frac{R_{FB}}{R_O}\right)$

 R_{FB} is the feedback resistor for the op amp, which is internal to the DAC. R_O is the DAC's R-2R ladder output resistance. The value of R_O is code dependent. This has the effect of changing the offset error voltage at the amplifier's output. An output amplifier with a sub millivolt input offset voltage is needed to preserve the linearity of the DAC's transfer function. The AD648 in this configuration provides a 700kHz small signal bandwidth and $1.8V/\mu$ s typical slew rate. The 33pF capacitor across the feedback resistor optimizes the circuit's response. The oscilloscope photos in Figures 26a and 26b show small and

Figure 26a. Response to $\pm 20V p$ -p Reference Square Wave

DUAL PHOTODIODE PREAMP

The performance of the dual photodiode preamp shown in Figure 27 is enhanced by the AD648's low input current, input voltage offset, and offset voltage drift. Each photodiode sources a current proportional to the incident light power on its surface. R_F converts the photodiode current to an output voltage equal to $R_F \times I_S$.

An error budget illustrating the importance of low amplifier input current, voltage offset, and offset voltage drift to minimize output voltage errors can be developed by considering the equivalent circuit for the small (0.2mm² area) photodiode shown in Figure 27. The input current results in an error proportional to the feedback resistance used. The amplifier's offset will produce large signal outputs of the circuit in Figure 24. Upper traces show the input signal V_{IN} . Lower traces are the resulting output voltage with the DAC's digital input set to all 1's. The circuit settles to $\pm 0.01\%$ for a 20V input step in 14µs.

Figure 26b. Response to \pm 100mV p-p Reference Square Wave

an error proportional to the preamp's noise gain $(1 + R_F/R_{SH})$, where R_{SH} is the photodiode shunt resistance. The amplifier's input current will double with every 10°C rise in temperature and the photodiode's shunt resistance halves with every 10°C rise. The error budget in Figure 28 assumes a room temperature photodiode R_{SH} of 500M Ω , and the maximum input current and input offset voltage specs of an AD648C.

The capacitance at the amplifier's negative input (the sum of the photodiode's shunt capacitance, the op amp's differential input capacitance, stray capacitance due to wiring, etc.) will cause a rise in the preamp's noise gain over frequency. This can result in excess noise over the bandwidth of interest. C_F reduces the noise gain "peaking" at the expense of signal bandwidth.

Figure 27. A Dual Photodiode Pre-Amp

TEMP ℃	R _{sH} (MΩ)	V _{os} (μV)	(1 + R _F /R _{SH}) V _{OS}	l _B (pA)	I _B R _F	TOTAL
- 25	15,970	150	151μV	0.30	30μV	181µV
0	2,830	225	233μV	2.26	262μV	495μV
+ 25	500	300	360μV	10.00	1.0mV	1.36mV
+ 50	88.5	375	800μV	56.6	5.6mV	6.40mV
+ 75	15.6	450	3.33mV	320	32mV	35.3mV
+ 85	7.8	480	6.63mV	640	64mV	70.6mV

Figure 28. Photodiode Pre-Amp Errors Over Temperature

INSTRUMENTATION AMPLIFIER

The AD648J's maximum input current of 20pA per amplifier makes it an excellent building block for the high input impedance instrumentation amplifier shown in Figure 29. Total current drain for this circuit is under 600µA. This configuration is optimal for conditioning differential voltages from high impedance sources.

The overall gain of the circuit is controlled by R_G, resulting in the following transfer function:

Gains of 1 to 100 can be accommodated with gain nonlinearities of less than 0.01%. The maximum input current is 30pA over the common-mode range, with a common-mode impedance of over $1 \times 10^{12} \Omega$. The capacitors C1, C2, C3 and C4 compensate for peaking in the gain over frequency which is caused by input capacitance.

To calibrate this circuit, first adjust trimmer R1 for common-mode rejection with +10 volts dc applied to the input pins. Next, adjust R2 for zero offset at V_{OUT} with both inputs grounded. Trim the circuit a second time for optimal performance.

The -3dB small signal bandwidth for this low power instrumentation amplifier is 700kHz for a gain of 1 and 10kHz for a gain of 100. The typical output slew rate is 1.8V/µs.

LOG RATIO AMPLIFIER

Log ratio amplifiers are useful for a variety of signal conditioning applications, such as linearizing exponential transducer outputs and compressing analog signals having a wide dynamic range. The AD648's picoamp level input current and low input offset voltage make it a good choice for the front-end amplifier of the log ratio circuit shown in Figure 30. This circuit produces an output voltage equal to the log base 10 of the ratio of the input currents I_1 and I_2 . Resistive inputs R1 and R2 are provided for voltage inputs.

Input currents I_1 and I_2 set the collector currents of Q1 and Q2, a matched pair of logging transistors. Voltages at points A and B are developed according to the following familiar diode equation:

 $V_{BE} = (kT/q) \ln (I_C/I_{ES})$

In this equation, k is Boltzmann's constant, T is absolute temperature, q is an electron charge, and I_{ES} is the reverse saturation current of the logging transistors. The difference of these two voltages is taken by the subtractor section and scaled by a factor of approximately 16 by resistors R9, R10, and R8. Temperature compensation is provided by resistors R8 and R15, which have a positive 3500 ppm/°C temperature coefficient. The transfer function for the output voltage is:

$$V_{OUT} = 1V \log_{10} (I_2/I_1)$$

Frequency compensation is provided by R11, R12, C1, and C2. Small signal bandwidth is approximately 300kHz at input currents above 100 μ A and will proportionally decrease with lower signal levels. D1, D2, R13, and R14 compensate for the effects of the two logging transistors' ohmic emitter resistance.

To trim this circuit, set the two input currents to 10μ A and adjust V_{OUT} to zero by adjusting the potentiometer on A3. Then set I₂ to 1μ A and adjust the scale factor such that the output voltage is 1V by trimming potentiometer R10. Offset adjustment for A1 and A2 is provided to increase the accuracy of the voltage inputs.

This circuit ensures a 1% log conformance error over an input current range of 300pA to 1mA, with low level accuracy limited by the AD648's input current. The low level input voltage accuracy of this circuit is limited by the input offset voltage and drift of the AD648.

Figure 30. Precision Log Ratio Amplifier

AD707

FEATURES

Very High dc Precision 15μV max Offset Voltage 0.1μV/°C max Offset Voltage Drift 0.35μV p-p max Voltage Noise (0.1Hz to 10Hz) 8 V/μV min Open-Loop Gain 130dB min CMRR 120dB min PSRR 1nA max Input Bias Current

AC Performance 0.3V/μs Slew Rate 0.9MHz Closed Loop-Bandwidth

PRODUCT DESCRIPTION

The AD707 is a low-cost, high precision op amp with state-of-theart performance that makes it ideal for a wide range of precision applications. The offset voltage spec of less than 15μ V is the best available in a bipolar op amp, and maximum input offset current is 1.0nA. The top grade is the first bipolar monolithic op amp to offer a maximum offset voltage drift of 0.1μ V/°C, and offset current drift and input bias current drift are both specified at 25pA/°C maximum.

The AD707's open-loop gain is $8V/\mu V$ minimum over the full $\pm 10V$ output range when driving a 1kΩ load. Maximum input voltage noise is 350nVp-p (0.1Hz to 10Hz). CMRR and PSRR are 130dB and 120dB minimum respectively.

The AD707 is available in versions specified over commercial, industrial and military temperature ranges. It is offered in 8-pin plastic mini-DIP, small outline, hermetic cerdip and hermetic TO-99 metal can packages. Chips and Mil Standard/883 parts are also available.

AD707 CONNECTION DIAGRAMS

APPLICATION HIGHLIGHTS

- 1. The AD707's $13V/\mu V$ typical open-loop gain and 140dBtypical common-mode rejection ratio make it ideal for precision instrumentation applications.
- 2. The precision of the AD707 makes tighter error budgets possible at a lower cost.
- 3. The low offset voltage drift and low noise of the AD707 allow the designer to amplify very small signals without sacrificing overall system performance.
- 4. The AD707 can be used where chopper amplifiers are required, but without the inherent noise and application problems.
- 5. The AD707 is an improved pin-for-pin replacement for the OP-07, OP-77 and the LT1001.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

	Conditions	Min	AD707J/A Typ	Max	Min	AD707K/I Typ	B/S Max	Min	AD707C/T Typ	Max	Units
INPUT OFFSET VOLTAGE Initial vs Temperature Long-Term Stability Adjustment Range	T _{min} -T _{max} R _P 20kΩ		30 0.3 50 0.3 ± 4	90 1 Ö 100		$ \begin{array}{c} 10 \\ 0.1 \\ 15 \\ 0 \\ \pm 4 \end{array} $	25 0.3 45		5 0.03 7/8/8 0.2 ± 4	15 0.1 25	μV μV/°C μV μV/month mV
INPUT BIAS CURRENT Average Drift	T _{min} – T _{max}		1 0 2.0 15	2.5 4 0 40		05 15 15	1.5 3.0 25/25/35		0 5 1.0 10	1.0 2.0 25	nA nA pA/℃
OFFSET CURRENT Average Drift	$V_{CM} = 0V$ $T_{min} - T_{max}$		0.5 2.0 2	2.0 4.0 40		03 10 1	1.5 2.0 25/25/35		0.1 0.2 1	1.0 1.5 25	nA nA pA/°C
INPUT VOLTAGE NOISE	0 1 to 10Hz f 10Hz f - 100Hz f 1kHz		0.23 10 3 10.0 9 6	0.6 15 13 0 11 0		0.23 10 3 10.0 9 6	0.6 14 12 11 0		0 23 10 3 10.0 9 6	0.35 13 11 0 11 0	$ \begin{array}{c} \mu V p - p \\ n V / \sqrt{Hz} \\ n V / \sqrt{Hz} \\ n V / \sqrt{Hz} \end{array} $
INPUT CURRENT NOISE	0 1Hz to 10Hz f - 10Hz f - 100Hz f - 100Hz f = 1kHz		14 0 32 0 14 0 12	35 0 9 0 27 0 18	1975 IV. 1976 - 1941 1974 - 1940	14 0.32 0.14 0.12	30 0 8 0 23 0.17		14 0 32 0 14 0 12	30 0.8 0 23 0 17	$ \begin{array}{c} pA p-p \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \end{array} $
COMMON-MODE REJECTION RATIO	$V_{CM} = \pm 13V$ T_{min} to T_{max}	120 120	140 140		130 130	140 1 40	and the	130 130	140 140		dB dB
OPEN-LOOP GAIN		3 3 **	13 13 13		5	13 13 13 13	ł	8 8 8	13 13 13		V/μV V/μV V/μV
POWER SUPPLY REJECTION RATIO	$V_{S} = \pm 3V_{to} \pm 18V_{t}$ $T_{min} \text{ to } T_{max}$	110 110	130 130		145 115	1 30 130		120 120	130 130		dB dB
FREQUENCY RESPONSE Closed-Loop Bandwidth Slew Rate	nije. Na	10,5 0'15	09 03		0.5 0.15	0.9 0.3		05 015	090.3		MHz V/µs
INPUT RESISTANCE Differential Common Mode		24	100 200		45	200 300		60	200 400		ΜΩ GΩ
OUTPUT CHARACTERISTICS Voltage	$\begin{array}{l} R_{I \ OAD} \ge 10 k\Omega \\ R_{I \ OAD} \ge 2 k\Omega \\ R_{I \ OAD} \ge 1 k\Omega \\ R_{I \ OAD} \ge 2 k\Omega \\ T_{min} \text{ to } T_{max} \end{array}$	13.5 12.5 12.0 12 0	14 13.0 12.5 13.0		13.5 12.5 12.0 12.0	14 13 0 12 5 13.0		13.5 12.5 12.0 12.0	14 13.0 12.5 13.0		$\begin{array}{c} \pm \mathbf{V} \\ \pm \mathbf{V} \\ \pm \mathbf{V} \\ \pm \mathbf{V} \\ \pm \mathbf{V} \end{array}$
OPEN-LOOP OUTPUT Resistance			60			60			60		Ω
POWER SUPPLY Current, Quescent Power Consumption	$V_S = \pm 15V$, No Load $V_S = \pm 3V$		2.5 70 7.2	3 90 9.0		2.5 70 7 2	3 90 9.0		2.5 70 7 2	3 90 9.0	mA mW ṁW
TEMPERATURE RANGE Operating, Rated Performance Commercial Industrial Military	0 to + 70°C - 40°C to + 85°C - 55°C to + 125°C	AD7(AD7(07JN, AD707 07AQ, AD70	'JR 7AH	AD707 AD707 AD707	KN, AD7(BQ, AD70 SQ, AD70)7KR ¹ 7BH 7SH	AD70 AD70	7CQ, AD707 17TQ, AD707	сн гн	
PACKAGE OPTIONS ² Plasuc (N-8) Cerdup (Q-8) TO-99 (H-08A) SOIC (R-8)		AD70 AD70 AD70 AD70	7JN 7AQ 7AH 7JR		AD7071 AD7071 AD7071 AD7071 AD7071	KN BQ/SQ BH/SH KR		AD707 AD707	7CQ/TQ 7CH/TH		e

NOTES ¹AD707KR parts are production tested at + 25°C only All T_{min} to T_{max} specifications are guaranteed but not 100% tested. ²See Section 16 for package outline information

All min and max specifications are guaranteed Specifications in **boldface** are tested on all production units at final electrical test.

Results from those tests are used to calculate outgoing quality levels

Specifications are subject to change without notice

AD708

2

FEATURES

Very High dc Precision 30μV max Offset Voltage 0.3μV/°C max Offset Voltage Drift 0.35μV p-p max Voltage Noise (0.1 to 10Hz) 8 Million V/V min Open Loop Gain 130dB min CMRR 120dB min PSRR Matching Characteristics 30μV max Offset Voltage Match 0.3μV/°C max Offset Voltage Drift Match 140dB min CMRR Match

AC PERFORMANCE

0.3V/μs Slew Rate 0.9MHz Closed-Loop Bandwidth Single: AD707 Available in 8-Pin Plastic Mini-DIPs and Hermetic Cerdip and TO-99 Metal Can Packages

PRODUCT DESCRIPTION

The AD708 is a dual precision, low offset voltage and low offset voltage drift, monolithic operational amplifier. Each amplifier, individually offers excellent dc precision and all important dc specifications show excellent stability over temperature. The offset voltage drift match of $0.3\mu W^{\circ}$ C and offset voltage match of 30μ V are the best available matching specifications for any dual bipolar op amp.

The AD708 sets a new standard for dual precision op amps by providing $8V/\mu V$ min open loop gain and guaranteed max input voltage noise of 350nV p-p. Input bias current is 1.0nA max guaranteed. Offset current drift is typically 1pA/°C and input bias current drift is 25pA/°C max. Both CMRR (130dB min) and PSRR (120dB min) are an order of magnitude improved over any available single monolithic op amp except the AD707.

The AD708 is available in six performance grades. The AD708J and AD708K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C and are available in plastic mini-DIP, cerdip, and TO-99 packages. The AD708A and AD708B are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C and are available in cerdip and TO-99 packages. The AD708S and AD708T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available in cerdip and TO-99 packages. Military versions are available processed to MIL-STD-883B, Rev. C..

Plastic DIP (N) Package and Cerdip (Q) Package

TO-8 (H) Package

AD708 CONNECTION DIAGRAMS

TOP VIEW

NOTE PIN 4 CONNECTED TO CASE

APPLICATION HIGHLIGHTS

- 1. The AD708's $13V/\mu V$ typical open loop gain and 140dB common-mode rejection make it ideal for precision instrumentation applications.
- 2. The combination of outstanding matching and individual specfications makes the AD708 ideal for constructing high gain, precision instrumentation amplifiers.
- 3. The low offset voltage drift and noise of the AD708 allows the designer to amplify very small signals without sacrificing overall system preformance.
- 4. Unmounted dice are available for hybrid circuit applications.
- The AD708 is an improved replacement for the OP-207 and the LT1002.

SPECIFICATIONS $(@ +25^{\circ}C \text{ and } \pm 15^{\circ}V \text{ dc, unless otherwise noted})$

Model		AI	0708J/A/	s				
	Conditions	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE			30	100		5	30	μV
Duite	$T_{min} - T_{max}$		50	125/145/170		15	60 0 3	μV
Long-Term Stability			0.3	0.7		0.1	0.5	$\mu V/C$ $\mu V/month$
INPUT BIAS CURRENT			1.0	2.5		0.5	1.0	nA
	$T_{min} - T_{max}$		2.0	4.0		1.0	2.0	nA
Average Drift			15	40		10	25	pA/°C
OFFSET CURRENT	$V_{CM} = 0V$		0.5	2.0		0.1	1.0	nA
Average Drift	I min - I max		2.0	60		1	25	pA/°C
MATCHINGCHARACTERISTICS								
Offset Voltage				80			30	μV
Officet Valence Drift	T _{min} -T _{max}			180			60	μV V/°C
Input Bias Current				4.0			2.0	nA
	T _{min} -T _{max}			5.0			5.0	nA
Common-Mode Rejection	тт	120	150		140	150		dB
Power Supply Rejection	I min-I max	115			120			dB
	T _{min} -T _{max}	110			120			dB
Channel Separation		130			130			dB
INPUT VOLTAGE NOISE	0.1 to 10Hz		0.23	0.6	Chr. El.	0.23	0.35	$\mu V p - p$
	f = 10Hz f = 100Hz		10.5		17.9 	10.3	12	nV/\sqrt{Hz}
	f = 1 kHz		9.6	11.0	an an	9.6	11.0	nV/\sqrt{Hz}
INPUT CURRENT NOISE	0.1Hz to 10Hz	1435	14	35		14	30	pA p-p
	f = 10Hz		0.32	9.9	and the second	0.32	0.8	pA/\sqrt{Hz}
	f = 100Hz	and the	0.12	0.2/		0.14	0.23	pA/\sqrt{Hz}
COMMON-MODE		ALCOLL		Side See				
Rejection Ratio	VOM + ± 18V	120	140	184 - 185 B	130	140		dB
	Tmin to Tmax	120	¥140		130	140		dB
OPEN LOOP GAIN	$V_{\odot} = \pm 10 V_{\odot}$	a di seconda di second Seconda di seconda di se	, with the sec.			12		N / N
	K _{LOAD} ≥2KW	3	13	No.	8	13		ν/μν ν/μν
	R _{LOAD} ≥1kΩ	3	13	```	8	13		V/μV
POWER SUPPLY								
Rejection Ratio	$V_S = +3V \text{ to } +18V$	110	130		120	130		dB
EDEQUENCY DESDONSE	I min to I max	110	130		120	130		
Closed Loop Bandwidth		0.5	0.9		0.5	0.9		MHz
Slew Rate		0.15	0.3		0.15	0.3		V/µs
INPUT RESISTANCE								
Differential Common Mode		20	60 200		50	200		MΩ
	P >10k0	12.5	14		12.5	14		
of the troublinde	$R_{LOAD} \ge 10 R_{M}$	12.5	13.0		12.5	13.0		$\pm \mathbf{v}$
	$R_{LOAD} \ge 1k\Omega$	12.0	12.5		12.0	12.5		±V
	$R_{LOAD} \ge 2k\Omega$	12.0	12.0		12.0	12.0		+ V
OPEN LOOPOUTPUT	I min to I max	12.0	13.0		12.0	15.0	·····	<u> </u>
Resistance			60			60		Ω
POWER SUPPLY								
Current, Quiescent			4.5	5.5		4.5	5.5	mA
Power Consumption	$V_s = \pm 15V$, No Lord		125	165		125	165	mW
	$V_S = \pm 3V$		12	18		135	185	mW
Operating Range		± 3	-	± 22	± 3	*	± 22	v
PACKAGE OPTIONS ¹								
Plastic (N-8)		AD708	BJN BIO/AO/	20	AD708	KN	TO	
TO-99(H-08A)		AD708	SIH/AH/	SH	AD708	KH/BH/	TH	
· · ·	L	L			1			ļ

NOTE

¹See Section 16 for package outline information

Specifications subject to change without notice

All min and max specifications are guaranteed. Specifications in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.

AD711

2

FEATURES

AC PERFORMANCE: Settles to $\pm 0.01\%$ in 1µs 16V/µs min Slew Rate (AD711J) 3MHz min Unity Gain Bandwidth (AD711J) DC PERFORMANCE: 0.25mV max Offset Voltage: (AD711C) 3µV/°C max Drift: (AD711C) 200V/mV min Open-Loop Gain (AD711K) 4µV p-p max Noise, 0.1Hz to 10Hz (AD711C) Available in Plastic Mini-DIP, Plastic SO, Hermetic Cerdip, and Hermetic Metal Can Packages MIL-STD-883B Parts Available Dual Version Available: AD712

AD711 CONNECTION DIAGRAMS

PRODUCT DESCRIPTION

The AD711 is a high-speed, precision monolithic operational amplifier offering high performance at very modest prices. Its very low offset voltage and offset voltage drift are the results of advanced laser wafer trimming technology. These performance benefits allow the user to easily upgrade existing designs that use older precision BiFETs and, in many cases, bipolar op amps.

The superior ac and dc performance of this op amp makes it suitable for active filter applications. With a slew rate of $16V/\mu s$ and a settling time of 1 μs to $\pm 0.01\%$, the AD711 is ideal as a buffer for 12-bit D/A and A/D Converters and as a high-speed integrator. The settling time is unmatched by any similar IC amplifier.

The combination of excellent noise performance and low input current also make the AD711 useful for photo diode preamps. Common-mode rejection of 88dB and open loop gain of 400V/mV ensure 12-bit performance even in high-speed unity gain buffer circuits.

The AD711 is pinned out in a standard op amp configuration and is available in seven performance grades. The AD711J and AD711K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD711A, AD711B and AD711C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD711S and AD711T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C. Extended reliability PLUS screening is available, specified over the commercial and industrial temperature ranges. PLUS screening includes 168-hour burn-in, as well as other environmental and physical tests.

The AD711 is available in an 8-pin plastic mini-DIP, 8-pin small outline, cerdip, or TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD711 offers excellent overall performance at very competitive prices.
- 2. Analog Devices' advanced processing technology and with 100% testing guarantees a low input offset voltage (0.25mV max, C grade, 2mV max, J grade). Input offset voltage is specified in the warmed-up condition. Analog Devices' laser wafer drift trimming process reduces input offset voltage drifts to $3\mu V/^{\circ}C$ max on the AD711C.
- 3. Along with precision dc performance, the AD711 offers excellent dynamic response. It settles to $\pm 0.01\%$ in 1µs and has a 100% tested minimum slew rate of 16V/µs. Thus this device is ideal for applications such as DAC and ADC buffers which require a combination of superior ac and dc performance.
- The AD711 has a guaranteed and tested maximum voltage noise of 4μV p-p, 0.1 to 10Hz (AD711C).
- Analog Devices' well-matched, ion-implanted JFETs ensure a guaranteed input bias current (at either input) of 25pA max (AD711C) and an input offset current of 10pA max (AD711C). Both input bias current and input offset current are guaranteed in the warmed-up condition.
- 6. Available in chip form.

SPECIFICATIONS (@ + 25°C and $V_s = \pm 15V$ dc, unless otherwise noted)

Model	A) Min	D711J/A/S Typ	Max	AI Min	0711К/В/Т Тур	Max	A Min	AD711C Typ	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset T _{min} to T _{max} vs. Temp. vs. Supply vs. Supply, T _{min} to T _{max} Long Term Offset Stability	76 76/76/ 76	0.3 7 95 15	2/1/1 3/2/2 20/20/ 20	80 80	0.2 5 100 15	0.5 1.0 10	86 86	0.1 2 110 15	0.25 0.45 3	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT ² Either Input, $V_{CM} = 0$ Either Input at T_{max} , $V_{CM} = 0/(70^{\circ}C/85^{\circ}C/125^{\circ}C)$		15	50 1.1/3.2/51		15	50 1.1/3.2/51		15	25 1.6	pA nA
Either Input, $V_{CM} = +10V$ Offset Current, $V_{CM} = 0$ Offset Current at T_{max}		20 10	100 25		20 5	100 25		20 5	50 10	pA pA
(10008501250) FREQUENCY RESPONSE Unity Gain, Snall Signal Full Power Response Slew Rate, Unity Gain Settling Time to 0.01% ³ Total Harmonic Distortion f=1kHz	3.0 16	4 200 20 1	1.2	3.4 18	4 200 20 1	1 2	3.4 18	4 200 20 1	1 2	nA MHz kHz V/μs μs
$\frac{R_L \ge 2k\Omega, V_O = 3VRMS}{INPUT IMPEDANCE}$		0.0003			0 0003			0 0003		%
Differential Common-Mode		$3 \times 10^{12} \ 5.5$ $3 \times 10^{12} \ 5.5$			$3 \times 10^{12} \ 5.5$ $3 \times 10^{12} \ 5.5$			$3 \times 10^{12} \ 5 5$ $3 \times 10^{12} \ 5 5$		Ω pF Ω pF
INPUT VOLTAGE RANGE Differential ⁴ Common-Mode Voltage Over Max Operating Range ⁵ Common-Mode Rejection Batio	-V _S +4V	±20 +14.5, -11.5	$+V_{S}-2V$	- V _S +4V	±20 +14.5, -11 5	$+V_{S}-2V$	- V _S + 4V	±20 +14.5, 11 5	$+\mathbf{v}_{s}-2\mathbf{v}$	V V
$\begin{split} V_{CM} &= \pm 10V \\ T_{min} \text{ to } T_{max} \\ V_{CM} &= \pm 11V \\ T_{min} \text{ to } T_{max} \end{split}$	76 76/76/76 70 70/70/ 70	88 84 84 80		80 80 76 74	88 84 84 80		86 86 76 74	94 90 90 84		dB dB dB dB
INPUT VOLTAGE NOISE Voltage 0.1Hz to 10Hz f = 10Hz f = 10Hz f = 1kHz f = 1kHz f = 10kHz		2 45 22 18 16			2 45 22 18 16			2 45 22 18 16	4.0	$ \begin{array}{c} \mu V p \text{-} p \\ n V / \sqrt{Hz} \end{array} $
INPUT CURRENT NOISE f = 1kHz		0.01			0.01			0.01		$pA/\sqrt{H_2}$
OPEN LOOP GAIN ⁶ $V_0 = \pm 10V, R_L \ge 2k\Omega$ $V_0 = \pm 10V, R_L \ge 2k\Omega$	150	400	:	200	400		200	400		V/mV
T_{min} to T_{max}	100/100/ 100			100			100			V/mV
OUTPUT CHARACTERISTICS Voltage ($a R_L \ge 2k\Omega$ Voltage ($a R_L \ge 2k\Omega$,	+13, -12.5	+ 13.9, - 13.3		+ 13, - 12.5	+ 13.9, - 13 3		+13, -12.5	+ 13.9, - 13 3		v
T _{mun} to T _{max} Short-Cırcuit Current	$\pm 12/\pm 12/\pm 12$	+ 13.8, - 13 1 25		±12	+ 13.8, - 13.1 25		±12	+13 8, 13.1 25		V mA
POWER SUPPLY										
Rated Performance Operating Range Quiescent Current	±4.5	±15 2.5	±18 3.4	±4.5	±15 25	±18 3.0	±4.5	±15 25	±18 2.8	V V mA
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Military (- 55°C to + 125°C)		AD711J AD711A AD711S			AD711K AD711B AD711T			AD711C		
PACKAGE OPTIONS ⁷ Plastic (N-8) SOIC (R-8) Cerdip (Q-8) TO-99 (H-08A)		AD711JN AD711JR AD711AQ, AD AD711AQ, AD	711SQ 711SH		AD711KN AD711KR AD711BQ, AD AD711BH, AD	711TQ 711TH		AD711CQ AD711CH		

١

NOTES

¹Input offset voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$ ²Bias current specifications are guaranteed maximum at either input after

5 minutes of operation at $T_A = +25^{\circ}$ C. For higher temperature, the current doubles every 10°C.

³Refer to Figure 29.

⁴Defined as voltage between inputs, such that neither exceeds ±10V from ground.

⁵Typically exceeding - 14.1V negative common-mode voltage on either input results in an output phase reversal

⁶Open Loop Gain is specified with V_{OS} both nulled and unnulled. ⁷See Section 16 for package outline information

Specifications subject to change without notice.

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

METALIZATION PHOTOGRAPH

Dimensions in inches and (mm).

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage ²
Output Short Circuit Duration Indefinite
Differential Input Voltage + V_S and - V_S
Storage Temperature Range Q, H65°C to +150°C
Storage Temperature Range N $\ldots \ldots \ldots -65^{\circ}$ C to $+125^{\circ}$ C
Operating Temperature Range
AD711J/K 0 to +70°C
AD711A/B/C

Lead Temperature Range (Soldering 60 seconds) 300°C

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²For supply voltages less than \pm 18V, the absolute maximum input voltage is equal to the supply voltage.

Typical Characteristics

Figure 1. Input Voltage Swing vs. Supply Voltage

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Input Bias Current vs. Common Mode Voltage

Figure 5. Input Bias Current vs. Temperature

Figure 6. Magnitude of Output Impedance vs. Frequency

Figure 8. Short Circuit Current Limit vs. Temperature

Figure 9. Unity Gain Bandwidth vs. Temperature

Typical Characteristics

Figure 10. Open Loop Gain and Phase vs. Frequency

Figure 12. Power Supply Rejection vs. Frequency

Figure 13. Common Mode Rejection vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

Figure 14. Large Signal Frequency Response

1000

100

10

25 SLEW RATE – V/µs 10 100k 10 100 11 10k FREQUENCY - Hz

Figure 17. Input Noise Voltage Spectral Density

Figure 15. Output Swing and Error vs. Settling Time

Figure 18. Slew Rate vs. Input Error Signal

Figure 19. Slew Rate vs. Temperature

Figure 20. T.H.D. Test Circuit

Figure 21. Offset Null Configurations

Figure 22a. Unity Gain Follower

Figure 23a. Unity Gain Inverter

Figure 22b. Unity Gain Follower Pulse Response (Large Signal)

Figure 23b. Unity Gain Inverter Pulse Response (Large Signal)

,

Figure 22c. Unity Gain Follower Pulse Response (Small Signal)

Figure 23c. Unity Gain Inverter Pulse Response (Small Signal)

OPTIMIZING SETTLING TIME

Most bipolar high-speed D/A converters have current outputs; therefore, for most applications, an external op amp is required for current-to-voltage conversion. The settling time of the converter/op amp combination depends on the settling time of the DAC and output amplifier. A good approximation is:

$$t_s \text{ Total} = \sqrt{(t_s \text{ DAC})^2 + (t_s \text{ AMP})^2}$$

The settling time of an op amp DAC buffer will vary with the noise gain of the circuit, the DAC output capacitance, and with the amount of external compensation capacitance across the DAC output scaling resistor.

Settling time for a bipolar DAC is typically 100 to 500ns. Previously, conventional op amps have required much longer settling times than have typical state-of-the-art DACs; therefore, the amplifier settling time has been the major limitation to a high-speed voltage-output D-to-A function. The introduction of the AD711/712 family of op amps with their 1 μ s (to ±0.01% of final value) settling time now permits the full high-speed capabilities of most modern DACs to be realized.

In addition to a significant improvement in settling time, the low offset voltage, low offset voltage drift, and high open-loop gain of the AD711 family assures 12-bit accuracy over the full operating temperature range.

The excellent high-speed performance of the AD711 is shown in the oscilloscope photos of Figure 25. Measurements were taken using a low input capacitance amplifier connected directly to the summing junction of the AD711 – both photos show the worst case situation: a full-scale input transition. The DAC's 4k Ω [$10k\Omega$ || $8k\Omega$ = 4.4k Ω] output impedence together with a 10k Ω feedback resistor produce an op amp noise gain of 3.25. The current output from the DAC produces a 10V step at the op amp output (0 to - 10V Figure 25a, -10V to 0V Figure 25b.)

Therefore, with an ideal op amp, settling to $\pm 1/2LSB (\pm 0.01\%)$ requires that 375μ V or less appears at the summing junction. This means that the error between the input and output (that voltage which appears at the AD711 summing junction) must be less than 375μ V. As shown in Figure 25, the total settling time for the AD711/AD565 combination is 1.2 microseconds.

Figure 24. ± 10V Voltage Output Bipolar DAC

OP AMP SETTLING TIME – A MATHEMATICAL MODEL

The design of the AD711 gives careful attention to optimizing individual circuit components; in addition, a careful tradeoff was made: the gain bandwidth product (4MHz) and slew rate (20V/ μ s) were chosen to be high enough to provide very fast settling time but not too high to cause a significant reduction in phase margin (and therefore stability). Thus designed, the AD711 settles to $\pm 0.01\%$, with a 10V output step, in under 1 μ s, while retaining the ability to drive a 250pF load capacitance when operating as a unity gain follower.

If an op amp is modeled as an ideal integrator with a unity gain crossover frequency of $\omega_0/2\pi$, Equation 1 will accurately describe the small signal behavior of the circuit of Figure 26a, consisting of an op amp connected as an I-to-V converter at the output of a bipolar or CMOS DAC. This equation would completely describe the output of the system if not for the op amp's finite slew rate and other nonlinear effects.

Equation 1.

$$\frac{V_{O}}{I_{IN}} = \frac{-R}{\frac{R(C_{f} + C_{X})}{\omega_{o}}s^{2} + \left(\frac{G_{N}}{\omega_{o}} + RC_{f}\right)s + 1}$$
where $\frac{\omega_{o}}{2\pi}$ = op amp's unity gain frequency
$$G_{N} = \text{"noise" gain of circuit}\left(1 + \frac{R}{R_{O}}\right)$$

This equation may then be solved for C_f : Equation 2.

$$C_{f} = \frac{2 - G_{N}}{R\omega_{o}} + \frac{2\sqrt{RC_{X}\omega_{o} + (1 - G_{N})}}{R\omega_{o}}$$

In these equations, capacitor C_x is the total capacitance appearing at the inverting terminal of the op amp. When modeling a DAC buffer application, the Norton equivalent circuit of Figure 26a can be used directly; capacitance C_x is the total capacitance of the output of the DAC plus the input capacitance of the op amp (since the two are in parallel)

Figure 26a. Simplified Model of the AD711 Used as a Current-Out DAC Buffer

When R_O and I_O are replaced with their Thevenin V_{IN} and R_{IN} equivalents, the general purpose inverting amplifier of Figure 26b is created. Note that when using this general model, capacitance C_X is EITHER the input capacitance of the op amp if a simple inverting op amp is being simulated OR it is the combined capacitance of the DAC output and the op amp input if the DAC buffer is being modeled.

Figure 26b. Simplified Model of the AD711 Used as an Inverter

In either case, the capacitance C_X causes the system to go from a one-pole to a two-pole response; this additional pole increases settling time by introducing peaking or ringing in the op amp output. Since the value of C_X can be estimated with reasonable accuracy, Equation 2 can be used to choose a small capacitor, C_F , to cancel the input pole and optimize amplifier response. Figure 27 is a graphical solution of Equation 2 for the AD711 with $R = 4k\Omega$.

Figure 27. Value of Capacitor C_F vs. Value of C_X

The photos of Figures 28a and 28b show the dynamic response of the AD711 in the settling test circuit of Figure 29.

The input of the settling time fixture is driven by a flat-top pulse generator. The error signal output from the false summing node of A1 is clamped, amplified by A2 and then clamped again. The error signal is thus clamped twice: once to prevent

Figure 28a. Settling Characteristics 0 to + 10V Step Upper Trace: Output of AD711 Under Test (5V/Div) Lower Trace: Amplified Error Voltage (0.01%/Div)

overloading amplifier A2 and then a second time to avoid overloading the oscilloscope preamp. The Tektronix oscilloscope preamp type 7A26 was carefully chosen because it does not overload with these input levels. Amplifier A2 needs to be a very high speed FET-input op amp; it provides a gain of 10, amplifying the error signal output of A1.

Figure 28b. Settling Characteristics 0 to – 10V Step Upper Trace: Output of AD711 Under Test (5V/Div) Lower Trace: Amplified Error Voltage (0.01%/Div)

Figure 29. Settling Time Test Circuit

GUARDING

The low input bias current (15pA) and low noise characteristics of the AD711 BiFET op amp make it suitable for electrometer applications such as photo diode preamplifiers and picoampere current-to-voltage converters. The use of a guarding technique such as that shown in Figure 30, in printed circuit board layout and construction is critical to minimize leakage currents. The guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on the printed circuit board. TO-99 (H) Package 3 6 7 6 7 6 7 7 7

Figure 30. Board Layout for Guarding Inputs

D/A CONVERTER APPLICATIONS

The AD711 is an excellent output amplifier for CMOS DACs. It can be used to perform both 2 quadrant and 4 quadrant operation. The output impedance of a DAC using an inverted R-2R ladder approaches R for codes containing many 1s, 3R for codes containing a single 1, and for codes containing all zero, the output impedance is infinite.

For example, the output resistance of the AD7545 will modulate between $11k\Omega$ and $33k\Omega$. Therefore, with the DAC's internal feedback resistance of $11k\Omega$, the noise gain will vary from 2 to 4/3. This changing noise gain modulates the effect of the input offset voltage of the amplifier, resulting in nonlinear DACamplifier performance.

The AD711K with guaranteed $500\mu V$ offset voltage minimizes this effect to achieve 12-bit performance.

Figures 31 and 32 show the AD711 and AD7545 (12-bit CMOS DAC) configured for unipolar binary (2-quadrant multiplication) or bipolar (4-quadrant multiplication) operation. Capacitor C1 provides phase compensation to reduce overshoot and ringing.

Figure 31. Unipolar Binary Operation

Figure 32. Bipolar Operation

R1 and R2 calibrate the zero offset and gain error of the DAC. Specific values for these resistors depend upon the grade of AD7545 and are shown below.

TRIM RESISTOR	JN/AQ/SD	KN/BQ/TD	LN/CQ/UD	GLN/GCQ/GUD
R1	500Ω	200Ω	100Ω	20Ω
R2	150Ω	68Ω	33Ω	6.8Ω

Table I. Recommended Trim Resistor Values vs. Grades of the AD7545 for $V_{DD} = +5V$

Figures 33a and 33b show the settling time characteristics of the AD711 when used as a DAC output buffer for the AD7545.

a. Full-Scale Positive Transition

b. Full-Scale Negative Transition

Figure 33. Settling Characteristics for AD711 with AD7545

NOISE CHARACTERISTICS

The random nature of noise, particularly in the I/F region, makes it difficult to specify in practical terms. At the same , time, designers of precision instrumentation require certain guaranteed maximum noise levels to realize the full accuracy of their equipment.

The AD711C grade is specified at a maximum level of $4.0\mu V$ p-p, in a 0.1 to 10Hz bandwidth. Each AD711C receives a 100% noise test for two 10-second intervals; devices with any excursion in excess of $4.0\mu V$ are rejected. The screened lot is then submitted to Quality Control for verification on an AQL basis.

All other grades of the AD711 are sample-tested on an AQL basis to a limit of $6\mu V$ p-p, 0.1 to 10Hz.

DRIVING THE ANALOG INPUT OF AN A/D CONVERTER

An op amp driving the analog input of an A/D converter, such as that shown in Figure 34, must be capable of maintaining a constant output voltage under dynamically changing load conditions. In successive-approximation converters, the input current is compared to a series of switched trial currents. The comparison point is diode clamped but may deviate several hundred millivolts resulting in high frequency modulation of A/D input current. The output impedance of a feedback amplifier is made artificially low by the loop gain. At high frequencies, where the loop gain is low, the amplifier output impedance can approach its open loop value. Most IC amplifiers exhibit a minimum open loop output impedance of 25Ω due to current limiting resistors. A few hundred microamps reflected from the change in converter

Figure 34. AD711 as ADC Unity Gain Buffer

a. Source Current = 2mA

b. Sink Current = 1mA

loading can introduce errors in instantaneous input voltage. If the A/D conversion speed is not excessive and the bandwidth of the amplifier is sufficient, the amplifier's output will return to the nominal value before the converter makes its comparison. However, many amplifiers have relatively narrow bandwidth vielding slow recovery from output transients. The AD711 is ideally suited to drive high speed A/D converters since it offers both wide bandwidth and high open-loop gain.

DRIVING A LARGE CAPACITIVE LOAD

2

The circuit in Figure 36 employs a 100Ω isolation resistor which enables the amplifier to drive capacitive loads exceeding 1500pF; the resistor effectively isolates the high frequency feedback from the load and stabilizes the circuit. Low frequency feedback is returned to the amplifier summing junction via the low pass filter formed by the 100 Ω series resistor and the load capacitance, CL. Figure 37 shows a typical transient response for this connection.

Figure 36. Circuit for Driving a Large Capacitive Load

Figure 37. Transient Response $R_L = 2k\Omega$, $C_L = 500pF$

ACTIVE FILTER APPLICATIONS

In active filter applications using op amps, the dc accuracy of the amplifier is critical to optimal filter performance. The amplifier's offset voltage and bias current contribute to output error. Offset voltage will be passed by the filter and may be amplified to produce excessive output offset. For low frequency applications requiring large value input resistors, bias currents flowing through these resistors will also generate an offset voltage.

In addition, at higher frequencies, an op amp's dynamics must be carefully considered. Here, slew rate, bandwidth, and open-loop gain play a major role in op amp selection. The slew rate must be fast as well as symmetrical to minimize distortion. The amplifier's bandwidth in conjunction with the filter's gain will dictate the frequency response of the filter.

The use of a high performance amplifier such as the AD711 will minimize both dc and ac errors in all active filter applications.

SECOND ORDER LOW PASS FILTER

Figure 38 depicts the AD711 configured as a second order Butterworth low pass filter. With the values as shown, the corner frequency will be 20kHz; however, the wide bandwidth of the AD711 permits a corner frequency as high as several hundred kilohertz. Equations for component selection are shown below.

 $R1 = R2 = user selected (typical values: 10k\Omega - 100k\Omega)$

C1 =
$$\frac{1.414}{(2\pi) (f_{cutoff}) (R1)}$$
 C2 = $\frac{0.707}{(2\pi) (f_{cutoff}) (R1)}$

Where C1 and C2 are in farads.

Figure 38. Second Order Low Pass Filter

9 POLE CHEBYCHEV FILTER

Figure 40 shows the AD711 and its dual counterpart, the AD712, as a 9 pole Chebychev filter using active frequency dependent negative resistors (FDNR). With a cutoff frequency of 50kHz and better than 90dB rejection, it may be used as an anti-aliasing filter for a 12-bit Data Acquisition System with 100kHz throughput.

As shown in Figure 40, the filter is comprised of four FDNRs

An important property of filters is their out-of-band rejection. The simple 20kHz low pass filter shown in Figure 38, might be used to condition a signal contaminated with clock pulses or sampling glitches which have considerable energy content at high frequencies.

The low output impedance and high bandwidth of the AD711 minimize high frequency feedthrough as shown in Figure 39.

The upper trace is that of another low cost BiFET op amp showing 17dB more feedthrough at 5MHz.

Figure 39.

(A, B, C, D) having values of 4.9395×10^{-15} and 5.9276×10^{-15} farad-seconds. Each FDNR active network provides a two-pole response; for a total of 8 poles. The 9th pole consists of a 0.001μ F capacitor and a $124k\Omega$ resistor at Pin 3 of amplifier A2. Figure 41 depicts the circuits for each FDNR with the proper selection of R. To achieve optimal performance, the 0.001μ F capacitors must be selected for 1% or better matching and all resistors should have 1% or better tolerance.

Figure 40. 9 Pole Chebychev Filter

Figure 41. FDNR for 9 Pole Chebychev Filter

Figure 42. High Frequency Response for 9 Pole Chebychev Filter

FEATURES

AD712

AD712 FUNCTIONAL BLOCK DIAGRAM

AC PERFORMANCE: Settles to $\pm 0.01\%$ in 1µs 16V/µs min Slew Rate (AD712J) 3MHz min Unity Gain Bandwidth (AD712J) DC PERFORMANCE: 0.30mV max Offset Voltage: (AD712C) 5µV/°C max Drift: (AD712C) 200V/mV min Open Loop Gain (AD712K) 4µV p-p max Noise, 0.1Hz to 10Hz (AD712C) Available in Plastic, Hermetic Cerdip, and Hermetic Metal Can Packages MIL-STD-883B Parts Available

Plastic Mini-DIP (N) Package and

Cerdip (Q) Package

PRODUCT DESCRIPTION

The AD712 is a high-speed, precision monolithic operational amplifier offering high performance at very modest prices. Its very low offset voltage and offset voltage drift are results of advanced laser wafer trimming technology. These performance benefits allow the user to easily upgrade existing designs that use older precision BiFETs and, in many cases, bipolar op amps.

The superior ac and dc performance of this op amp makes it suitable for active filter applications. With a slew rate of $16V/\mu s$ and a settling time of 1 μs to $\pm 0.01\%$, the AD712 is ideal as a buffer for 12-bit D/A and A/D Converters and as a high-speed integrator. The settling time is unmatched by any similar IC amplifier.

The combination of excellent noise performance and low input current also make the AD712 useful for photo diode preamps. Common-mode rejection of 88dB and open loop gain of 400V/mV ensure 12-bit performance even in high-speed unity gain buffer circuits.

The AD712 is pinned out in a standard op amp configuration and is available in seven performance grades. The AD712J and AD712K are rated over the commercial temperature range of 0 to +70°C. The AD712A, AD712B and AD712C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD712S and AD712T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C.

Extended reliability PLUS screening is available, specified over the commercial and industrial temperature ranges. PLUS screening includes 168-hour burn-in, as well as other environmental and physical tests.

The AD712 is available in an 8-pin plastic mini-DIP, cerdip, or TO-99 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD712 offers excellent overall performance at very competitive prices.
- 2. Analog Devices' advanced processing technology and with 100% testing guarantees a low input offset voltage (0.3mV max, C grade, 3mV max, J grade). Input offset voltage is specified in the warmed-up condition. Analog Devices' laser wafer drift trimming process reduces input offset voltage drifts to $5\mu V/^{\circ}C$ max on the AD712C.
- 3. Along with precision dc performance, the AD712 offers excellent dynamic response. It settles to $\pm 0.01\%$ in 1µs and has a 100% tested minimum slew rate of 16V/µs. Thus this device is ideal for applications such as DAC and ADC buffers which require a combination of superior ac and dc performance.
- The AD712 has a guaranteed and tested maximum voltage noise of 4μV p-p, 0.1 to 10Hz (AD712C).
- Analog Devices' well-matched, ion-implanted JFETs ensure a guaranteed input bias current (at either input) of 50pA max (AD712C) and an input offset current of 10pA max (AD712C). Both input bias current and input offset current are guaranteed in the warmed-up condition.
- 6. Available in chip form.

SPECIFICATIONS ($@ + 25^{\circ}$ C and V_s = $\pm 15V$ dc, unless otherwise noted)

Modei	1	AD712J/A/S		AL	712K/B/T		AI	0712C		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset T _{min} to T _{max} vs. Temp. vs. Supply vs. Supply, T _{min} to T _{max} Long-Term Offset Stability	76 76/76/76	0.3 7 95 15	3/1/1 4/2/2 20/20/20	80 80	0.2 7 100 15	1/0.7/0.7 2/1.5/1.5 10	86 86	0.1 3 110 15	0.30 0.60 5	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT ² Either Input, $V_{CM} = 0$ Euther Input at T	r	25	75		20	75		20	50	pA
$V_{CM} = 0$ (70°C/85°C/125°C) Either Input, $V_{CM} = +10V$ Offset Current, $V_{CM} = 0$ Offset Current at T_{max}		0.6/1.6/26 10	1.7/4.8/77 100 25		0.5/1.3/20 5	1.7/4.8/77 100 25		1.3 5	3.2 75 10	nA pA pA
(70°C/85°C/125°C)		0.3/0.7/11	0 6/1.6/26		0.1/0.3/5	0.6/1.6/26		0.3	0.7	nA
MATCHING CHARACTERISTICS ³ Input Offset Voltage T _{min} to T _{max} Input Offset Voltage vs. Temp Input Bias Current Crosstalk ⁴ (@ 1kHz @ 100kHz		120 90	3/1/1 4/2/2 20/20/20 25		120 90	1/0.7/0.7 2/1.5/1.5 10 25		120 90	0.3 0.6 5 10	mV mV μV/°C pA dB dB
FREQUENCY RESPONSE										
Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to 0.01% ⁵ Total Harmonic Distortion	3.0 16	4 200 20 1	1.2	3.4 18	4 200 20 1	1.2	3.4 18	4 200 20 1	1.2	MHz kHz V/µs µs
$f = 1 \text{ kHz}, R_L \ge 2 k \Omega, V_O = 3 V \text{ rms}$		0.0003			0.0003			0.0003		%
INPUT IMPEDANCE Differential Common Mode		$3 \times 10^{12} \ 5.5$ $3 \times 10^{12} \ 5.5$			$3 \times 10^{12} \ 5.5$ $3 \times 10^{12} \ 5.5$			$\begin{array}{c} 3 \times 10^{12} \ 5.5 \\ 3 \times 10^{12} \ 5.5 \end{array}$		Ω∥pF Ω∥pF
INPUT VOLTAGE RANGE Differential ⁶		±20			±20			±20		v
Common-Mode Voltage Over Max Operating Range ⁷ Common-Mode Rejection Ratio	-V _S +4V	+14.5, -11.5 ·	$+V_{S}-2V$	-V _s +4V +	14.5, -11.5	$+V_{S}-2V$	-V _S +4V	+ 14.5, - 11.5 +	- V _S - 2V	v
$V_{CM} = \pm 10V$ $T_{mun} \text{ to } T_{max}$ $V_{CM} = \pm 11V$ $T_{max} \text{ to } T_{max}$	76 76/76/76 70 70/70	88 84 84 80		80 80 76 74	88 84 84 80		86 86 76 74	94 90 90 84		dB dB dB dB
	70/70/70									
Voltage 0.1Hz to 10Hz f = 10Hz f = 10Hz f = 10Hz f = 1kHz f = 10kHz		2 45 22 18 16			2 45 22 18 16			2 45 22 18 16	4	μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz
INPUT CURRENT NOISE f = 1kHz		0.01			0.01			0.01		pA/ /Hz
$\begin{split} & OPEN LOOP GAIN \\ & V_O = \pm 10V, R_L {\geq} 2k\Omega \\ & T_{max}, T_m T_{max}, R_L {\geq} 2k\Omega \end{split}$	150 100/100/ 100	400		200 100	400		200 100	400		V/mV V/mV
OUTPUT CHARACTERISTICS Voltage $(\hat{e}^{t} R_{L} \ge 2k\Omega)$ T_{mun} to T_{max} Short Circuit Current	+13, -12.5 ±12, ±12, ±	+ 13.9, - 13. 12 + 13.8, - 13. 25	3 1	+ 13, - 12. ± 12	5 + 13.9, - 13. + 13.8, - 13. 25	3 1	+ 13, - 12 ± 12	.5 + 13.9, - 13. + 13.8, - 13. 25	3 1	V V mA
POWER SUPPLY Rated Performance Operating Range Quiescent Current,	±4.5	± 15	±18	±4.5	±15	± 18	. ±4.5	± 15	±18	v v
Both Amplifiers		5	6.8	ļ	5	6.0		5	5.6	mA
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Military (- 55°C to + 125°C)		AD712J AD712A AD712S			AD712K AD712B AD712T			AD712C		
PACKAGE OPTIONS ⁸ Plastic (N-8) Cerdıp (Q-8) TO-99 (H-08A)		AD712JN AD712AQ, 4 AD712AH, 4	AD712SQ AD712SH		AD712KN AD712BQ, AD712BH,	AD712TQ AD712TH		AD712CQ AD712CH		

NOTES

¹ Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$. ²Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$. For higher temperature, the current doubles every 10°C ³Matching is defined as the difference between parameters of the two amplifers ⁴Refer to Figure 21 ⁵Refer to Figure 29

⁶Defined as voltage between inputs, such that neither exceeds \pm 10V from ground. ⁷Typically exceeding – 14.1V negative common-mode voltage on either input results in an output phase reversal ⁸See Section 16 for package outline information.

Specifications subject to change without notice

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage ²
Output Short Circuit Duration Indefinite
Differential Input Voltage $+V_S$ and $-V_S$
Storage Temperature Range Q, H65°C to +150°C
Storage Temperature Range N65°C to +125°C
Operating Temperature Range
$AD712J/K$ 0 to $+70^{\circ}C$
AD712A/B/C
AD712S/T
Lead Temperature Range (Soldering 60 seconds) 300°C

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may

affect device reliability. ²For supply voltages less than \pm 18V, the absolute maximum input voltage is

equal to the supply voltage.

2

Typical Characteristics

SUPPLY VOLTAGE - ± VOLTS Figure 4. Quiescent Current vs. Supply Voltage

10

15

20

5

2

0

Figure 5. Input Bias Current vs. Temperature

FREQUENCY - Hz Figure 6. Magnitude of Output Impedance vs. Frequency

100

1M

10M

0 01

5 (

1k

10k

Figure 7. Input Bias Current vs. Common Mode Voltage

Figure 8. Short Circuit Current Limit vs. Temperature

Figure 9. Unity Gain Bandwidth vs.Temperature

Typical Characteristics

OPERATIONAL AMPLIFIERS 2-123

Figure 19. Slew Rate vs. Temperature

 ∇ Ż

Figure 21. Crosstalk Test Circuit

Figure 22a. Unity Gain Follower

Figure 22b. Unity Gain Follower Pulse Response (Large Signal)

Figure 22c. Unity Gain Follower Pulse Response (Small Signal)

Figure 23a. Unity Gain Inverter

Figure 23b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 23c. Unity Gain Inverter Pulse Response (Small Signal)

OPTIMIZING SETTLING TIME

Most bipolar high-speed D/A converters have curent outputs; therefore, for most applications, an external op-amp is required for current-to-voltage conversion. The settling time of the converter/op-amp combination depends on the settling time of the DAC and output amplifier. A good approximation is:

$$t_s \text{ Total} = \sqrt{(t_s \text{ DAC})^2 + (t_s \text{ AMP})^2}$$

The settling time of an op amp DAC buffer will vary with the noise gain of the circuit, the DAC output capacitance, and with the amount of external compensation capacitance across the DAC output scaling resistor.

Settling time for a bipolar DAC is typically 100 to 500ns. Previously, conventional op-amps have required much longer settling times than have typical state-of-the-art DACs; therefore, the amplifier settling time has been the major limitation to a high-speed voltage-output D-to-A function. The introduction of the AD711/712 family of op amps with their 1 μ s (to ±0.01% of final value) settling time now permits the full high-speed capabilities of most modern DACs to be realized.

In addition to a significant improvement in settling time, the low offset voltage, low offset voltage drift, and high open-loop gain of the AD711/AD712 family assures 12-bit accuracy over the full operating temperature range.

The excellent high-speed performance of the AD712 is shown in the oscilloscope photos of Figure 25. Measurements were taken using a low input capacitance amplifier connected directly to the summing junction of the AD712 – both photos show the worst case situation: a full-scale input transition. The DAC's $4k\Omega$ $[10k\Omega||8k\Omega = 4.4k\Omega]$ output impedance together with a $10k\Omega$ feedback resistor produce an op-amp noise gain of 3.25. The current output from the DAC produces a 10V step at the op-amp output (0 to -10V Figure 25a, -10V to 0V Figure 25b.)

Therefore, with an ideal op-amp, settling to $\pm 1/2$ LSB ($\pm 0.01\%$) requires that 375μ V or less appears at the summing junction. This means that the error between the input and output (that voltage which appears at the AD712 summing junction) must be less than 375μ V. As shown in Figure 25, the total settling time for the AD712/AD565 combination is 1.2 microseconds.

Figure 24. ± 10V Voltage Output Bipolar DAC

Figure 25. Settling Characteristics for AD712 with AD565A

OP-AMP SETTLING TIME – A MATHEMATICAL MODEL

The design of the AD712 gives careful attention to optimizing individual circuit components; in addition, a careful tradeoff was made: the gain bandwidth product (4MHz) and slew rate $(20V/\mu s)$ were chosen to be high enough to provide very fast settling time but not too high to cause a significant reduction in phase margin (and therefore stability). Thus designed, the AD712 settles to $\pm 0.01\%$, with a 10V output step, in under 1 μs , while retaining the ability to drive a 250pF load capacitance when operating as a unity gain follower.

If an op-amp is modeled as an ideal integrator with a unity gain crossover frequency of $\omega_0/2\pi$, Equation 1 will accurately describe the small signal behavior of the circuit of Figure 26a, consisting of an op-amp connected as an I-to-V converter at the output of a bipolar or CMOS DAC. This equation would completely describe the output of the system if not for the op-amp's finite slew rate and other nonlinear effects.

Equation 1.

$$\frac{V_{O}}{I_{IN}} = \frac{-R}{\frac{R(C_{f} + C_{X})}{\omega_{o}} s^{2} + \left(\frac{G_{N}}{\omega_{o}} + RC_{f}\right)s + I}$$
where $\frac{\omega_{o}}{2\pi}$ = op amp's unity gain frequency
 G_{N} = "noise" gain of circuit $\left(1 + \frac{R}{R_{O}}\right)$

This equation may then be solved for C_f : Equation 2.

$$C_{f} = \frac{2 - G_{N}}{R\omega_{o}} + \frac{2\sqrt{RC_{X}\omega_{o} + (1 - G_{N})}}{R\omega_{o}}$$

In these equations, capacitor C_x is the total capacitance appearing at the inverting terminal of the op-amp. When modeling a DAC buffer application, the Norton equivalent circuit of Figure 26a can be used directly; capacitance C_x is the total capacitance of the output of the DAC plus the input capacitance of the op-amp (since the two are in parallel).

Figure 26a. Simplified Model of the AD712 Used as a Current-Out DAC Buffer

When R_O and I_O are replaced with their Thevenin V_{IN} and R_{IN} equivalents, the general purpose inverting amplifier of Figure 26b is created. Note that when using this general model, capacitance C_X is EITHER the input capacitance of the op-amp if a simple inverting op-amp is being simulated OR it is the combined capacitance of the DAC output and the op-amp input if the DAC buffer is being modeled.

Figure 26b. Simplified Model of the AD712,Used as an Inverter

In either case, the capacitance C_x causes the system to go from a one-pole to a two-pole response; this additional pole increases settling time by introducing peaking or ringing in the op-amp output. Since the value of C_x can be estimated with reasonable accuracy, Equation 2 can be used to choose a small capacitor, C_F , to cancel the input pole and optimize amplifier response. Figure 27 is a graphical solution of Equation 2 for the AD712 with $R = 4k\Omega$.

Figure 27. Value of Capacitor C_F vs. Value of C_X

The photos of Figures 28a and 28b show the dynamic response of the AD712 in the settling test circuit of Figure 29.

The input of the settling time fixture is driven by a flat-top pulse generator. The error signal output from the false summing node of A1 is clamped, amplified by A2 and then clamped again. The error signal is thus clamped twice: once to prevent

Figure 28a. Settling Characteristics 0 to + 10V Step Upper Trace: Output of AD712 Under Test (5V/Div) Lower Trace: Amplified Error Voltage (0.01%/Div)

overloading amplifier A2 and then a second time to avoid overloading the oscilloscope preamp. The Tektronix oscilloscope preamp type 7A26 was carefully chosen because it does not overload with these input levels. Amplifier A2 needs to be a very high-speed, FET-input op amp; it provides a gain of 10, amplifying the error signal output of A1.

Figure 28b. Settling Characteristics 0 to – 10V Step Upper Trace: Output of AD712 Under Test (5V/Div) Lower Trace: Amplified Error Voltage (0.01%/Div)

Figure 29. Settling Time Test Circuit

GUARDING

The low input bias current (15pA) and low noise characteristics of the AD712 BiFET op amp make it suitable for electrometer applications such as photo diode preamplifiers and picoampere current-to-voltage converters. The use of a guarding technique such as that shown in Figure 30, in printed circuit board layout and construction is critical to minimize leakage currents. The guard ring is connected to a low impedance potential at the same level as the inputs. High impedance signal lines should not be extended for any unnecessary length on the printed circuit board.

Figure 30. Board Layout for Guarding Inputs

D/A CONVERTER APPLICATIONS

The AD712 is an excellent output amplifier for CMOS DACs. It can be used to perform both 2 quadrant and 4 quadrant operation. The output impedance of a DAC using an inverted R-2R ladder approaches R for codes containing many 1s, 3R for codes containing a single 1, and for codes containing all zero, the output impedance is infinite.

For example, the output resistance of the AD7545 will modulate between $11k\Omega$ and $33k\Omega$. Therefore, with the DAC's internal feedback resistance of $11k\Omega$, the noise gain will vary from 2 to 4/3. This changing noise gain modulates the effect of the input offset voltage of the amplifier, resulting in nonlinear DACamplifier performance.

The AD712K with guaranteed $700\mu V$ offset voltage minimizes this effect to achieve 12-bit performance.

Figures 31 and 32 show the AD712 and AD7545 (12-bit CMOS DAC) configured for unipolar binary (2 quadrant multiplication) or bipolar (4 quadrant multiplication) operation. Capacitor C1 provides phase compensation to reduce overshoot and ringing.

Figure 31. Unipolar Binary Operation

Figure 32. Bipolar Operation

R1 and R2 calibrate the zero offset and gain error of the DAC. Specific values for these resistors depend upon the grade of AD7545 and are shown below.

FRIM RESISTOR	JN/AQ/SD	KN/BQ/TD	LN/CQ/UD	GLN/GCQ/GUD
R1	500Ω	200Ω	100Ω	20Ω
R2	150Ω	68Ω	33Ω	6.8Ω

Table I. Recommended Trim Resistor Values vs. Grades of the AD7545 for $V_{DD} = +5V$

Figures 33a and 33b show the settling time characteristics of the AD712 when used as a DAC output buffer for the AD7545.

a. Full-Scale Positive Transition

b. Full-Scale Negative Transition Figure 33. Settling Characteristics for AD712 with AD7545

NOISE CHARACTERISTICS

The random nature of noise, particularly in the I/F region, makes it difficult to specify in practical terms. At the same time, designers of precision instrumentation require certain guaranteed maximum noise levels to realize the full accuracy of their equipment.

The AD712C grade is specified at a maximum level of $4.0\mu V$ p-p, in a 0.1 to 10Hz bandwidth. Each AD712C receives a 100% noise test for two 10-second intervals; devices with any excursion in excess of $4.0\mu V$ are rejected. The screened lot is then submitted to Quality Control for verification on an AQL basis.

All other grades of the AD712 are sample-tested on an AQL basis to a limit of $6\mu V$ p-p, 0.1 to 10Hz.

DRIVING THE ANALOG INPUT OF AN A/D CONVERTER

An op amp driving the analog input of an A/D converter, such as that shown in Figure 34, must be capable of maintaining a constant output voltage under dynamically-changing load conditions. In successive-approximation converters, the input current is compared to a series of switched trial currents. The comparison point is diode clamped but may deviate several hundred millivolts resulting in high frequency modulation of A/D input current. The output impedance of a feedback amplifier is made artificially low by the loop gain. At high frequencies, where the loop gain is low, the amplifier output impedance can approach its open loop value. Most IC amplifiers exhibit a minimum open loop output impedance of 25Ω due to current limiting resistors. A few hundred microamps reflected from the change in converter

Figure 34. AD712 as ADC Unity Gain Buffer

b. Sink Current = 1mA

loading can introduce errors in instantaneous input voltage. If the A/D conversion speed is not excessive and the bandwidth of the amplifier is sufficient, the amplifier's output will return to the nominal value before the converter makes its comparison. However, many amplifiers have relatively narrow bandwidth yielding slow recovery from output transients. The AD712 is ideally suited to drive high-speed A/D converters since it offers both wide bandwidth and high open-loop gain.

DRIVING A LARGE CAPACITIVE LOAD

The circuit in Figure 36 employs a 100 Ω isolation resistor which enables the amplifier to drive capacitive loads exceeding 1500pF; the resistor effectively isolates the high frequency feedback from the load and stabilizes the circuit. Low frequency feedback is returned to the amplifier summing junction via the low pass filter formed by the 100 Ω series resistor and the load capacitance, C_L . Figure 37 shows a typical transient response for this connection.

Figure 36. Circuit for Driving a Large Capacitive Load

Figure 37. Transient Response $R_L = 2k\Omega$, $C_L = 500pF$

ACTIVE FILTER APPLICATIONS

In active filter applications using op amps, the d.c. accuracy of the amplifier is critical to optimal filter performance. The amplifier's offset voltage and bias current contribute to output error. Offset voltage will be passed by the filter and may be amplified to produce excessive output offset. For low frequency applications requiring large value input resistors, bias currents flowing through these resistors will also generate an offset voltage.

In addition, at higher frequencies, an op-amp's dynamics must be carefully considered. Here, slew rate, bandwidth, and open-loop gain play a major role in op-amp selection. The slew rate must be fast as well as symmetrical to minimize distortion. The amplifier's bandwidth in conjunction with the filter's gain will dictate the frequency response of the filter.

The use of a high performance amplifier such as the AD712 will minimize both dc and ac errors in all active filter applications.

2

SECOND ORDER LOW PASS FILTER

Figure 38 depicts the AD712 configured as a second order Butterworth low pass filter. With the values as shown, the corner frequency will be 20kHz; however, the wide bandwidth of the AD712 permits a corner frequency as high as several hundred kilohertz. Equations for component selection are shown below.

 $R1 = R2 = user selected (typical values: 10k\Omega - 100k\Omega)$

$$C1 \text{ (in farads)} = \frac{1.414}{(2\pi) (f_{cutoff}) (R1)} \quad C2 = \frac{0.707}{(2\pi) (f_{cutoff}) (R1)}$$

Figure 38. Second Order Low Pass Filter

9 POLE CHEBYCHEV FILTER

Figure 40 shows the AD712 and its single counterpart, the AD711, as a 9 pole Chebychev filter using active frequency dependent negative resistors (FDNR). With a cutoff frequency of 50kHz and better than 90dB rejection, it may be used as an anti-aliasing filter for a 12-bit Data Acquisition System with 100kHz throughput.

As shown in Figure 40, the filter is comprised of four FDNRs

An important property of filters is their out-of-band rejection. The simple 20kHz low pass filter shown in Figure 38, might be used to condition a signal contaminated with clock pulses or sampling glitches which have considerable energy content at high frequencies.

The low output impedance and high bandwidth of the AD712 minimize high frequency feedthrough as shown in Figure 39.

The upper trace is that of another low-cost BiFET op amp showing 17dB more feedthrough at 5MHz.

(A, B, C, D) having values of 4.9395×10^{-15} and 5.9276×10^{-15} farad-seconds. Each FDNR active network provides a two-pole response; for a total of 8 poles. The 9th pole consists of a 0.001μ F capacitor and a $124k\Omega$ resistor at Pin 3 of amplifier A2. Figure 41 depicts the circuits for each FDNR with the proper selection of R. To achieve optimal performance, the 0.001μ F capacitors must be selected for 1% or better matching and all resistors should have 1% or better tolerance.

Figure 40. 9 Pole Chebychev Filter

Figure 41. FDNR for 9 Pole Chebychev Filter

Figure 42. High Frequency Response for 9 Pole Chebychev Filter

AD713

FEATURES

AC PERFORMANCE Settles to $\pm 0.01\%$ in 1µs 16V/µs min Slew Rate 3MHz min Unity Gain Bandwidth

DC PERFORMANCE

0.25mV max Offset Voltage 10μV/°C max Drift 200V/mV min Open Loop Gain 4μV p-p max Noise, 0.1Hz to 10Hz Single Version Available: AD711, Dual: AD712 Available In Plastic and Hermetic Cerdip Packages MIL-STD-883B Parts Available

PRODUCT DESCRIPTION

The AD713 is comprised of four high-speed precision, FET input operational amplifiers on one monolithic die. The AD713 offers superior ac and dc performance in a low cost quid or amp. These performance benefits allow the user to easily upgrade existing designs that use older precision BiFETs, while still allowing the cost and board space savings of a quad op amp.

The combination of Analog Devices' advanced processing echnology, laser-wafer drift trimming and well-matched ion-implanted JFETs provide outstanding dc precision. Input offset voltage (0.25mV, C Grade), input bias current 100pA, C Grade), and input offset current (15pA, C Grade) are specified in the warnedup condition and are 100% tested. In addition, the AD713 has a guaranteed and tested max voltage noise of 4µV p-p, 0.1Hz to 10Hz (AD713C).

Along with dc precision, the AD713 offers exceptional dynamic response. It settles to 0.01% in 1µs and has a 100% tested minimum slew rate of $18V/\mu s$ (AD713B).

The AD713 is pinned out in a standard quad op amp configuration and is available in seven performance grades. The AD713J and AD713K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD713A, AD713B and AD713C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD713S and AD713T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C. The AD713 is available in an 14-pin plastic DIP or 14-pin cerdip.

AD713 FUNCTIONAL BLOCK DIAGRAM Plastic DIP (N) Package

and

Cerdip (Q) Package OUTPUT OUTPUT 14 12 -- 1N 12 + IN + IN 11 -Vs AD713 + IN 10 9 - IN OUTPUT 8 TOP VIEW

Extended reliability PLUS screening is available, specified over the commercial and industrial temperature ranges. PLUS screening includes 168-hour burn-in, as well as other environmental and physical tests.

PRODUCT HIGHLIGHTS

- I. <u>Active Filters</u>: The superior ac and dc performance of this op amp make it well-suited for active filter applications.
- 2. <u>Buffers</u>: With a slew rate of $16V/\mu s$ and a settling time of $1\mu s$ to 0.01%, the AD713 is ideal as a buffer for A/D and quad D/A converters.
- 3. <u>Precision Data Acquisition Systems</u>: Common-mode rejection of 88dB and open-loop gain of 400V/mV ensure 12-bit accuracy even in high-speed data acquisition circuits.
- 4. <u>Photodiode Preamps</u>: The combination of excellent noise performance and low input current makes the AD713 useful as a photodiode preamp.
- 5. The AD713 is an enchanced replacement for the TL074, LF414 and other quad op amps in applications where precision and demanding ac performance are essential.

SPECIFICATIONS ($@ +25^{\circ}C$ and $V_s = \pm 15V$ dc, unless otherwise noted)

Model	A Min	D713J/A/S Typ	Max	/ Min	AD713K/B/T Typ	Max	A Min	D713С Тур	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset T _{min} to T _{max} vs. Temp vs. Supply vs. Supply, T _{min} to T _{max} Long-Term Offset Stability	76 76/76/76	0.3 16 95 15	2.0 3.5/3.5/3.5 30/30/30	80 80	0.25 12 100 15	0.5 1.5 20	86 86	0 1 5 110 15	0.25 0.75 10	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT ² Either Input, $V_{CM} = 0$ Either Input at T_{max} ,		40	150		40	150		40	100	рА
$V_{CM} = 0$ (70°C/85°C/125°C) Ether Input, $V_{CM} = + 10V$ Offset Current, $V_{CM} = 0$ Offset Current at T _{max} (70°C/85°C/125°C)	1	50 10	3 4/9 6/154 200 35		50 5	3.4/9.6/154 200 35		50 5	6.4 150 15	nA pA pA
(NO Casi CHARACTERISTICS ³ Input Offset Voltage Input Offset Voltage T _{min} to T _{max} Input Offset Voltage vs. Temp Input Bass Current Crosstalk (# 1kHz (# 100kHz)		120 90	1 2 40 25	4	120 90	1/0 7/0.7 2/1 5/1 5 25 25		120 90	0 3 0 6 15 10	mV mV μV/°C pA dB dB
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to 0.01% Total Harmonic Distortion f = 1 kHz, R ₁ ≥2k0, V ₀ = 3V rms	3.4 16	4 200 20 1	1.2	3,4 15	4 200 20 1 0:0003	1 2	34 18	4 200 20 1 0 0003	1.2	MHz kHz V/μs μs
INPUT IMPEDANCE Differential Common Mode		3×10^{12} 5 5 3×10^{12} 5 5	a lank 1	11	3×10^{12} 5.5 3×10^{12} 5.5	N .		$3 \times 10^{12} \ 5.5$ $3 \times 10^{12} \ 5.5$		Ω∥pF Ω∥pF
$\label{eq:intermediate} \begin{split} & \text{INPUT VOLTAGE RANGE} \\ & \text{Differential}^4 \\ & \text{Common-Mode Voltage} \\ & \text{Over Max Operating Range}^5 \\ & \text{Common-Mode Rejection Ratio} \\ & \text{V}_{CM} = \pm 10 \text{V} \\ & \text{T}_{min} \text{ to } \text{T}_{max} \\ & \text{V}_{CM} = \pm 11 \text{V} \\ & \text{T}_{min} \text{ to } \text{T}_{max} \\ \end{split}$	- 11 78 76/76/76 72 70/70/70	± 20 + 14 5, 11 88 84 84 80	+13	-11 83 80 78 74	±20 ±14.5, -11.5 88 84 84 80	+13	- 11 86 86 80 76	± 20 + 14 5, - 11 5 94 90 90 84	+13	V V V dB dB dB dB
INPUT VOLTAGE NOISE Voltage 0. HZ to 10Hz f = 10Hz f = 100Hz f = 10Hz f = 10Hz f = 10Hz		2 45 22 18 16			2 45 22 18 16			2 45 22 18 16	4	$\mu V p-p nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz}$
INPUT CURRENT NOISE f = 1kHz		0 01			0 01			0.01		pA/\sqrt{Hz}
$\begin{array}{l} \text{OPEN LOOP GAIN}^6 \\ V_{\Omega} = \pm 10V, R_I \geq 2k\Omega \\ T_{min} \text{ to } T_{max}, R_I \geq 2k\Omega \end{array}$	150 100/100/100	400		200 100	400		200 150	400		V/mV V/mV
OUTPUT CHARACTERISTICS Voltage ($\alpha R_1 \ge 2k\Omega$ Tmin to Tmax Short-Circuit Current	+ 13, - 12.5 ± 12/ ± 12/ ± 12	+ 13.9, - 13 + 13.8, - 13 25	3	+13, -12.5 ±12	+ 13.9, - 13 3 + 13.8, - 13 1 25	,	+13, -12.5 ±12	+ 13.9, - 13 3 + 13 8, - 13 1 25		V V mA
POWER SUPPLY Rated Performance Operating Range Quiescent Current	±4.5	± 15 10 0	±18 13.5	±4.5	±15 10.0	±18 12.0	±4.5	± 15 10 0	±18 11.2	V V mA
TEMPERATURE RANGE Operatung, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Military (- 55°C to + 125°C)		AD713J AD713A AD713S		,	AD713K AD713B AD713T			AD713C	:	
PACKAGE OPTIONS ⁷ Plastic (N-14) Cerdip (Q-14)		AD713JN AD713AQ, Al	D713SQ		AD713KN AD713BQ, AD	9713TQ		AD713CQ		
NOTES Input Offset Voltage specifications are ga "Bas Current specifications are guarante For higher temperature, the current dot "Matching is defined as the difference be "Defined as voltage between inputs, such "Typically exceeding – 14 / N negative co- "Open loop gain is specified with Vo ₅ nt "See Section 16 for package outline infor Specifications subject to change without	quaranteed after 5 min ed maximum at eithe ables every 10°C tween parameters of t hat neither exceeds ommon-mode voltage ulled and unnulled. mation.	nutes of operatio r input after 5 m the two amplifie ± 10V from gro on either input	n at $T_A = +25$ inutes of opera rs. und results in an ou	^o C tion at $T_A = +25$ itput phase revers	°C al					

2

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Precision Input Characteristics

High Output Capability

 T_{min} to T_{max} V_o = ±10V min, 1k Ω load (J, S)

Low Vos: 0.5mV max (L)

Low V_{0s} Drift: $5\mu V/^{\circ}C$ max (L) Low I_b: 50nA max (L) Low I_{0s}: 5nA max (L)

High CMRR: 90dB min (K, L)

 $A_{ol} = 25,000 \text{ min}, 1 \text{k}\Omega \text{ load } (J. S)$

FEATURES

Low Cost High Accuracy IC Op Amps

AD741 SERIES

AD741 SERIES FUNCTIONAL DIAGRAMS

TO-99 NC OFFSET NULL 1 INVERTING INPUT NONINVERTING INPUT OFFSET NULL OFFSET NULL OFFSET NULL OFFSET NULL OFFSET NULL 1 OFFSET NULL 2 OFFSET NU

8-Pin Mini-DIP

GENERAL DESCRIPTION

The Analog Devices AD741 series are high performance monolithic operational amplifiers. All the devices feature full short circuit protection and internal compensation.

The Analog Devices AD741J, AD741K, AD741L and AD741S are specially tested and selected versions of the standard AD741 operational amplifier. Improved processing and additional electrical testing guarantee the user precision performance at a very low cost. The AD741J, K and L substantially increase overall accuracy over the standard AD741C by providing maximum limits on offset voltage drift and significantly reducing the errors due to offset voltage, bias current, offset current, voltage gain, power supply rejection, and common mode rejection. For example, the AD741L features maximum offset voltage drift of $5\mu V/^{\circ}C$, offset voltage of 0.5mV max, offset current of 5nA max, bias current of 50nA max, and a CMRR of 90dB min. The AD741S offers guaranteed performance over the extended temperature range of -55°C to +125°C, with max offset voltage drift of $15\mu V/^{\circ}C$, max offset voltage of 4mV, max offset current of 25nA, and a minimum CMRR of 80dB.

HIGH OUTPUT CAPABILITY

Both the AD741J and AD741S offer the user the additional advantages of high guaranteed output current and gain at low values of load impedance. The AD741J guarantees a minimum gain of 25,000 swinging ±10V into a 1k Ω load from 0 to +70°C. The AD741S guarantees a minimum gain of 25,000 swinging ±10V into a 1k Ω load from -55°C to +125°C.

All devices feature full short circuit protection, high gain, high common mode range, and internal compensation. The AD741J, K and L are specified for operation from 0 to $+70^{\circ}$ C, and are available in both the TO-99 and mini-DIP packages. The AD741S is specified for operation from -55° C to $+125^{\circ}$ C, and is available in the TO-99 package.
SPECIFICATIONS (typical @ +25°C and ±15V dc, unless otherwise specified)

	r	4D741C		<u>, </u>	40741		1	407411		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
$\begin{array}{l} \textbf{OPEN LOOP GAIN} \\ \textbf{R}_L = 1k\Omega, \textbf{V}_0 = \pm 10 \textbf{V} \\ \textbf{R}_L = 2k\Omega, \textbf{V}_0 = \pm 10 \textbf{V} \\ \textbf{T}_A = \min \text{ to max } \textbf{R}_L = 2k\Omega \end{array}$	20,000 15,000	200,000		50,000 25,000	200,000		50,000 25,000	200,000		V/V V/V V/V
$\begin{array}{l} OUTPUT \ CHARACTERISTICS\\ Voltage @ R_L = 1k\Omega, \ T_A = min \ to \ max\\ Voltage @ R_L = 2k\Omega, \ T_A = min \ to \ max\\ Short \ Circuit \ Current \end{array}$	±10	±13 25		±10	±13 25	,	±10	±13 25		V V mA
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate Transient Response (Unity Gain) Rise Time $C_L \leq 10V$ p-p Overshoort		1 10 0.5 0.3			1 10 0.5 0.3			1 10 0.5 0.3		MHz kHz V/μs μs
INPUT OFFSET VOLTAGE Initial, $R_S \le 10 \Omega$, Adj. to Zero $T_A = min$ to max Average vs. Temperature (Untrimmed) vs. Supply, $T_A = min$ to max		1.0 1.0	6.0 7.5		1.0 1.0	5.0 6.0		1.0 30	3.0 4.0 20 100	% mV μV/°C μV/V
INPUT OFFSET CURRENT Initial T _A = min to max Average vs. Temperature		20 40	200 300		20 85	200 500		5 0,1	50 100	nA nA nA/°C
INPUT BIAS CURRENT Initial T _A = min to max Average vs. Temperature		80 120	500 800		80 300	500 1,500		40 0.6	200 400	nA nA nA/°C
INPUT IMPEDANCE DIFFERENTIAL	0.3	2.0		0.3	2.0			1.0		мΩ
INPUT VOLTAGE RANGE ¹ Differential, max Safe Common Mode, max Safe Common Mode Rejection, $R_S = \le 10 k\Omega$. $T_a = min to max$,	±12	±13		±12	±13			±15	±30	v v
$V_{IN} = \pm 12V$	70	90		70	90		_ 80	90		dB
POWER SUPPLY Rated Performance Operating Power Supply Rejection Ratio Quiescent Current Power Consumption	, I	±15 30 1.7 50	150 2.8 85		±15 30 1.7 50	150 2.8 85	±5	±15 2.2 50	±18 3.3 85	V V μV/V mA mW
$T_A = min$ $T_A = max$		• •			60 45	100 75				mW
TEMPERATURE RANGE Operating Rated Performance Storage	0 -65	<u> </u>	+70 +150	-55 -65		+125 +150	0 -65	,	+70 +150	°C °C

NOTES ¹ For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage. Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

۹

Standard Nulling Offset Circuit

		AD741K			AD741L			AD741S		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
$\begin{array}{l} \text{OPEN LOOP GAIN} \\ R_L = 1k\Omega, V_O = \pm 10V \\ R_L = 2k\Omega, V_O = \pm 10V \\ T_A = \min \text{ to max } R_L = 2k\Omega \end{array}$	50,000 25,000	200,000		50,000 25,000	200,000		50,000 25,000	200,000		V/V V/V V/V
OUTPUT CHARACTERISTICS Voltage @ $R_L = 1k\Omega$, $T_A = min$ to max Voltage @ $R_L = 2k\Omega$, $T_A = min$ to max Short Circuit Current	±10	±13 25		±10	±13 25		±10	±13 25		V V mA
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate Transient Respone (Unity Gain) Rise Time Overshoot		1 10 0.5 0.3 5.0			1 10 0.5 0.3 5.0			1 10 0.5 0.3 5.0		MHz kHz V/μs μs %
$\begin{array}{l} \mbox{INPUT OFFSET VOLTAGE} \\ \mbox{Initial, } R_S \leqslant 10 k \Omega, \mbox{ Ady, to Zero} \\ T_A = \min \mbox{ to max} \\ \mbox{Average vs. Temperature (Untrimmed)} \\ \mbox{ vs. Supply, } T_A = \min \mbox{ to max} \end{array}$		0.5 6.0 5	2.0 3.0 15.0 15.0		0.2 2.0 5	0.5 1.0 5.0 15.0		1.0 6.0 30	2 4 15.0 100	mV mV μV/°C μV/V
INPUT OFFSET CURRENT Initial T _A = min to max Average vs. Temperature		2 0.02	10 15 0.2		2 0.02	5 10 0.1		2 0.1	10 25 0.25	nA nA nA/°C
INPUT BIAS CURRENT Initial T _A = min to max Average vs. Temperature		30 0.6	75 120 1.5		30 0.6	50 100 1.0		30 0.6	75 250 2.0	nA nA nA/°C
INPUT IMPEDANCE DIFFERENTIAL		2			2			2		MΩ
$\begin{array}{l} \mbox{INPUT VOLTAGE RANGE}^1 \\ \mbox{Differential, max Safe} \\ \mbox{Common Mode max Safe} \\ \mbox{Common Mode Rejection,} \\ \mbox{R}_S \leqslant 10 \mbox{k} 2, \mbox{T}_A = \mbox{min to max} \\ \mbox{V}_{IN} = \pm 12 \mbox{V} \end{array}$	90	±30 ±15		90	±30 ±15		90	±30 ±15		V V dB
POWER SUPPLY Rated Performance Operating Power Supply Rejection Ratio Quescent Current Power Consumption $T_A = min$ $T_A = max$	±5	±15 1.7 50	±22 2.8 85	±5	±15 1.7 50	±22 2.8 85	±5	±15 2.0 50 60 75	±22 2.8 85 100 115	V V μV/V mA mW mW mW
TEMPERATURE RANGE Operating Rated Performance Storage	0 -65		+70 +150	0 -65		+70 +150	-55 -65		+125 +150	°c °c

NOTES ¹ For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test Results from those tests are used to calculate our-going quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production. units

ORDERING GUIDE

Model	Temperature Range	Package Options*	Initial Off- Set Voltage
AD741CN	0 to +70°C	Mini-DIP (N-8)	6.0mV
AD741CH	0 to +70°C	TO-99 (H-08A)	6.0mV
AD741JN	0 to +70°C	Mini-DIP (N-8)	3.0mV
AD741JH	0 to +70°C	TO-99 (H-08A)	3.0mV
AD741KN	0 to +70°C	Mini-DIP (N-8)	2.0mV
AD741KH	0 to +70°C	TO-99 (H-08A)	2.0mV
AD741LN	0 to +70°C	Mini-DIP (N-8)	0.5mV
AD741LH	0 to +70°C	TO-99 (H-08A)	0.5mV
AD741H	-55°C to +125°C	TO-99 (H-08A)	5.0mV
AD741SH	-55°C to +125°C	TO-99 (H-08A)	2.0mV

*See Section 16 for package outline information.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings	AD741, J, K, L, S	AD741C
Supply Voltage	±22V	±18V
Internal Power Dissipation	500mW ¹	500mW
Differential Input Voltage	±30V	±30V
Input Voltage	±15V	±15V
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C
Lead Temperature (soldering, 60 seconds)	300°C	300°C
Output Short Circuit Duration	1 Indefinite ²	Indefinite
NOTES		

¹ Rating applies for case temperature to +125°C. Derate TO-99 linearity at 6.5mW²C for ambient temperatures above +70°C. ² Rating applies for shorts to ground or either supply at case temperatures to +125°C or ambient temperatures to +75°C.

2

Typical Performance Curves

Figure 1. Offset Current vs. Temperature

Figure 4. Open Loop Phase Response vs. Frequency

Figure 7. Input Noise Voltage vs. Frequency

Figure 10. Output Voltage Swing vs. Supply Voltage

Figure 2. Bias Current vs. Temperature

Figure 5. Common Mode Rejection vs. Frequency

Figure 8. Input Noise Current vs. Frequency

Figure 11. Output Voltage Swing vs. Load Resistance

Figure 3. Open Loop Gain vs. Frequency

Figure 6. Broad Band Noise vs. Source Resistance

Figure 9. Voltage Follower Large Signal Pulse Response

Figure 12. Output Voltage Swing vs. Frequency

AD744

FEATURES

AC PERFORMANCE 500ns Settling to 0.01% for 10V Step 1.5μs Settling to 0.0025% for 10V Step 75V/μs Slew Rate 0.0003% Total Harmonic Distortion (THD) 13MHz Gain Bandwidth – Internal Compensation >200MHz Gain Bandwidth (G = 1000) – External Decompensation >1000pF Capacitive Load Drive Capability with 10V/μs Slew Rate – External Compensation

DC PERFORMANCE

0.25mV max Offset Voltage (AD744C) 3μV/°C max Drift (AD744C) 250V/mV min Open-Loop Gain (AD744B) 4μV p-p max Noise, 0.1Hz to 10Hz (AD744C) Available in Plastic Mini-DIP, Hermetic Cerdip and Hermetic Metal Can Packages MIL-STD-883B Processing Available

APPLICATIONS

Output Buffers for 12-Bit, 14-Bit and 16-Bit DACs, ADC Buffers, Cable Drivers, Wideband Preamplifiers and Active Filters

PRODUCT DESCRIPTION

The AD744 is a fast-settling, precision, FET input, monolithic operational amplifier. It offers the excellent dc characteristics of the AD711 BiFET family with enhanced settling, slew rate, and bandwidth. The AD744 also offers the option of using custom compensation to achieve exceptional capacitive load drive capability.

The single-pole response of the AD744 provides fast settling: 500ns to 0.01%. This feature combined with its high dc precision, makes it suitable for use as a buffer amplifier for 12-bit, 14-bit or 16-bit DACs and ADCs. Furthermore, the AD744's low total harmonic distortion (THD) level of 0.0003% and gain bandwidth product of 13MHz make it an ideal amplifier for demanding audio applications. It is also an excellent choice for use in active filters in 12-bit, 14-bit and 16-bit data acquisition systems.

The AD744 is internally compensated for stable operation as a unity gain inverter or as a noninverting amplifier with a gain of two or greater. External compensation may be applied to the AD744 for stable operation as a unity gain follower. External compensation also allows the AD744 to drive 1000pF capacitive loads, slewing at $10V/\mu$ s with full stability. Alternatively, external decompensation may be used to increase the gain bandwidth of the AD744 to over 200MHz at high gains. This makes the AD744 ideal for use as ac preamps in digital signal processing (DSP) front ends.

The AD744 is available in seven performance grades. The AD744J and AD744K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD744A, AD744B and AD744C are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD744S and AD744T are rated over the military temperature

Plastic Mini-DIP (N) Package and

range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C.

Extended reliability PLUS screening is available, specified over the commercial and industrial temperature ranges. PLUS screening includes a 168-hour burn-in, as well as other environmental and physical tests.

The AD744 is available in an 8-pin plastic mini-DIP, 8-pin cerdip, or TO-99 metal can.

PRODUCT HIGHLIGHTS

- The AD744 is a high-speed BiFET op amp that offers excellent performance at competitive prices. It outperforms the OP42, OPA606, LF356 and LF400.
- The AD744 offers exceptional dynamic response. It settles to 0.01% in 500ns and has a 100% tested minimum slew rate of 50V/µs (AD744B).
- 3. The combination of Analog Devices' advanced processing technology, laser wafer drift trimming and well-matched ionimplanted JFETs provide outstanding dc precision. Input offset voltage, input bias current, and input offset current are specified in the warmed-up condition; all are 100% tested.
- 4. The AD744 has a guaranteed and tested maximum voltage noise of $4\mu V p$ -p, 0.1Hz to 10Hz (AD744C).

JI LUII IUAI	IUNJ	(@ +25℃ ai	nd ±15V dc	, unless	otherwise n	oted)					
Model	Conditions	A	D744J/A/S Typ	Max	Al	D744К/В/Т Тур	Max	Min	AD744C Typ	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset Offset vs. Temp vs. Supply ² vs. Supply ² Long-Term Stability	T _{min} – T _{max} T _{min} – T _{max}	82 82/82/82	0 3 5 95	1.0 2/2/2 20/20/20	88 88	0.25 5 100 15	0.5 1.0 10	92 92 92	0.10 2 110 15	0.25 0.45 3	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT ³ Either Input	$V_{CM} = 0V$		30	100		30	100		30	50	pA
Either Input ("T _{max} J, K A, B, C S, T Either Input Offset Current Offset Current ("T _{max} J, K A, B, C S, T	$\begin{array}{c} V_{CM} = 0V \\ 70^{\circ}C \\ 85^{\circ}C \\ 125^{\circ}C \\ V_{CM} = + 10V \\ V_{CM} = 0V \\ V_{CM} = 0V \\ 70^{\circ}C \\ 85^{\circ}C \\ 125^{\circ}C \end{array}$		0.7 1 9 31 40 20 0 4 1.3 20	2.3 6.4 102 150 50 1.1 3 2 52		0.7 1 9 31 40 10 0 2 0 6 10	2.3 6.4 102 150 50 1.1 3.2 52		1.9 40 10 0.6	32 100 20 13	nA nA nA pA pA nA nA nA
FREQUENCY RESPONSE Gain BW, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to 0 01% ⁴ Total Harmonic Distortion	$\label{eq:G} \begin{array}{l} G=-1\\ V_O=20Vp\text{-p}\\ G=-1\\ G=-1\\ f=1kHz\\ R1{\geq}2k\Omega\\ V_O=3Vrms \end{array}$	8 45	13 600 75 0 5 0 0003	09	9 50	13 600 75 0 5 0.0003	0.9	9 50	13 600 75 0.5 0 0003	09	MHz kHz V/μs μs
INPUT IMPEDANCE Differential Common Mode			$3 \times 10^{12} 5.5$ $3 \times 10^{12} 5.5$			3×10^{12} 5.5 3×10^{12} 5.5			$3 \times 10^{12} \ 5\ 5\ 3 \times 10^{12} \ 5.5$		Ω∥pF Ω∥pF
INPUT VOLTAGERANGE Differential ³ Common-Mode Voltage Over Max Operating Range ⁶ Common-Mode Rejection Ratio	$V_{CM} = \pm 10V$ $T_{min} \text{ to } T_{max}$ $V_{CM} = \pm 11V$ $T_{min} \text{ to } T_{max}$	- 11 78 76/76/ 76 72 70/70/ 70	± 20 + 14 5, - 11.: 88 84 84 84 80	5 +13	- 11 82 80 78 74	± 20 + 14.5, - 11. 88 84 84 84 80	5 +13	- 11 86 86 80 76	±20 +14.5, -11. 94 90 90 84	5 +13	V V dB dB dB dB dB
INPUT VOLTAGE NOISE	0.1 to 10Hz $f = 10Hz$ $f = 100Hz$ $f = 1kHz$ $f = 1kHz$ $f = 10kHz$		2 45 22 18 16			2 45 22 18 16			2 45 22 18 16	4	$\begin{array}{c} \mu V p \cdot p \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \end{array}$
INPUT CURRENT NOISE	f = 1 k H z		0 01			0 01			0 01		pA/ VHz
OPEN LOOP GAIN ⁷	$V_O = \pm 10V \\ R_{I.OAD} \ge 2k\Omega \\ T_{min} \text{ to } T_{max}$	200 100/100/ 100	400		250 100	400		250 150	400		V/mV V/mV
OUTPUT CHARACTERISTICS Voltage Current Capacitive Load ⁸	$\begin{array}{l} R_{I \ OAD} {\geq} 2k\Omega \\ T_{min} \ to \ T_{max} \\ Short-Circuit \\ Gain = -1 \end{array}$	+13, -12.5 $\pm 12/\pm 12/\pm 12$	+ 13.9, - 13 3 + 13 8, - 13.1 25	3 1 1000	+13, -12.5 ±12	+ 13.9, - 13 + 13.8, - 13 25	.3 1 1000	+ 13, - 12.5 ± 12	+ 13 9, - 13. + 13 8, - 13. 25	3 1 1000	V V mA pF
POWER SUPPLY Rated Performance Operating Range Quiescent Current		±4.5	± 15 3.5	±18 5.0	±4.5	±15 35	± 18 4.0	±4.5	±15 35	±18 4.0	V V mA
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Military (- 55°C to + 125°C)			AD744J AD744A AD744S			AD744K AD744B AD744T			AD744C		
PACKAGE OPTIONS ⁹ 8-Pin Plastic Mini-DIP (N-8) 8-Pin Cerdip (Q-8) TO-99 Metal Can (H-08A)			AD744JN AD744AQ, A AD744AQ, A	D744SQ D744SH		AD744KN AD744BQ, A AD744BH, A	AD744TQ AD744TH		AD744CQ AD744CH		

CDECIEICATIONC

NOTES

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at T_A = + 25°C ¹PSRR test conditions '+ V_x = 15V, - V_x = 12V to 18V and + V_x = 12V to 18V, - V_x = -15V ³Piss Current Specifications are guaranteed maximum at either input after 5 minutes of operation at T_A = + 25°C. ⁴For higher temperature, the current doubles every 10°C. ⁴Gain = -1, R_i = 2k, C_i = 10pF, refer to Figure 25. ⁵Defined as voltage between inputs, such that netther exceeds ± 10V from ground ⁴Typically exceeding - 14.1V negative common-mode voltage on either input results in an output phase reversal. ⁷Open-Loop Gain is specified for C_{COMP} = 20pF with the device connected as shown in Figure 32. Under these conditions, slew rate = 14VJ is and 0 01% setting time = 1.5 µs typical. Refer to Table II for optimum compensation while driving a capacitive load ⁵See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All mm and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage ²
Output Short Circuit Duration
Differential Input Voltage $+V_S$ and $-V_S$
Storage Temperature Range Q, H65°C to +150°C
Storage Temperature Range N65°C to +125°C
Operating Temperature Range
$AD744J/K$ 0 to $+70^{\circ}C$
AD744A/B/C
AD744S/T
Lead Temperature Range (Soldering 60 sec)

NOTES ¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²For supply voltages less than $\pm 18V$, the absolute maximum input voltage is equal to the supply voltage.

Typical Characteristics

Figure 1. Input Voltage Swing vs. Supply Voltage

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 4. Quiescent Current vs. Supply Voltage

Figure 6. Magnitude of Output Impedance vs. Frequency

Figure 7. Input Bias Current vs. Common-Mode Voltage

Figure 8. Short Circuit Current Limit vs. Temperature

Figure 9. Gain Bandwidth Product vs. Temperature

Figure 10. Open Loop Gain and Phase vs. Frequency C_{COMP} = 0pF

Figure 11. Open Loop Gain and Phase vs. Frequency C_{COMP} = 25pF

Figure 12. Open Loop Gain vs. Supply Voltage

Figure 13. Common-Mode and Power Supply Rejection vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency, Circuit of Figure 20 (G = 10)

Figure 14. Large Signal Frequency Response

Figure 15. Output Swing and Error vs. Settling Time

Figure 17. Input Noise Voltage Spectral Density

Figure 18. Slew Rate vs. Input Error Signal

Figure 19. Settling Time vs. Closed Loop Voltage Gain

Figure 20. THD Test Circuit

Figure 21. Offset Null Configuration

Figure 22a. Unity Gain Follower

Figure 22b. Unity Gain Follower Large Signal Pulse Response, $C_{COMP} = 5pF$

Figure 22c. Unity Gain Follower Small Signal Pulse Response, $C_{COMP} = 5pF$

Figure 23a. Unity Gain Inverter

Figure 23b. Unity Gain Inverter Large Signal Pulse Response, $C_{COMP} = 0 p F$

Figure 23c. Unity Gain Inverter Small Signal Pulse Response, $C_{COMP} = 0 p F$

Applying the AD744

2

POWER SUPPLY BYPASSING

The power supply connections to the AD744 must maintain a low impedance to ground over a bandwidth of 10MHz or more. This is especially important when driving a significant resistive or capacitive load, since all current delivered to the load comes from the power supplies. Multiple high quality bypass capacitors are recommended for each power supply line in any critical application. A 0.1μ F ceramic and a 1μ F electrolytic capacitor as shown in Figure 24 placed as close as possible to the amplifier (with short lead lengths to power supply common) will assure adequate high frequency bypassing, in most applications. A minimum bypass capacitance of 0.1μ F should be used for any application.

Figure 24. Recommended Power Supply Bypassing

MEASURING AD744 SETTLING TIME

The photos of Figures 26 and 27 show the dynamic response of the AD744 while operating in the settling time test circuit of Figure 25. The input of the settling time fixture is driven by a flat-top pulse generator. The error signal output from the false summing node of A1, the AD744 under test, is clamped, amplified by op amp A2 and then clamped again.

Figure 26. Settling Characteristics 0 to + 10V Step Upper Trace: Output of AD744 Under Test (5V/div) Lower Trace: Amplified Error Voltage (0.01%/div)

Figure 25. Settling Time Test Circuit

The error signal is thus clamped twice: once to prevent overloading amplifier A2 and then a second time to avoid overloading the oscilloscope preamp. A Tektronix oscilloscope preamp type 7A26 was carefully chosen because it recovers from the approximately 0.4V overload quickly enough to allow accurate measurement of the AD744's 500ns settling time. Amplifier A2 is a very high-speed FET-input op amp; it provides a voltage gain of 10, amplifying the error signal output of the AD744 under test.

Figure 27. Settling Characteristics 0 to – 10V Step Upper Trace: Output of AD744 Under Test (5V/div) Lower Trace: Amplified Error Voltage (0.01%/div)

Figure 28. AD744 Simplified Schematic

EXTERNAL FREQUENCY COMPENSATION

Even though the AD744 is useable without compensation in most applications, it may be externally compensated for even more flexibility. This is accomplished by connecting a capacitor between Pins 5 and 8. Figure 28, a simplified schematic of the AD744, shows where this capacitor is connected. This feature is useful because it allows the AD744 to be used as a unity gain voltage follower. It also enables the amplifier to drive capacitive loads up to 2000pF and greater.

The slew rate and gain bandwidth product of the AD744 are inversely proportional to the value of the compensation capacitor, C_{COMP} . Therefore, when trying to maximize the speed of the amplifier, the value of C_{COMP} should be minimized. C_{COMP} can also be used to slow the amplifier to a point where the slew rate is perfectly symmetrical and well controlled. Figure 29 summarizes the effect of external compensation on slew rate and bandwidth.

Figure 29. Gain Bandwidth and Slew Rate vs. C_{COMP}

The following section provides tables to show what C_{COMP} values will provide the necessary compensation for given circuit configurations and capacitive loads. In each case, the recommended C_{COMP} is a minimum value. A larger C_{COMP} can always be used, but slew rate and bandwidth performance will be degraded.

Figure 30 shows the AD744 configured as a unity gain voltage follower. In this case, a minimum compensation capacitor of 5pF is necessary for stable operation. Larger compensation capacitors can be used for driving larger capacitive loads. Table I outlines recommended minimum values for C_{COMP} based on the desired capacitive load. It also gives the slew rate and bandwidth that will be achieved for each case.

Figure 30. AD744 Connected as a Unity Gain Voltage Follower

Gair	Max C _{LOAD} (pF)	C _{COMP} (pF)	Slew Rate (V/µs)	– 3dB Bandwidth (MHz)
1	50	5	37	6.5
1	150	10	25	4.3
1	2000	25	12.5	2.0

Table I. Recommended Values of C_{COMP} vs. Various Capacitive Loads

Figures 31 and 32 show the AD744 as a voltage follower with gain and as an inverting amplifier. In these cases, external compensation is not necessary for stable operation. However, compensation may be applied to drive capacitive loads above 50pF. Table II gives recommended C_{COMP} values, along with expected slew rates and bandwidths for a variety of load conditions and gains for the circuits in Figures 31 and 32.

Figure 31. AD744 Connected as a Voltage Follower Operating at Gains of 2 or Greater

Figure 32. AD744 Connected as an Inverting Amplifier Operating at Gains of 1 or Greater

R1 (Ω)	R2 (Ω)	Gain Follower	Gain Inverter	Max C _{LOAD} (pF)	С _{сомр} (pF)	C _{lead} (pF)	Slew Rate (V/µs)	– 3dB Bandwidth (MHz)
4.99k	4.99k	2	1	50	0	7	75	2.5**
4.99k	4.99k	2	1	150	5	7	37	2.3**
4.99k	4.99k	2	1	1000	20	-	14	1.2
4.99k	4.99k	2	1	>2000	25	-	12.5*	1.0
499Ω	4.99k	11	10	270	0	_	75	1.2
499Ω	4.99k	11	10	390	2	-	50	0.85
499Ω	4.99k	11	10	1000	5	-	37*	0.60

*Into large capacitive loads the AD744's 25mA output current limit sets the slew rate of the amplifier, in V/µs, equal to 0.025 amps divided by the value of C_{LOAD} in µF. Slew rate is specified into rated max C_{LOAD} except for cases marked *, which are specified with a 50pF load.

**Bandwidth with C_{LEAD} adjusted for minimum settling time.

Table II. Recommended Values of C_{COMP} vs. Various Load Conditions for the Circuits of Figures 31 and 32.

Using Decompensation to Extend the Gain Bandwidth Product

When the AD744 is used in applications where the closed-loop gain is greater than 10, gain bandwidth product may be enhanced by connecting a small capacitor between Pins 1 and 5 (Figure 33). At low frequencies, this capacitor cancels the effects of the chip's internal compensation capacitor, C_{COMP} , effectively decompensating the amplifier.

Due to manufacturing variations in the value of the internal C_{COMP} , it is recommended that the amplifier's response be optimized for the desired gain by using a 2 to 10pF trimmer capacitor rather than using a fixed value.

R1 (Ω)	R2 (Ω)	Gain Follower	Gain Inverter	– 3dB Bandwidth	Gain/BW Product
1k	10k	11	10	2.5MHz	25MHz
100	10k	101	100	760kHz	76MHz
100	100k	1001	1000	225kHz	225MHz

Table III. Performance Summary for the Circuit of Figure 33

Figure 33. Using the Decompensation Connection to Extend Gain Bandwidth

HIGH-SPEED OP AMP APPLICATIONS AND TECHNIQUES

DAC Buffers (I-to-V Converters)

Digital-to-analog converters which use bipolar transistors to switch currents into (or out of) their outputs can achieve very fast settling times. The AD565A, for example, is specified to settle to 12 bits in less than 250ns, with a current output. However, in many applications, a voltage output is desirable, and it would be useful – perhaps essential – that this I-to-V conversion be accomplished without increasing the settling time or without degrading the accuracy of the DAC.

Figure 34 is a schematic of an AD565A DAC using an AD744 output buffer. The 10pF C_{LEAD} capacitor compensates for the DAC's output capacitance, plus the 5.5pF amplifier input capacitance.

Figure 35 is an oscilloscope photo of the AD744's output voltage with a +10V to 0V step applied; this corresponds to an all "1s" to all "0s" code change on the DAC. Since the DAC is connected in the 20V span mode, 1LSB is equal to 4.88mV. Output settling time for the AD565/AD744 combination is less than 500ns to within a 2.44mV, 1/2LSB error band.

Figure 35. Upper Trace: AD744 Output Voltage for a + 10V to 0V Step, Scale: 5mV/division. Lower Trace: Logic Input Signal, Scale: 5V/division.

A HIGH-SPEED, 3 OP AMP INSTRUMENTATION AMPLIFIER CIRCUIT

The instrumentation amplifier circuit shown in Figure 36 can provide a range of gains from unity up to 1000 and higher. The circuit bandwidth is 4MHz at a gain of 1 and 750kHz at a gain of 10; settling time for the entire circuit is less than $2\mu s$ to within 0.01% for a 10V step, (G = 10).

While the AD744 is not stable with 100% negative feedback (as when connected as a standard voltage follower), phase margin and therefore stability at unity gain may be increased to an acceptable level by placing the parallel combination of a resistor and a small lead capacitor between each amplifier's output and its inverting input terminal.

The only penalty associated with this method is a small bandwidth reduction at low gains. The optimum value for C_{LEAD} may be determined from the graph of Figure 41. This technique can be used in the circuit of Figure 36 to achieve stable operation at gains from unity to over 1000.

Figure 36. A High Performance, 3 Op Amp Instrumentation Amplifier Circuit

Gain	R _G	Bandwidth	T Settle (0.01%)
1	NC	3.5MHz	1.5µs
2	20kΩ	2.5MHz	1.0µs
10	2.02kΩ	1MHz	2µs
100	202Ω	290kHz	5µs

 Table IV. Performance Summary for the Three Op Amp

 Instrumentation Amplifier Circuit

Figure 37. The Pulse Response of the 3 Op Amp Instrumentation Amplifier. Gain = 1, Horizontal Scale: 0.5µs/div, Vertical Scale: 5V/div. (Gain = 10)

Figure 38. Settling Time of the 3 Op Amp Instrumentation Amplifier. Horizontal Scale: 500ns/div., Vertical Scale, Pulse Input: 5V/div. Output Settling: 1mV/div.

Minimizing Settling Time in Real-World Applications

An amplifier with a "single pole" or "ideal" integrator open-loop frequency response will achieve the minimum possible settling time for any given unity-gain bandwidth. However, when this "ideal" amplifier is used in a practical circuit, the actual settling time is increased above the minimum value because of added time constants which are introduced due to additional capacitance on the amplifier's summing junction. The following discussion will explain how to minimize this increase in settling time by the selection of the proper value for feedback capacitor, C_L .

If an op amp is modeled as an ideal integrator with a unity gain crossover frequency, f_O , Equation 1 will accurately describe the small signal behavior of the circuit of Figure 39. This circuit models an op amp connected as an I-to-V converter.

Equation 1 would completely describe the output of the system if not for the op amp's finite slew rate and other nonlinear effects. Even considering these effects, the fine scale settling to <0.1% will be determined by the op amp's small signal behavior.

Equation 1.

$$\frac{V_{O}}{I_{IN}} = \frac{-R}{\frac{R(C_{L} + C_{X})}{2\pi F_{O}}s^{2} + \left(\frac{G_{N}}{2\pi F_{O}} + R C_{L}\right)s + 1}$$

Where $F_O =$ the op amp's unity gain crossover frequency

 G_N = the "noise" gain of the circuit $\left(1 + \frac{R}{R_0}\right)$

This Equation May Then Be Solved for CL:

Equation 2.

$$C_{L} = \frac{2 - G_{N}}{R 2\pi F_{O}} + \frac{2 \sqrt{RC_{X} 2\pi F_{O}} + (1 - G_{N})}{R 2\pi F_{O}}$$

In these equations, capacitance C_X is the total capacitance appearing at the inverting terminal of the op amp. When modeling an I-to-V converter application, the Norton equivalent circuit of Figure 39 can be used directly. Capacitance C_X is the total capacitance of the output of the current source plus the input capacitance of the op amp, which includes any stray capacitance at the op amp's input.

Figure 39. A Simplified Model of the AD744 Used as a Current-to-Voltage Converter

When R_O and I_O are replaced with their Thevenin V_{IN} and R_{IN} equivalents, the general purpose inverting amplifier model of Figure 40 is created. Here capacitor C_X represents the input capacitance of the AD744 (5.5pF) plus any stray capacitance due to wiring and the type of IC package employed.

In either case, the capacitance C_X causes the system to go from a one-pole to a two-pole response; this additional pole increases settling time by introducing peaking or ringing in the op amp's output. If the value of C_X can be estimated with reasonable accuracy, Equation 2 can be used to choose the correct value for a small capacitor, C_L , which will optimize amplifier response. If the value of C_X is not known, C_L should be a variable capacitor.

Figure 40. A Simplified Model of the AD744 Used as an Inverting Amplifier

As an aid to the designer, the optimum value of C_L for one specific amplifier connection can be determined from the graph of Figure 41. This graph has been produced for the case where the AD744 is connected as in Figures 39 and 40 with a practical minimum value for C_{STRAY} of 2pF and a total C_X value of 7.5pF.

The approximate value of C_L can be determined for almost any application by solving Equation 2. For example, the AD565/AD744 circuit of Figure 34 constrains all the variables of Equation 2 ($G_N = 3.25$, $R = 10k\Omega$, $F_O = 13MHz$, and $C_X = 32.5pF$). Therefore, under these conditions, $C_L = 10.5pF$.

Figure 41. Practical Values of C_L vs. Resistance of R for Various Amplifier Noise Gains

Dual Precision, 500ns Settling BiFET Op Amp

AD746

FEATURES

AC PERFORMANCE 500ns Settling to 0.01% for 10V Step 75V/µs Slew Rate 0.0003% Total Harmonic Distortion (THD) 13MHz Gain Bandwidth

DC PERFORMANCE

0.25mV max Offset Voltage (AD746C) 3μV/°C max Drift (AD746C) 250V/mV min Open Loop Gain (AD746B) 4μV p-p max Noise, 0.1Hz to 10Hz (AD746C)

APPLICATIONS

Output Buffers for 12- and 14- Bit DACs, ADC Buffers, Cable Drivers, Wideband Preamplifiers and Active Filters Available in 8-Pin Plastic SOIC, Mini-DIP, Hermetic Cerdip, and Hermetic Metal Can Packages.

PRODUCT DESCRIPTION

The AD746 is a dual fast-settling, precision, FET input monolithic operational amplifier. It offers the excellent dc characteristics of the AD711 BiFET family with enhanced settling, slew rate and bandwidth. The AD746 is internally compensated for static operation as a unity gain inverter or as a noninverting amplifier with a gain of two or greater.

The single pole response of the AD746 provides fast settling: 500ns to 0.01%. This feature combined with its high de precision, makes it suitable for use as a buffer amplifier for 12-bit, 14-bit or 16-bit DACs and ADCs. Furthermore, the AD746's low total harmonic distortion (THD) level of 0.0003% and gain bandwidth product of 13MHz make it an ideal amplifier for demanding audio applications. It is also an excellent choice for use in active filters in 12-bit, 14-bit and 16-bit data acquisition systems.

The AD746 is available in seven performance grades. The AD746J and AD746K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD746A, AD746B and AD746C are rated over the industrial temperature range of -40° C to 85° C. The AD746S and AD746T are rated over the military temperature range of -55° C to $+125^{\circ}$ C and are available processed to MIL-STD-883B, Rev. C.

Extended reliability PLUS screening is available, specified over the commercial and industrial temperature range. PLUS screening includes a 168-hour burn-in, as well as other environmental and physical tests.

AD746 CONNECTION DIAGRAMS

PRODUCT HIGHLIGHTS

The AD746 is a dual high-speed, fast settling, BiFET op amp that offers excellent performance at competitive prices. The AD746 is offered in a standard dual pin out.

- The AD746 offers excellent dynamic response. It settles to 0.01% in 500ns and has a 100% tested minimum slew rate of 50V/μs (AD746B).
- 3. The combination of Analog Devices' advanced processing technology, laser wafer drift trimming and well-matched ionimplanted JFETs provide outstanding dc precision. Input offset voltage, input bias current, and input offset current are specified in the warmed-up condition; all are 100% tested.
- The AD746 has a guaranteed and tested maximum voltage noise of 4μV p-p, 0.1Hz to 10Hz (AD746C).
- 5. The AD746 is available in an 8-pin small outline (SO) package, mini-DIP, cerdip and metal cans.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

Model		A	D746J/A/S		AD	746K/B/T		AI	D746C ·		
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset Offset vs. Temperature vs. Supply ² vs Supply Long-Term Stability	T _{min} – T _{max} T _{min} – T _{max}	82 82/82/82	0 3 12 95 15	1.0 2.5/2.5/2.5 20/20/20	88 88	0.25 5 100 15	0.5 1 10	92 92	0.10 2 110 15	0.25 0.50 3	mV mV μV/°C dB dB μV/month
INPUT BIAS CURRENT ³ Ether Input (# T _{max} J, K A, B, C S, T Ether Input Offset Current Offset Current Offset Current (# T _{max} J, K A, B, C S, T	$\begin{split} V_{CM} &= 0V \\ V_{CM} &= 0V \\ 70^{\circ}C \\ 85^{\circ}C \\ 125^{\circ}C \\ V_{CM} &= +10V \\ V_{CM} &= 0V \\ V_{CM} &= 0V \\ V_{CM} &= 0V \\ 70^{\circ}C \\ 85^{\circ}C \\ 125^{\circ}C \end{split}$		60 1.4 3.8 61 80 30 0 7 1.9 31	150 3.4 9.6 154 250 75 1 7 4 8 77		60 1.4 3 8 61 80 20 0.4 1.3 20	150 3.4 96 154 250 75 . 1.7 4 8 77		60 3 8 80 20 1.3	150 6.4 200 40 2.6	pA nA nA pA pA pA nA nA nA
MATCHING CHARACTERISTICS ⁴ Input Offset Voltage Input Offset Voltage Input Bas Current Crosstalk (@ 1kHz @ 100kHz	T _{min} to T _{max} vs. Temp.		120 90	1.5 2.5/2.5/2.5 20/20/20 50		120 90	0.5 1.0 10 50		120 90	0.3 0.6 5 20	mV mV µV/°C pA dB dB
FREQUENCY RESPONSE Gain BW, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time to 0 01% ⁴ Total Harrinonic Distortion	$G = -1$ $V_0 = 20V p \cdot p$ $G = -1$ $G = -1$ $f = 1kHz$ $R1 \ge 2k\Omega$ $V_2 = 3V rms$	8 45	13 600 75 0.5	•	9 50	13 600 75 05	9.9	9 50	13 600 75 0.5	0.9	MH7 kHz V/μs μs
INPUT IMPEDANCE Differential Common Mode		_ar	3×10^{12} 5.5 3×10^{12} 5.5	. 6A	No.	3×10 ¹² 5.5 3×10 ¹² 5.5			$3 \times 10^{12} 5 5$ $3 \times 10^{12} 5 5$		Ω∥pF Ω∥pF
INPUT VOL TAGE RANGE Differential ⁵ Common-Mode Voltage Over Max Operatung Range ⁶ Common-Mode Rejection Ratio	$V_{CM} = \pm 10V$ T _{min} to T _{max} V _{CM} = ± 11V T _{min} to T _{max}	- 11 78 76/76/76 72 70/70/70	20 + 14:5, - 1,1 5 88 84 84 80	+ 13	11 82 80 78 74	20 ≠ 14.5, -11.3 88 84 84 84 80	5 +13	- 11 86 86 80 76	±20 +14.5, -11 5 94 90 90 84	+ 13	V V V dB dB dB dB
INPUT VOLTAGE NOISE	0.1 to 10Hz f = 10Hz f = 100Hz f = 1kHz f = 1kHz f = 10kHz		2 45 22 18 16			2 45 22 18 16			2 45 22 18 16	4	μV p-p_ nV/√Hz nV/√Hz nV/√Hz nV/√Hz
INPUT CURRENT NOISE	f = 1 kHz		0 01			0.01			0 01		pA/ /Hz
OPEN LOOP GAIN ⁷		150 75/75/ 65	300		175 75	300		200 100	300		V/mV V/mV
OUTPUT CHARACTERISTICS Voltage Current	R _{LOAD} ≥2kΩ T _{min} to T _{max} Short-Circuit	+13, -12.5 ±12/±12/±12	+ 13 9, - 13.3 + 13.8, - 13 1 25	3	+ 13, - 12.5 ± 12	+ 13.9, - 13 + 13 8, - 13. 25	3 1	+ 13, - 12.5 ± 12	+ 13.9, - 13.3 + 13 8, - 13.1 25		V V mA
POWER SUPPLY Rated Performance Operating Range Quiescent Current		±4.5	± 15 7.0	±18 10.0	±4.5	±15 70	±18 8.0	±4.5	± 15 7 0	±18 8.0	V V mA
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (- 40°C to + 85°C) Military (- 55°C to + 125°C)	X		AD746J AD746A AD746S			AD746K AD746B AD746T			» AD746C		
PACKAGE OPTIONS ^b SOIC (R-8) Plastic (N-8) Cerdip (Q-8) TO-99 (H-08A)			AD746JR AD746JN AD746AQ, A AD746AQ, A	D746SQ D746SH		AD746KN AD746BQ, AI AD746BH, AI	0746TQ 0746TH		AD746CQ AD746CH		

 NOTES
 ⁷Open-Loop Gan is specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}$ C.
 ⁷Open-Loop Gan is specified with V_{OS} both null "Sex Rest condutions $+V_S = 15V$, $-V_S = 12V$ to 18V and $+V_S = 12V$ to $18V = -V_S = -15V$.
 ⁷Open-Loop Gan is specified with V_{OS} both null "Sex Rest conductors are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}$ C.
 ⁷Open-Loop Gan is specified with V_{OS} both null "Sex Section 16 for package outine information 5 pro higher temperature, the current doubles every 10°C.

 ⁸Maching is defined as the difference between parameters of the two amplifiers.
 Specifications in boldface are tested on all produce called outgoing quarkity levels All num and max are tested on all produce outgoing quarkity levels.

 ⁹Diffield svolues quarkity ecommon-mode voltage on either input results in an output phase reversal
 are tested on all production nuits

 $^7 Open-Loop$ Gain is specified with V_{OS} both nulled and unnulled.

*See Section 16 for package outline information

Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage ²
Output Short-Circuit Duration Indefinite
Differential Input Voltage $\ldots \ldots \ldots + V_S$ and $-V_S$
Storage Temperature Range Q, H65°C to +150°C
Storage Temperature Range N65°C to +125°C
Operating Temperature Range
$AD746J/K$ 0 to $+70^{\circ}C$
AD746A/B/C
AD746S/T
Lead Temperature Range (Soldering 60sec) + 300°C

NOTES

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods that affect device reliability.

							15 Sugar	a Apri	huilte à	nels.	
	10	-				N. 1		All an	the the	A.	s*8
	10				÷.,		1	etiter	ai 🖟	ARD SO	
	8	_	436.	1	1	\mathcal{I}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_
		4	and the	14	: 1/			all all	States.		
	6	enter the		NE CO	1	12	A THE		ill dilla.		
	N. gull A)	- Alexander	1946	1 and		1	\$	CHE TER	and the state	dan .	
>	li en el	No.			X	- p. l	id Sec.	R.			_
1	2	5.988			1	w lite re		(h 63)			
ž	-		13% N	े0.1% ।	0	01%	1 CE				
Š	0				+	ERRC	DR —				_
5			0	1%	0.01	1%					
ΞĿ	-2		1%	1N	X						
20				()							
	-4				1	\mathbf{t}		1			
	-6			11							
	Ŭ										
	-8				_	_					
	- 10			Ļ		_ _	<u> </u>				
		J U	. 1 0	.2	0.3	0	.4 (1.5	0.6	0.7	0.8
				S	ETT	LING	TIME	- 115			

to assolute maximum rating contains to extend performing the device reliability. ²For supply voltages less than $\pm 18V$, the absolute maximum input voltage is equal to the supply voltage.

2-152 OPERATIONAL AMPLIFIERS

١.

AD821

2

FEATURES

True Single Supply Operation: Input and Output Voltage Ranges Include Ground Output Voltage Swing to 50mV of Each Rail Low Power: 400μA Supply Current max 250μV Input Offset Voltage 1.3MHz Gain Bandwidth Product 3V/μs Slew Rate Single and Dual Supply Capability

APPLICATIONS

Battery Powered Precision Instrumentation Strain Gage Signal Conditioners Instrumentation Amplifiers Thermocouple Amplifiers Multiple Limit Threshold Detection 12- to 14-Bit Data Acqusition Systems Available in 8-Pin Plastic Mini-DIP, SOIC and Hermetic Cerdip Packages Dual Version – AD822, Quad Version – AD824 Ast Available

PRODUCT DESCRIPTION

The AD821 is a precision, low power FET input monolithic op amp that can operate from a single supply of ± 4.75 to ± 36 V or dual supplies of ± 2.4 V to ± 18 V. It has true single supply capability with its input voltage range including the negative rail, allowing the AD821 to accommodate input signals down to ground in the single supply mode. Its output voltage swing extends to within 50mV of each rail providing the maximum possible output dynamic range to the user.

Low input offset voltage (250 μ V max), low offset voltage drift (3 μ V/°C max), low input bias current (<10pA) and low supply currents (400 μ A max) mark the AD821 with true dc precision at low power operating conditions. Combined with unity gain bandwidth of 1.3MHz and 3V/ μ s slew rate, the AD821 offers the best combination of ac and dc specs to the single supply op amp user. Performance in 12- to 14-bit applications is ensured with the AD821's low noise 26nV/ \sqrt{Hz}), high open-loop gain (10⁷V/mV) and 4 μ s settling to 0.01%.

AD821 FUNCTIONAL BLOCK DIAGRAM

SO and Cerdip

The AD821 is an excellent choice for battery powered precision instrumentation applications – wherein the extended input and output ranges afford the AD821 its versatility in these applications.

The AD821 is available in five performance grades. The AD821J and AD821K are rated over the commercial temperature range of 0 to + 0°C. The AD821A and AD821B are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD821S is rated over the military temperature range of -55° C to $+125^{\circ}$ C and is available processed to MIL-STD-883B, Rev. C.

Extended reliability PLUS screening is available, specified over the commercial and industrial temperature range. PLUS screening includes a 168 hour burn-in, as well as other environmental and physical tests.

PRODUCT HIGHLIGHTS

- 1. True single supply operation input voltage range includes the negative rail.
- 2. Output voltage range extends to 50mV of each rail.
- 3. Low power, low supply current.
- 4. Common-mode rejection of 90dB and open-loop gain of $10^7 V/mV$ ensure 12- to 14-bit accuracy in high-speed data acquisition circuits.
- 5. Dual version AD822, quad version AD824 also available.

SPECIFICATIONS (@ + 25°C unless otherwise noted)

Model		A	D821J/A/S		A	D821B/K		
	Conditions ¹	Min	Тур	Max	Min	Тур	Max	Units
INPUT CHARACTERISTICS Input Offset Voltage ²	$V_{CM} = 0$ Condition 1, $V_O = 0V$ Condition 2, $V_O = 1.4V$		0.3 0.3]*]* 1 5/1 6/2*		0.1 0.1	0.25* 0.25* 0.4*	mV mV mV
Input Offset Voltage Drift Input Bias Current ³	T _{min} to T _{max}		15	1.3/1.0/2" 10* 30 0.68/2/30		10	0.4 3* 20 0.5/1.3	μV/°C pA nA
Input Offset Current	T _{min} to T _{max}		5	15 0.34/0.96/15		3	7 0.16/0.45	pA nA
Input Resistance Input Capacitance	Differential		5×10 3			5×10 3		Ω pF
Common-Mode Voltage Range	Condition 1 Condition 2 Condition 1	$-V_s$ $-V_s$ $-V_s = 0.6$		$+V_{S}-1$ $+V_{S}-1$ $+V_{S}+0.6$	$-V_s$ $-V_s$ $-V_s = 0.6$		$+V_{s}-1$ + $V_{s}-1$ + $V_{s}+0.6$	V
Common-Mode Rejection	Condition 1 Condition 2 Condition 1	$-V_{S} = 0.0$ $-V_{S} = 0.6$ 80*		$+ V_{S} + 0.6$ + V _S + 0.6	$-V_{s} - 0.6$ 90*		$+V_{S}+0.0$ $+V_{S}+0.6$	V dB
	$V_{CM} = \pm 12V, V_O = 0V$ Condition 2 $V_{CM} = 0$ to 2.5V, $V_O = 1.4V$	80*			90*			dB
Power Supply Rejection Ratio	Condition 1 Condition 2 $4.5 < + V_S < 5.5, V_{\Omega} = 1.4V$	80* 80*		e e	90* 90*			dB dB
Input Noise Voltage	f = 10Hz f = 100Hz f = 1kHz f = 10kHz f = 10kHz		90 90 50 33 21	R	à	90 90 50 33 21		
Input Noise Current	f = 1kHz	dite dite	0.01	A Th		0.01		pA/\sqrt{Hz}
OUTPUT CHARACTERISTICS Output Voltage Swing	Condition 1, Condition 2 2kΩ Load 10kΩ Load Condition 2 ImA Sink	150mV 100mV 100mV	max from E max from E max from G	ach Rait ach Rail round	150mV 100mV 100mV	max from E max from E max from C	each Rail Each Rail Ground	v
Short-Circuit Current	Source or Sink	all the g	30	- Hall		30		mA
Open Loop	Condution 1 $V_0 = \pm 14V$ $2k\Omega$ Load $10k\Omega$ Load Condition 2 $V_0 = 0.5V$ to 4.5V $2k\Omega$ Load	500 1,000	1,000 1,000	Ø. »	500 1,000 500	1,000 10,000 1,000		V/mV V/mV V/mV
	10kΩ Load	1,000	10,000		1,000	10,000		V/mV
DYNAMIC CHARACTERISTICS Gain Bandwidth Product Rated Performance Full Power Bandwidth			1.3 48			1.3 48	,	MHz kHz
Slew Rate Settling Time	10V Step to 0.1%		3 4			3 4		V/µs µs
POWER SUPPLY Operating Voltage Range Quiescent Current	Differential	+ 4*		+ 36* 400*	+ 4*		+ 36* 400*	V μA
TEMPERATURE RANGE Rated Performance Commercal(0 to +70°C) Industrial(-25°C to +85°C) Military(-55°C to +125°C)		AD	821JN, AD AD821A0 AD821S0	9821JR Q Q	P	AD821KN AD821BQ		,
PACKAGE OPTIONS ⁵ Plastic (N-8) Cerdip (Q-8) SOIC (R-8)		AD	AD821JN 821AQ, AD AD821JH	N 9821SQ R	F 1	AD821KN AD821BQ		

NOTES

⁴Defined as voltage between inputs

⁵See Section 16 for package outline information

Notes Standards parameter guaranteed and tested ¹Condition 1 ± 15V power supply, Condition 2 + 5V power supply ²Input offset voltage specificitions are guaranteed after 5minutes of operation at $T_A = 25^{\circ}$ C. ³Bas Current specifications are guaranteed maximum at either input after 5minutes of operation at $T_A = +25^{\circ}$ C. For higher temperature, the current doubles every 10°C.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\dots \dots \dots$
Output Short-Circuit Duration
Internal Power Dissipation
Plastic
Cerdip
SOIC
Storage Temperature Range
Operating Temperature Range
AD821J/R 0 to $+70^{\circ}$ C
AD821A/B
AD821S
Maximum Junction Temperature
Lead Temperature Range (Soldering 10sec), . +260°C
1 a Shell to a
a this a start and
a l'Al I a d'a de la
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A A A A A A A A A A A A A A A A A A A

PRECONTA

2-156 OPERATIONAL AMPLIFIERS

Wideband, Fast Settling Op Amp

AD840

2

FEATURES

AC PERFORMANCE

Gain Bandwidth Product: 400MHz (Gain = 10) Fast Settling: 100ns to 0.01% Slew Rate: 400V/ μ s Stable at Gains of 10 or Greater Full Power Bandwidth: 6.4MHz for 20V p-p into a 500 Ω Load

DC PERFORMANCE

Input Offset Voltage: 0.5mV max Input Offset Drift: 5μ V/°C max Input Voltage Noise: 3nV/ \sqrt{Hz} Open-Loop Gain: 200V/mV into a 1k Ω Load Output Current: 50mA min Supply Current: 12mA max

APPLICATIONS

Video and Pulse Amplifiers DAC and ADC Buffers Line Drivers Available in 14-Pin Plastic DIP and Hermetic Cerdip Packages Chips and MIL-STD-883B Parts Available

PRODUCT DESCRIPTION

The AD840 is a member of the Analog Devices' family of wide bandwidth operational amplifiers. This high speed/high-precision family includes, among others, the AD841, which is unity-gain stable and the AD842, which is stable at a gain of two or greater and has 100mA minimum output current drive. These devices are fabricated using Analog Devices' junction isolated complementary bipolar (CB) process. This process permits a combination of dc precision and wideband ac performance previously unobtainable in a monolithic op amp. In addition to its 400MHz gain bandwidth product, the AD840 offers extremely fast settling characteristics, typically settling to within 0.01% of final value in 100ns for a 10 volt step.

The AD840 remains stable over its full operating temperature range at closed-loop gains of 10 or greater. It also offers a low quiescent current of 12mA maximum, a minimum output current drive capability of 50mA, a low input voltage noise of $3\text{nV}/\sqrt{\text{Hz}}$, and a low input offset voltage of 0.5mV maximum.

The 400V/ μ s slew rate of the AD840, along with its 400MHz gain bandwidth, ensures excellent performance in video and pulse amplifier applications. This amplifier is ideally suited for use in high-frequency signal conditioning circuits and wide bandwidth active filters. The extremely rapid settling time of the AD840 makes it the preferred choice for data acquisition applications which require 12-bit accuracy. The AD840 is also appropriate for other applications such as high-speed DAC and ADC buffer amplifiers and other wide bandwidth circuitry.

AD840 CONNECTION DIAGRAM

APPLICATION HIGHLIGHTS

The high slew rate and fast settling time of the AD840 make itsideal for DAC and ADC buffers, line drivers, and all types of video instrumentation circuitry.

- The AD840 is truly a precision amplifier. It offers accuracy to 0.01% or better and wide bandwidth, performance previously available only in hybrids.
- 3. The AD840's thermally balanced layout and the speed of the CB process allow the AD840 to settle to 0.01% in 100ns without the long "tails" that occur with other fast op amps.
 - 4. Laser wafer trimming reduces the input offset voltage to 0.5mV max on the K grade, thus eliminating the need for external offset nulling in many applications. Offset null pins are provided for additional versatility.
 - 5. Full differential inputs provide outstanding performance in all standard high-frequency op amp applications where circuit gain will be 10 or greater.
 - 6. The AD840 is an enhanced replacement for the HA2540.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

Model		· ·	AD840J			AD840K		1	AD840S		
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹			0.2	1		0.2	0.5	1	0.2	1	mV
Offset Drift	$T_{min} - T_{max}$			1.5			0.7 5			2	mV uV/℃
INPUT BIASCURRENT			3.5	8		3.5			3.5	8	u A
	T _{min} -T _{max}		5.5	10		515	6		515	12	μA
Input Offset Current			0.1	0.4		0.1	0.2		0.1	0.4	μA
	I _{min} -I _{max}			0.5			0.3			0.6	μΑ
INPUT CHARACTERISTICS	Differential Mode		30			30			30		kQ
Input Capacitance			2			2			2		pF
INPUT VOLTAGE RANGE				,	1						
Common Mode	V 10V	±10	110		± 10	110		± 10	110		V
Common-Mode Rejection	$V_{CM} = \pm 10V$ T_mm - T_mm	85	110		90	110		85	110		dВ
INPUT VOL TAGE NOISE	f = 1 k H z		3			3			3		nV/\sqrt{Hz}
Wideband Noise	10Hz to 10MHz		10			10			10		μVrms
OPEN LOOP GAIN	$V_0 = \pm 10V$					aller -					
	$R_{LOAD} = 1k\Omega$	100	200		150	200		100	200		V/mV
	$I_{min} - I_{max}$ $R_{LOAD} = 5000$	75	80		75 W	200 ×	v	75	80		V/mV V/mV
	$T_{min} - T_{max}$	50		J. see	75 million	1. A.		35			V/mV
OUTPUT CHARACTERISTICS			Al	16 8 M	1. 10	A 10					
Voltage	$R_{LOAD} \ge 500\Omega$		M			i i	15th				
Current	$T_{min} - T_{max}$ $V_{ourr} = \pm 10V$	± 10	1. E. E.	18 m	50	A WAYNERS		± 10			W mA
OUTPUT RESISTANCE	Open Loop		45	shites the		15			15		0
FREQUENCY RESPONSE	open 200p	ance and	Real and	6499	20 <u>3</u> . 						
Gain Bandwidth Product	V _{OUT} =90mVp-p	Routh	arette Bart	AL H	an li						
	$A_{VCL} = 10$	ANDAR	400	1997 - 1997 1997 - 1997	1% §	400			400		MHz
Full Power Bandwidth ²	$V_0 = 20V p - p'$ R1>5000	- Manuel	64	_ /PA_		64		55	6.4		MH2
Rise Time	$A_{VCL} = 10$, The	10	A Print		10		5.5	10		ns
Overshoot	$A_{VCL} = 10$	14	20	THE REAL PROPERTY AND		20			20		%
Slew Rate	$A_{VCL} = 10$	350	400 🧐	ç.,,	350	400		350	400		V/µs
Setting Time - 10V Step	$H_{VCL} = 10$ to 0.1%		80			80			80		ns
	to 0.01%		100			100			100		ns
OVERDRIVE RECOVERY	- Overdrive		160			160			160		ns
	+ Overdrive		350		ļ	350			350		ns
DIFFERENTIAL GAIN Differential Phase	f = 3.58MHz f = 3.58MHz		0.1			0.1			0.1		% Degree
POWER SUPPLY	1-5.564112		0.1			0.1			0.1		Degree
Rated Performance			±15			±15			±15		v
Operating Range		±5		±18	±5		±18	±5		±18	v
Quiescent Current	TT		11	12		11	12		11	12	mA
Power Supply Rejection Ratio	$I_{mun} - I_{max}$ $V_s = \pm 5V \text{ to } \pm 15V$	90	100	14	94	100	14	90	100	10	dB
	$T_{min} - T_{max}$	80			86			80			dB
TEMPERATURERANGE											
Rated Performance ³		0		+ 75	0		+ 75	- 55		+ 125	°C
PACKAGE OPTIONS ⁴			A DO MATC			ADRANC			1004000		
Plastic (N-14)			AD840JQ			AD840KQ			AD840S(ł	
· · · · · · · ·		L,			L			I			L

NOTES ¹Input offset voltage specifications are guaranteed after 5 minutes at $T_A = +25^{\circ}$ C. ²Full power bandwidth = slew rate/2 π V_{PEAK}. ³'S'' grade is tested with automatic test equipment at $T_A = -55^{\circ}$ C and $T_A = +125^{\circ}$ C.

⁴See Section 16 for package outline information.

All min and max specifications are guaranteed, although only those shown in **boldface** are tested on all production units.

Specifications subject to change without notice.

FEATURES

AD841 CONNECTION DIAGRAMS

AD841

AC PERFORMANCE: Unity-Gain-Bandwidth Product: 40MHz 14 NC AD841 Fast Settling: 110ns to 0.01% NC 13 NC Slew Rate: 300V/us 12 BALANCE BALANCE Stable at Gains of 1 or Greater Plastic DIP (N) Package Full Power Bandwidth: 4.7MHz INPUT 11 V + and DC PERFORMANCE + INPLIT 10 OUTPUT Cerdip (Q) Package Input Offset Voltage: 1mV max v٠ 6 a NC Input Offset Drift: 25µV/°C NC 8 NC Input Voltage Noise: $13nV/\sqrt{Hz}$ Open-Loop Gain: 50V/mV into a 500 Ω Load TOP VIEW Output Current: 50mA min Supply Current: 12mA max APPLICATIONS ര Video and Pulse Amplifiers AD841 (11) TO-8 (H) Package **Active Filters** ຄາ High-Frequency Signal Conditioning Circuitry OUTPUT Available in Plastic DIP, Hermetic Metal Can and Hermetic Cerdip Packages **MIL-STD-883B** Parts Available BOTTOM VIEW

PRODUCT DESCRIPTION

The AD841 is a member of the Analog Devices family of wide bandwidth operational amplifiers. This family includes, amone others, the AD840, which is stable at a gain of 10 or greater, and the AD842, which is stable at a gain of two or greater and has 100mA output current drive. These devices are fabricated using Analog Devices' junction isolated complementary bipolar (CB) process. This process permits a combination of dc precision and wideband ac performance previously unobtainable in a monolithic op amp. In addition to 40MHz unity-gain bandwidth, the AD841 offers extremely fast settling characteristics, typically settling to within 0.01% of final value in less than 110ns for a 10 volt step.

The AD841 is remarkably easy to use: it only requires two $0.01 \mu F$ decoupling capacitors, one for each power supply line. External compensation is *not* required. It remains stable over its full operating temperature range. The AD841 also offers a low quiesent current (12mA), high output current drive capability (50mA), low input voltage noise (13nV/ \sqrt{Hz}), and low input offset voltage (1mV).

The $300V/\mu s$ slew rate of the AD841, along with its 40MHz gain bandwidth, ensures excellent performance in video and pulse amplifier applications. This amplifier is ideally suited for use in high-frequency signal conditioning circuits and high-bandwidth active filters. The extremely rapid settling time of

the AD341 makes this amplifier the preferred choice for data acquisition applications which require 12-bit accuracy. The AD841 is also appropriate for other applications such as high-speed integrators and sample and hold circuitry.

APPLICATION HIGHLIGHTS

CAN TIED TO V +

OTE

- 1. The high slew rate and fast settling time of the AD841 make it ideal for D/A, A/D, sample-and-hold amplifiers, high-speed integrators, and video instrumentation circuitry.
- The AD841 is a precision amplifier. It offers accuracy to 0.01% or better and wide bandwidth; performance previously available only in hybrids.
- 3. Laser wafer trimming reduces the input offset voltage to ImV max, thus eliminating the need for external offset nulling in many applications. Offset null pins are provided for greater versatility.
- Full differential inputs provide outstanding performance in all standard high-frequency op amp applications such as signal conditioning and active filters.
- 5. The AD841 is an enhanced replacement for the HA2541.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

Model	Conditions	Min	AD841J Typ	Max	Min	AD841K Typ	Max	Min	AD841S Typ	Max	Units
INPUT OFFSET VOLTAGE ¹	T _{min} – T _{max}		0.5	1.5 3.0		0.5	1 2.0		0.5	1.5 4.5	mV mV
Offset Drift		ļ		25			25			25	μV/°C
INPUT BIAS CURRENT	T T		3.5	8		35	5		35	8	μA
Input Offset Current	1 min - 1 max		0.1	0.4		0.1	0.2		0.1	0.4	μΑ
	$T_{min} - T_{max}$		••	0.5			0.3			0.6	μA
INPUT CHARACTERISTICS		1									·
Input Resistance			200			200			200		kΩ
Input Capacitance			1.0			1.0			1.0		pF
INPUT VOLTAGE RANGE											
Common Mode		±10			±10			±10			v
Common-Mode Rejection	$V_{CM} = \pm 10V$	86	100		90	100		86	100		dB
	T _{min} -T _{max}	80			86			80			dB
INPUT VOLTAGE NOISE	f = lkHz		13			13			13		nV/\sqrt{Hz}
Wideband Noise	10Hz to 10MHz		40			aff 40			40		µV rms
OPEN LOOP GAIN	$V_0 = \pm 10V$				All and	h.ll					
	$R_{I OAD} \ge 500\Omega$	25	50		25	50		25	50		V/mV
	$T_{min} - T_{max}$	12		10 Alta	185 all	h. "		12			V/mV
OUTPUT CHARACTERISTICS			dbr.	, M. K.	titter an						
Voltage	$R_{I OAD} \ge 500\Omega$	±10	n W	Made II.	± 10 📢			±10			v
Current	$V_{OLT} = \pm 10V$	50		Allar .	\$1	Matt		50	_		mA
Output Resistance	Open Loop		F 11.20 L	HP AND	Phan a	W 185			5		Ω
FREQUENCY RESPONSE	44		All m	A the file	# #						
Unity Gain Bandwidth	$V_{OUT} = 90mV_{\odot}$		⁴⁰	M W W	HARDON,	40			40		MHz
Full Power Bandwidth ²	$V_0 = 20V p p$	Hantital	. W. W.	at the second		4.7			47		1477
D ise Time		1 C **		Atten A		4 /		31	4.7		MHZ
Overshoot	A	u Marque	20	man and a second	Butchelle	20			20		115 %
Slew Rate	Averia	Lette 200 mil	300	AL BL	200	300		200	300		V/us
Settling Time - 10V Step	Aver k	atter atter	attitu	Cally an							
	to 0 1%	dillin	80	A star		80			80		ns
	to 0 01% 🖤		19			110			110		ns
Differential Gain	f = 3 58MHz		01			0 1			0.1		%
Differential Phase	t = 3.58MHz		0 1			0 1			0.1		Degree
POWER SUPPLY											
Rated Performance			±15			±15			±15		V
Operating Range		±5		± 18	± 5		± 18	±5		± 18	v
Quiescent Current	тт			12			12			12	mA
Power Supply Rejection Ratio	$1_{min} - 1_{max}$ + 5V to + 18V	86	100	14	90	100	14	86	100	10	MA dB
rower supply rejection ratio	T _{mun} - T _{man}	80	100		86	100		80	100		dB
TEMPERATURE DANCE	- min - max										
Rated Performance		0		+ 75	0		+ 75	. 55		+ 125	°C
		ŀ Ŭ					· • • • •			- 125	<u> </u>
PACKAGE OPTIONS'											
$\frac{Plastic(N-14)}{Cardin(O, 14)}$		1	AD841JN	,		AD841KN			1004100		
MetalCan(H-12A)		l	AD8411U			AD841KU			A D84150	2 1	
	J	l			L				11004131	•	L

NOTES ¹Input offset voltage specifications are guaranteed after 5 minutes at $T_A = +25^{\circ}C^{-2}$ ²FPBW \sim Slew Rate/2 π V_{PLAK}

³See Section 16 for package outline information.

Specifications subject to change without notice

,

Specifications shown in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in **boldface**. are tested on all production units

Wideband, High Output Current, **Fast Settling Op Amp**

AD842

FEATURES

AC PERFORMANCE Gain Bandwidth Product: 80MHz (Gain = 2) Fast Settling: 100ns to 0.01% Slew Rate: 375V/us Stable at Gains of 2 or Greater Full Power Bandwidth: 6.0MHz

DC PERFORMANCE

Input Offset Voltage: 1mV max Input Offset Drift: 10µV/°C max Input Voltage Noise: $9nV/\sqrt{Hz}$ typ Open-Loop Gain: 90V/mV into a 500 Ω Load **Output Current: 100mA min** Quiescent Supply Current: 14mA max

APPLICATIONS

Line Drivers **DAC and ADC Buffers** Video and Pulse Amplifiers Available in Plastic DIP, Hermetic Metal Can and Hermetic Cerdip Packages MIL-STD-883B Parts Available.

AD842 CONNECTION DIAGRAMS

PRODUCT DESCRIPTION

The AD842 is a member of the Analog Devices family of wide bandwidth operational amplifiers. This family includes, among others, the AD840 which is stable at a gain of 10 or greater and the AD841 which is unity-gain stable. These devices are fabricated using Analog Devices' junction isolated complementary bipolar (CB) process. This process permits a combination of de precision and wideband ac performance previously unobtainable in a monolithic op amp. In addition to its 80MHz gain bandwidth, the AD842 offers extremely fast settling characteristics, typically settling to within 0.01% of final value in less than 100ns for a 10 volt step.

The AD842 also offers a low quiescent current of 13mA, a high output current drive capablity (100mA min), a low input voltage noise of $9nV/\sqrt{Hz}$ and a low input offset voltage (1mV).

The 375V/µs slew rate of the AD842, along with its 80MHz gain bandwidth, ensures excellent performance in video and pulse amplifier applications. This amplifier is ideally suited for use in high frequency signal conditioning circuits and highbandwidth active filters. The extremely rapid settling time of the AD842 makes this amplifier the preferred choice for data acquisition applications which require 12-bit accuracy. The AD842 is also appropriate for other applications such as high-speed DAC and ADC buffer amplifiers and other wide-bandwidth circuitry.

APPLICATION HIGHLIGHTS

続。

The high slew rate and fast settling time of the AD842 make it ideal for DAC and ADC buffer amplifiers, line drivers and all types of video instrumentation circuitry.

- 2. The AD842 is a precision amplifier. It offers accuracy to 0.01% or better and wide bandwidth; performance previously available only in hybrids.
- 3. Laser-wafer trimming reduces the input offset voltage to 1mV max, thus eliminating the need for external offset nulling in many applications.
- 4. Full differential inputs provide outstanding performance in all standard high frequency op amp applications where the circuit gain will be 2 or greater.
- 5. The AD842 is an enhanced replacement for the HA2542.

$\label{eq:specifications} SPECIFICATIONS (@ +25^{\circ}c \text{ and } \pm 15V \text{ dc, unless otherwise noted})$

Model			AD842I		AD842K		AD842S			[
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹			0.5	1.5		0.5	1		0.5	1.5	mV
	$T_{min} - T_{max}$			2.5			1.5			3.5	mV
Offset Drift				20			10			20	μV/℃
INPUT BIAS CURRENT			3.5	8		3.5	5		3.5	8	μA
	$T_{min} - T_{max}$			10			6			12	μA
Input Offset Current			0.1	0.4		0.1	0.2		0.1	0.4	μA
	$T_{min} - T_{max}$			0.5			0.3			0.6	μΑ
INPUT CHARACTERISTICS											
Input Resistance	Differential Mode		100			100			100		kΩ
Input Capacitance			1.0			1.0			1.0		pF
INPUT VOLTAGE RANGE											
Common Mode		±10			±10			±10			v
Common-Mode Rejection	$V_{CM} = \pm 10V$	86	100		90	100		86	100		dB
	I min-I max	80			80			80			ab /
INPUT VOLTAGE NOISE	f = 1kHz		9			9			9		nV/√Hz
Wideband Noise	10Hz to 10MHz		28		ļ		#		28		µV rms
OPEN LOOP GAIN	$V_O = \pm 10V$					the area					
	$R_{LOAD} \ge 500\Omega$	40	90		50	90	₩.	40	90		V/mV
	I _{min} – I _{max}	20			25	All and the		20			V/mV
OUTPUT CHARACTERISTICS	D			. urtilitae	A.B.	WH W					
Voltage	$R_{LOAD} \ge 1k\Omega$	± 10		et Ma	19	- M		± 10			·V
Output Peristance	$V_{OUT} = \pm 10V$	100	s. 11	W 11 1	200		Antinit'	100	5		mA O
	Open Loop		all all a second	tell Alt a	1000	the iteration	\$r.				32
FREQUENCY RESPONSE	17 00 17	454.	新教堂	m. 1	# #	J #					
Gain Bandwidth Product	$v_{OUT} = 90mv$	ana 🐘	and and	, althe l	V (II	80 1000			80		мн-
Full Power Bandwidth ²	$V_{\rm O} = 20 V \mathbf{p} \cdot \mathbf{p}$	appen 1	all the over the second	W M. M					00		MIIIZ
	R1 = 1000	4.7	61 6 10 100	will to	4.7	6		4.7	6		MHz
Rise Time	Avcl 2	. IN ALLER	10 🔬 🖗		Har M	10			10		ns
Overshoot	$A_{VCL} = 2$	in With	# ⁷¹ 200 ⁴	1994	1. TB	20			20		%
Slew Rate	$A_{VCL} = 2^{30}$	300	and 375 and and a	etta An	300	375		300	375		V/µs
Settling Time	10V Step	M.									
	to 0.1%	Ů	80	Antick		80			80		ns
Differential Gain	$f = 2.59 M H_{2}$		100			0.1			0.1		11S 9%
Differential Phase	f = 3.58MHz		0.1			0.1			0.1		Degree
POWED SUDDI V					<u> </u>						
Rated Performance			+ 15			+ 15			± 15		v
Operating Range		±5	- 10	±18	± 5		±18	±5		±18	v
Quiescent Current				14			14			14	mA
-	$T_{min}-T_{max}$			16			16			19	mA
Power Supply Rejection Ratio	$V_S = \pm 5V \text{ to } \pm 15V$	86	100		90	100		86	100		dB
	$T_{min} - T_{max}$	80			86			80			dB
TEMPERATURE RANGE											
Rated Performance		0		+ 75	0		+ 75	- 55		+ 125	°C
PACKAGE OPTIONS ³											
Plastic (N-14)			AD842JN			AD842KN					
Cerdip (Q-14)			AD842JQ			AD842KQ			AD842SQ		
TO-8(H-12A)			AD842JH			AD842KH			AD842SH		

NOTES

¹Input offset voltage specifications are guaranteed after 5 minutes at $T_A = +25^{\circ}C$.

²FPBW = Slew Rate/ 2π V_{PEAK}.

³See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications marked in **boldface** are tested on all production units at final electrical test.

Precision 16MHz CBFET Op Amp

AD845

FEATURES

Replaces Hybrid Amplifiers in Many Applications

AC PERFORMANCE:

Settles to 0.01% in 350ns 100V/μs Slew Rate 12.8MHz min Unity-Gain Bandwidth 1.75MHz Full-Power Bandwidth at 20V p-p

DC PERFORMANCE:

0.25mV max Input Offset Voltage 5μV/°C max Offset Voltage Drift 0.4nA Input Bias Current 250V/mV min Open-Loop Gain 4μV p-p max Voltage Noise, 0.1Hz to 10Hz 94dB min CMRR Available in Plastic Mini-DIP and Hermetic Cerdip Packages

PRODUCT DESCRIPTION

The AD845 is a fast, precise, N channel JFET input, monolithic operational amplifier. It is fabricated using Analog Devices complementary bipolar (CB) process. Advanced laser writer trimming technology enables the very low input offset voltage and offset voltage drift performance to be realized. This precision when coupled with a slew rate of 100V/ks, a stable unity gain bandwidth of 16MHz, and a settling time of 350ns to 0.01% – while driving a parallel load of 100PF and 5000 – represents a combination of features unmatched by any FE1 input IC amplifier. The AD845 can easily be used to upgrade many existing designs which use BiFET or FET input hybrid amplifiers and, in some cases, those which use bipolar op amps.

The AD845 is ideal for use in applications such as active filters, high-speed integrators, photo diode preamps, sample and hold amplifiers, log amplifiers, and in buffering A/D and D/A converters. The 250 μ V max input offset voltage makes offset nulling unnecessary in many applications. The common-mode rejection ratio of 110dB over a \pm 10V input voltage range represents exceptional performance for a JFET input high-speed op amp. This, together with an open-loop gain of 250V/mV ensures that 12-bit performance is achieved, even in unity gain buffer circuits.

AD845 CONNECTION DIAGRAM

The AD845 conforms to the standard 741 pinout except that offset nulling is to V +. The AD845J and AD845K grade devices are available specified to operate over the commercial 0 to $+70^{\circ}$ C temperature range. AD845A and AD845B devices are specified to operation over the -40° C to $+85^{\circ}$ C industrial temperature range. The AD845S is specified to operate over the full military temperature range of -55° C to $+125^{\circ}$ C. Both the industrial and military versions are available in 8-pin cerdip packages. The commercial version is available in an 8-pin plastic mini-DIP.

PRODUCT HIGHLIGHTS

- 1. The high slew rate, fast settling time, and dc precision of the AD845 make it ideal for high-speed applications requiring 12-bit accuracy.
- The performance of circuits using the LF400, OP-42, OP-16, OP-17, LT1022, LT1056, HA2510, AD381, and AD382 can be upgraded in most cases.
- 3. The AD845 is unity-gain stable and is internally compensated.
- 4. The AD845 is specified while driving $100 pF/500\Omega$ loads.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

Model	Conditions	Min	AD845J/A Typ	Max	Min	AD845K/B Typ	Max	Min	AD845S Typ	Max	Units
INPUT OFFSET VOLTAGE ¹ Initial Offset Offset Drift	T _{mın} – T _{max}		0.7	1.5 2.5 20		0.1	0.25 0.4 5.0		0.25	1.0 2.0 10	mV mV μV/°C
INPUT BIAS CURRENT ² Initial	$V_{CM} = \pm 10V$ $T_{min} - T_{max}$		500	1000 30/65		250	400 12/26		500	1000 1100	pA nA
INPUT OFFSET CURRENT Initial			25	100 3/6.5		15	50 1.2/2.6		25	100 110	pA nA
INPUT CHARACTERISTICS Input Resistance Input Capacitance			10 ¹¹ 4.0			10 ¹¹ 4.0			10 ¹¹ 4.0		kΩ pF
INPUT VOLTAGE RANGE Differential Common Mode Common-Mode Rejection	$V_{CM} = \pm 10V$	±20 +10.5/- 86	13 110		± 20 + 10.5/ 94	-13		±20 +10.5/- 86	- 13 110		V V dB
INPUT VOLTAGE NOISE	0.1 to $10Hz$ f = $10Hz$ f = $100Hz$ f = $1kHz$ f = $10kHz$ f = $10kHz$ f = $100kHz$		4 80 60 25 18 12			4 80 60 25 18			4 80 60 25 18 12		$\begin{array}{c} \mu V p - p \\ n V / \sqrt{Hz} \end{array}$
INPUT CURRENT NOISE	f = 1kHz	2	0 ,1	11 M		0.1			0.1		pA/\sqrt{Hz}
OPEN-LOOP GAIN		200 100 70	500 250		250 125 80	500 250		200 100 70	500 250		V/mV V/mV V/mV
OUTPUT CHARACTERISTICS Voltage Current Output Resistance	R _{LOAD} ≥500Ω Short Circuit Open Loop	±12,5	50	P.	± 12.5	50		± 12.5	50		V mA Ω
FREQUENCY RESPONSE Small Signal Full Power Bandwidth ³	Unity Gain $V_0 = \pm 10V$ R1 = 500 Ω	12.8	16		13.6	16 1.75		13.6	16 1.75		MHz MHz
Rise Time Overshoot Slew Rate Settling Time	10V Step	80	100		94	100		94	100		ns % V/µs
	$\begin{array}{l} C_{LOAD} = 200 pF \\ R_{LOAD} = 500 \Omega F \\ to \ 0.01\% \\ to \ 0.1\% \end{array}$		350 250			350 250	500		350 250	500	ns ns ns ns
POWER SUPPLY Rated Performance Operating Range Rejection Ratio Quiescent Current	$V_{S} = \pm 5 \text{ to } \pm 15 V$ $T_{min} - T_{max}$	±4.75 88	± 15 110 10	±18 15	±4.75 98	± 15 113 10	± 18	±4.75 88	± 15 110 10	±18 15	V V dB mA
TEMPERATURE RANGE Operating, Rated Performance		0/-40		75/85	0/ 40		75/85	- 55		+ 125	°C
PACKAGE OPTIONS ⁴ Cerdip (Q-8) Plastic Mini-DIP (N-8)			AD845AQ AD845JN			AD845BQ AD845KN			AD845SQ		

NOTES ¹Input offset voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$.

²Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$.

³FPBW = slew rate/ 2π V peak.

⁴See Section 16 for package outline information

Specifications subject to change without notice.

Specifications shown in **boldface** are tested on all production units at final electrical test. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Very High-Speed Operational Amplifier

AD846

2

PRODUCT DESCRIPTION

The AD846 is a monolithic, very high-speed operational amplifier offering high performance. Although technically classed as a transimpedance amplifier, it may be used in much the same way as traditional op amps while providing significant performance benefits. Employing Analog Devices' junction isolated complementary bipolar (CB) process, the AD846 achieves true "12-bit" (0.01%) precision on critical ac and dc parameters, a level of performance unmatched by amplifiers fabricated using either the dielectrically isolated (DI) or other bipolar processes.

The AD846 offers significant advantages over conventional high-speed operational amplifiers. It maintains a nearly constant bandwidth and settling time to 0.01% over a wide range of closed-loop gains. This makes the AD846 ideal for amplifying the residue in multiple-pass analog to digital converters.

Other advantages include: low input errors and high open-loop transresistance ($500M\Omega$) into a 500Ω load, ensuring true 12-bit dc accuracy for closed-loop gains from -1 to gains greater than -100. This combination of ac and dc performance makes the AD846 an excellent choice for buffering precision high-speed DACs and flash ADCs.

The AD846 is available in three performance grades. The AD846J and AD846K are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD846S is rated over the full military temperature range of -55° C to $+125^{\circ}$ C and is available processed to MIL-STD-883B, Rev C.

Extended reliability PLUS screening is available specified over the commercial temperature range. PLUS screening includes 168 hour burn-in as well as other environmental and physical tests. The AD846 is available in three types of 8-pin package: plastic mini-DIP, hermetic cerdip or TO-99 hermetic metal cans.

PRODUCT HIGHLIGHTS

- 1. The AD846 achieves settling times of 110ns to 0.01% for gains of -1 to -10, with a 450V/ μ s slew rate, while consuming only 5mA of supply current.
- 2. For closed-loop gains of -1 to -100, the high-speed performance of the AD846 is achieved without sacrificing full 12-bit dc precision.
- 3. The AD846 is well suited to line driver and video buffer applications where the properties of low distortion and high slew rate are required.

SPECIFICATIONS (@ + 25°C and ± 15V dc, unless otherwise noted)

Model	[AD8461		AD846K			r			
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE ¹											
Initial		1	25	300		25	150		25	300	μV
$T_{min} - T_{max}$			100	400		75	250		200	800	μV
vs. Temperature	917 101/2		2	10		1	5		2	10	μV/⁰C
vs. Supply Initial	80-180-	110	125		120	125		110	125		dD
T _{min} -T _{max}		110	120		116	120		104	116		dB
vs. Common Mode	$V_{CM} = \pm 10V$		120			120		104	110		ub.
Initial	Gin	110	125		120	125		110	125		dB
$T_{min} - T_{max}$		110	120		116	120		104	116		dB
INPUT BIAS CURRENT ³						,					
- Input Bias Current											
Initial			75	450		75	250		75	450	nA
I min-I max			3/5	900		325	600		2100	2700	nA nA/0C
vs. Supply	8V-18V ²		0.5	15		5.5	10		20	30	nA/C
Initial	01-101		5	10		4	7		5	10	nA/V
$T_{min}-T_{max}$			5	10	ļ	4	: 7		5	20	nA/V
vs. Common Mode	$V_{CM} = \pm 10V$	[The second					
Initial			5	10		(1 ⁻³))	5		5	10	nA/V
T _{min} T _{max}		[5	10	Ser.	ALL PROPERTY.	*5		5	20	nA/V
+ Input Bias Current			10	20	4. 6.2		15		10	20	
TT			10	30	A. H. S.	12	15		10	20	μΑ.
vs. Temperature			40 🚿	\$150 V	alt in	an N	75		40	150	nA/°C
vs. Supply	8V-18V ²		sta 9		1000	1 De	APR		10	150	
Initial			10	25	a L	an to	15		10	25	nA/V
$T_{min} - T_{max}$		ca à	10 1	25	c THE Way	7 7	15		10	25	nA/V
vs. Common Mode	$V_{CM} = \pm 10V$	Car Na	Whith the	4 N 4							
Initial	WEEKS W.	Er alt	5	35 W	() ()	₩ <u>3</u>	10		5	15	nA/V
I min-I max	and the second second	A Marson	And the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	AND DE LAND	<u>1.30</u>	10		5	20	nA/V
INPUT CHARACTERISTICS	Y Det S	Caller and	1 W 1	alles Alles	1. A						
- Input Resistance	1	er Kar	**************************************		Den W	17			<i>(</i> -		0
+ Input	, an A	a inter	10		er aller	10			10		11 k0
Input Capacitance		W.	10 1			10		1	10		K11
– Input			2	Parallel.		2			2		pF
+ Input			2			2			2		pF
INPUT VOLTAGE RANGE											
Common Mode		±10			± 10			± 10			v
INPUT VOLTAGE NOISE	F = lkHz		2			2			2		nV/\sqrt{Hz}
Wideband Noise	10Hz to 10MHz		5			5			5		μV rms
Input Current Noise											
- Input	lkHz		20			20			20		pA/√Hz
- Input	10HZ-10MHZ		6			6			6		nA rms
+ Input	10Hz-10MHz		20			20			0 20		pA/VHz
OPENLOOP						20					IIATIIIS
Transresistance	$V_{our} = \pm 10V$										
1 unor constance	$R_{I,OAD} = 500\Omega$	150	500		250	500		150	500		мо
	$T_{min}-T_{max}$	100			100	500		70	500		MΩ
OUTPUT CHARACTERISTICS											
Voltage	$R_{LOAD} = 500\Omega$	±10			±10			± 10			v
Current		50			50			50			mA
Output Resistance	Open Loop		16			16			16		Ω
FREQUENCY RESPONSE											
Small Signal Bandwidth	$A_V = -1^4 R_F = 1k$		46			46			46		MHz
(-3dB)	$A_V = -10 R_F = 875 \Omega$		31			31			31		MHz
	$A_V = -30 R_F = 875 \Omega$		15			15			15		MHz
FULL POWER BANDWIDTH ⁴	$V_{OUT} = 20V p-p$										
	$R_I = 500\Omega$	5.5	6.8		5.5	6.8		5.5	6.8		MHz
RISETIME	$A_{v} = -1$		10	·····		10			10		ns
Overshoot	$A_{V} = -1$		20			20			20		%
Slew Rate	$A_{V} = -1$	350	450		350	450		350	450		V/µs
Settling Time	0.10										
10V Step, $A_V = -1$	to 0.1%		80			80			80		ns
	100.01%		110			110		ļ	110		ns
THD'	F = 100kHz		0.0002			0.0002		I	0.0002		%

Model	Model		AD846J			AD846K			AD846S		
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
DIFFERENTIAL GAIN Differential Phase	F = 3.58MHz F = 3.58MHz		0101			0.1 0.1			0.1 0.1		% Degree
POWER SUPPLY Rated Performance Operating Range Quiescent Current	T _{min} -T _{max}	±6	± 15 5	±18 6	±5	±15 5	±18 6	±5	± 15 5	±18 7	V V mA
TEMPERATURE RANGE Rated Performance		0		70	0		70	- 55		+ 125	°C
PACKAGE OPTIONS ⁶ Plastic (N-8) Metal Can (H-08A) Cerdip (Q-8)			AD846J1 AD846J1 AD846J0	N H Q		AD846K AD846K AD846K	IN IH IQ		AD846S AD846S	H Q	

NOTES

 $\frac{1}{1 \text{ put Offset Voltage Specifications are guaranteed after 5 minutes at } T_A = +25^\circ\text{C}.$ $\frac{2}{\text{Test Conditions:}} + V_S = 15V, -V_S = 8V \text{ to } 18V \text{ and } + V_S = 8V \text{ to } 18V_2 - V_S = -15V.$

Test conditions: $+v_S = 15v_1$, $-v_S = 0v$ to 18v and $+v_S = 8v$ to 18v, $-v_S = -15v_1$. Sias Current Specifications are guaranteed maximum at either input after 5 minutes at $T_A = +25^{\circ}C$. FPBW = Slew Rate/2r V_{PEAK}. Stotal Harmonic Distortion.

⁶See Section 16 for package outline information.

Specifications marked in **boldface** are tested on all production units at final electrical test.

Specifications subject to change without notice. ÷ .

ABSOLUTE MAXIMUM RATI

and Station R. S. Die
Supply Voltage $\ldots \ldots \ldots$
Internal Power Dissipation
ΤΟ-99 1.0₩
Plastic Package
Cerdip Package
Input Voltage ³ ± 18V
Output Short Circuit Duration
Differential Input Voltage
Continuous Input Current
Inverting or Noninverting
Storage Temperature Range H Q 65°C to + 150°C
Storage Temperature Range N65°C to +125°C
Operating Temperature Range
$AD846 J/K$ 0 to $+70^{\circ}C$
AD846S
Lead Temperature Range (Soldering 60sec) + 300°C

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²TO-99Package: $\theta_{JA} = 150^{\circ}$ C/Watt. Plastic Package: $\theta_{JA} = 90^{\circ}$ C/Watt. Cerdip Package: $\theta_{JA} = 100^{\circ}$ C/Watt.

³For supply voltages less than \pm 18V, the absolute maximum input voltage is equal to the supply voltage.

Typical Characteristics

Figure 4. Quiescent Supply Current vs. Temperature

Figure 7. Open-Loop Transimpedance vs. Supply

Figure 5. Output Voltage Swing vs. Resistive Load

Figure 8. Positive Input Bias Current vs. Common-Mode Voltage

Figure 6. Large Signal Frequency Response

Figure 9. Negative Input Bias Current vs. Common-Mode Voltage

Figure 16. Short Circuit Current Limit vs. Temperature

Figure 17. Slew Rate vs. Temperature

2

Figure 18. Slew Rate vs. Input Error Signal
Typical Characteristics, Inverting Gain of 1

+3

Figure 25. Output Impedance vs. Frequency

Figure 26. 3dB Bandwidth vs. Temperature

Supply Voltage

Typical Characteristics, Inverting Gain of 10

*PLUS 2pF SCOPE PROBE CAPACITANCE

Figure 27a. Inverting Amplifier, Gain of 10.

Figure 27b. Large Signal Pulse Response, Gain of 10

2

Figure 28. Closed-Loop Gain vs. Frequency vs. Load

Figure 29. Phase vs. Frequency vs. Load

Figure 32. 32dB Bandwidth vs. Supply Voltage

Figure 30. Harmonic Distortion vs. Frequency

Figure 33. Output Impedance vs. Frequency

Figure 31. Settling Time vs. Step Size

Figure 34. 3dB Bandwidth vs. Temperature

POWER SUPPLY BYPASSING

The power supply connections to the AD846 must maintain a low impedance to ground over a bandwidth of 40MHz or more. This is especially important when driving a significant resistive or capacitive load, since all current delivered to the load comes from the power supplies. Multiple high quality bypass capacitors are recommended for each power supply line in any critical application. A 0.1µF ceramic and a 2.2µF electrolytic capacitor as shown in Figure 35 placed as close as possible to the amplifier (with short lead lengths to power supply common) will assure adequate high frequency bypassing, in most applications. A minimum bypass capacitance of 0.1µF should be used for any application.

THEORY OF OPERATION

WILL BA The AD846 differs from conventional operational amplifiers in that it is a transimpedance device rather than a conventional voltage amplifier. Figure 36 is a simplified schematic of the AD846. The input stage consists of a pair of transistors, Q1 and Q2, which are biased by two diode-connected transistors, Q3 and Q4. Transistors Q1 and Q2 have their emitters connected together and this common point functions as the inverting input of the amplifier. Correspondingly, the common connection of the two biasing diodes acts as the noninverting input.

When operated as a closed-loop amplifier, feedback error current, IIN, flows into the inverting input terminal and is conveyed via current mirrors (transistors Q5, Q6, Q7, and Q8) to the compensation capacitor, C_{COMP}. The voltage developed across C_{COMP} is buffered by the output stage, consisting of transistors Q9-Q12.

Because the input error signal developed is in the form of a current, not a voltage, the AD846 differs from conventional operational amplifiers. This also means that, unlike most operational amplifiers which rely on negative feedback to produce a "virtual ground" at the inverting input terminal, this terminal explicitly has a low impedance.

A unique circuit approach allows the AD846 to realize an open-loop transimpedance of close to $1G\Omega$. This is nearly three orders of magnitude greater than that of any other operational transimpedance amplifier and results in extremely high levels of dc precision.

Figure 37. Overload Recovery Test Circuit

Figure 38. Overload Recovery Time Photo

As an example, the output voltage gain error is approximately equal to the value of the feedback resistor divided by the value of the open-loop transimpedance of the amplifier. That is, when using a $1k\Omega$ feedback resistor, this error is one part in 500,000. For a transimpedance amplifier with $1M\Omega$ transimpedance, this error is only one part in 1000; such an amplifier would barely be able to achieve 10-bit precision.

Figure 39. AD846 Three-Terminal Model

Figure 39 is a simplified three-terminal model for the AD846. Figure 40 is a simplified three-terminal model for a conventional voltage op amp. The action of current feedback serves to modify the behavior of the amplifier under closed-loop conditions. The feedback resistor, R_F , is somewhat analogous to the input stage transconductance of a conventional voltage amplifier; and therefore, if the value of R_F is held constant, the closed-loop voltage gain.

Figure 40. Op Amp Three-Terminal Model

A more detailed examination of the closed-loop transfer function of the AD846 results in the following equation:

 $Closed-Loop \ Gain \ G(s) = \frac{\frac{-R_F}{R_S}}{(1 \ + \ C_{COMP} \ [R_F + \left(1 \ + \ \frac{R_F}{R_S}\right)R_{IN}]s)}$

Compare this to the equation for a convention op amp:

Closed-Loop Gain G(s) =
$$\frac{\frac{-\mathbf{R}_{F}}{\mathbf{R}_{S}}}{(1 + \frac{\text{Ccomp}}{\mathbf{g}_{M}} \left(1 + \frac{\mathbf{R}_{F}}{\mathbf{R}_{S}}\right) s)}$$

Where: C_{COMP} is the internal compensation capacitor of the amplifier; g_M is the input stage transconductance of the amplifier.

In the case of the voltage amplifier, the closed-loop bandwidth decreases directly with increasing values of $(1 + R_F/R_S)$, the closed-loop gain. However, for the transimpedance amplifier, the situation is different. At low gains, where $(1 + R_F/R_S) R_{IN}$

is small compared to R_F , the closed-loop bandwidth is controlled by the internal compensation capacitance of 3.3pF and the value of R_F , and not by the closed-loop gain. At higher gains, where $(1 + R_F/R_S) R_{IN}$ is much larger than R_F , the behavior is that of a conventional operational amplifier in which the input stage transconductance is equal to the inverting terminal input impedance of the transimpedance amplifier ($R_{IN} = 67\Omega$).

A simple equation can, therefore, be used to determine the bandwidth of an amplifier employing the AD846 in the inverting configuration.

3dB Bandwidth =
$$\frac{48}{R_{\rm F} + 0.067 (1 + G)}$$

Where: The 3dB bandwidth is in MHz

G is the closed-loop inverting gain of the AD846 R_F is the feedback resistance in k Ω .

Figure 41 illustrates the closed-loop bandwidth vs. closed-loop gain of the AD846 for various values of feedback resistor. For comparison purposes, the characteristic of a conventional amplifier having a 46MHz unity gain bandwidth is also shown.

Figure 41. Closed-Loop Gain vs. Bandwidth for Various Values of R_F

For the case where $R_F = 1k\Omega$ and $R_S = 100\Omega$ (closed-loop gain of -10) then the closed-loop bandwidth becomes 28MHz. It should also be noted that the use of a capacitor to shunt R_F , a normal practice for stabilizing conventional op amps, will cause this amplifier to become unstable because the closed-loop bandwidth will increase beyond the stable operating frequency.

A similar approach can be taken to calculate the noise performance of the amplifier. A simplified noise model is shown in Figure 42.

The equivalent output noise voltage will equal:

$$V_{ON} = R_F I_{NN} + \left(1 + \frac{R_F}{R_S}\right) \sqrt{V_N^2 + (R_P I_{NP})^2}$$

Where: $\mathbf{R}_{\mathbf{P}}$ is the external resistance placed in series with the noninverting input

R_F is the feedback resistor

R_S is the source resistor

 I_{NN} is the noise current in the inverting input

 I_{NP} is the noise current in the noninverting input

 V_N is the input noise voltage.

Typical values for these parameters (@ 1kHz) in pA/ \sqrt{Hz} are: I_{NN} = 20, I_{PN} = 6, V_N = 2.

Or, referring to the input, the equivalent input voltage noise is:

$$V_{IN} = R_{S} I_{NN} + \left(1 + \frac{R_{S}}{R_{F}}\right) \sqrt{V_{N}^{2} + (R_{P} I_{NP})^{2}}$$

As can be seen from the above equation, the addition of R_P degrades the noise performance of the amplifier. In addition, the positive and negative input bias currents are unequal in the AD846. This means that the normal practice of adding resistor R_P to compensate for bias-current-induced-offset errors is highly undesirable and indeed R_P should be made as low as possible.

Figure 42. Op Amp Simplified Noise Model

NONINVERTING GAIN OPERATION

The AD846 can be used as a noninverting amplifier or voltage follower, operating at gains between 1 and 200, A minimum value of R_F equal to $1k\Omega$ should be employed. For low gains (1 to 2), the input signal should be applied to the AD846's noninverting input through a $1k\Omega$ series resistor; this will help reduce peaking. The best transient response will occur when the amplifier's output level is below 5V peak to peak.

At closed-loop gains of 3 or more, the input resistor is not required unless peak signals greater than 3V will be applied. The amplifier's bandwidth can be determined by using the inverting amplifier's bandwidth equation or from Figure 41. For example, at a gain of +10 ($R_F = 1k\Omega$, $R_S = 100\Omega$) the bandwidth of the AD846 will be approximately 20MHz; at a gain of +100, ($R_F = 1k\Omega$, $R_S = 10\Omega$) it will be 6MHz. At gains of 3 or greater, a small capacitor (2pF-5pF) connected across the feedback resistor will help reduce overshoot; but when operating at noninverting gains below 3, this same capacitance will cause instability.

USING THE COMPENSATION PIN OF THE AD846

Additional compensation may be provided for the AD846 by applying an external capacitance between Pin 5 and analog ground (Figure 43). The nominal value of the AD846's internal compensation capacitor is 3.3 pF. For a given value of feedback resistance (R_F), any added external capacitance reduces the amplifier's slew rate and bandwidth proportionally.

In addition to providing for external compensation, Pin 5 may be used to clamp the output of the amplifier, as shown in Figure 44. The output can be clamped anywhere within the output range (approximately $\pm 10V$) of the amplifier. The input should also be clamped as a precaution again damaging the amplifier's input transistors.

Figure 43. AD846 Inverting Amplifier Showing External Compensation Connection

Figure 44. AD846 Used as a Clamped Amplifier

This compensation node may also be used as an additional output terminal as in the precision transconductance amplifier application of Figure 45.

Figure 45. A Precision Transconductance Amplifier

The AD846 can be used in either the inverting transconductance mode as shown in Figure 45, or in a noninverting mode with R_S grounded and V_S applied to the noninverting terminal. The current output is essentially constant over a compliance range of \pm 10V at the compensation node. The output current is limited to about \pm 1mA due to internal saturation. Under these circumstances the normal output pin provides a buffered version of the compensation node output voltage. Output load impedance of 500\Omega or greater will not affect the accuracy of the transconductance conversion.

THE AD846 AS AN AUDIO AMPLIFIER

The extremely fast settling and highly linear input characteristics of the AD846 make it a superb audio amplifier. Figure 46 is a circuit for a phono (RIAA) preamplifier and line driver. In this circuit, open-loop servos are used to set the dc operating points of the amplifier.

Adequate power supply regulation is critical in this application, otherwise the performance of the AD846 will suffer. In addition, the deterioration of performance caused by the poor choice of decoupling components (such as the use of tantalum capacitors) is audible. For best performance, all capacitors should be polypropylene.

Figure 46. The AD846 RIAA Audio Preamplifier Circuit

THE AD846 AS AN OPEN-LOOP LEVEL SHIFTER

The AD846 can also be used for open-loop level shifting. As shown in Figure 47, resistor R_S is used to develop an input current which is proportional to the input voltage, V_{IN} . This current flows from the compensation node (Pin 5) developing a voltage across resistor R_C (R_C is equal in value to resistor R_S) which, rather than being grounded, has one end tied to reference voltage V2. The voltage appearing at Pin 5 is, therefore, voltage V_{IN} plus voltage V2 and will directly follow changes in V_{IN} . By scaling resistor R_C , a level shift with voltage gain can be produced. In addition, the normal voltage output at Pin 6 is approximately equal to the voltage at Pin 5 thus providing a low impedance, buffered output for the level shifter.

Figure 47. AD846 Connected as a Level Shift Amplifier

THE AD846 AS A HIGH-SPEED DAC BUFFER

The AD846 will enable the AD568 12-bit DAC to develop a 10V output step which settles to within 0.025 percent of its final value in about 100ns. This AD846/AD568 combination is shown in the circuit of Figure 48. Correct power supply decoupling is essential: a 2.2μ F tantalum capacitor connected in parallel with a 0 1 μ F to 0.01 μ F ceramic disc capacitor is usually sufficient. These should be placed as close to the power supply pins as possible. Also, a ground plane should be employed; this ensures that there is a low impedance signal path to ground which allows the fastest possible output settling. In 12-bit systems with the AD846 operating at gains of 10 or less, inadequate supply decoupling can cause the output settling to degrade from 100ns to as much as 300ns, with a 10V output step applied.

Figure 48. The AD846 Serving as a DAC Buffer

High-Speed, Low-Power Monolithic Op Amp

AD847

FEATURES

300V/μs Slew Rate
80ns Settling Time to 0.1%
Unity Gain Stable
50MHz Gain Bandwidth Product with Only 5mA of Quiescent Current
Stable Performance with Any Capacitive Load
0.5mV Offset Voltage
Performance Specified for ±5V and ±15V Operation
±3V Output Swing into 150Ω Load
0.1dB Differential Gain
0.1dB Differential Phase
Available in Plastic, Cerdip and SO Package
Improved Replacement for National LM6161 Series

APPLICATIONS

Unity Gain Buffer Video and R_F Amplification 8- and 10-Bit Data Acquisition Systems Cable Drivers

PRODUCT DESCRIPTION

The AD847 is a high-speed, high-gain, low-power monolithic operational amplifier which achieves its performance by utilizing Analog Devices' unique junction isolated complementary bipolar process. It achieves its high speed while requiring only 5mA from the power supplies. This product is designed, specified and tested for $\pm 5V$ to $\pm 15V$ operation. For $\pm 5V$ operation its output can swing $\pm 3V$ into a 150Ω load. The AD847 is available in 8-pin plastic, cerdip and small outline packages. Options are available which operate over commercial, industrial and military temperature ranges.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V$
Differential Input Voltage
Output Short-Circuit Duration Indefinite
Internal Power Dissipation
Plastic
Cerdip
SOIC
Lead Temperature (Soldering 10sec) + 260°C
Storage Temperature Range 65°C to + 150°C
Maximum Junction Temperature + 150°C

AD847 CONNECTION DIAGRAM

8-Pin Plastic Mini-DIP, Small Outline and Cerdip

2

RODUCT HIGHLIGHTS

. The AD847 high-speed monolithic operational amplifier achieves a remarkable 50MHz gain bandwidth product and 300V/us slew rate while drawing only 5mA from the power supply lines.

The circuit is optimized and tested for $\pm 5V$ and $\pm 15V$ power supply voltages.

The AD847 is internally compensated for unity gain operation and remains stable when driving a capacitive load.

- The amplifier can drive doubly terminated 75Ω coaxial transmission lines, making it ideal as a video and R_F cable driver.
- 5. The AD847 is one of a series of high-speed amplifiers featuring low standby power which utilize Analog Devices' proprietary complementary bipolar process. It is a direct replacement for National Semiconductor's LM 6161 series of amplifiers with greatly improved gain and dc performance.
- 6. The AD847 has applications in video and R_F amplification, as a buffer in high-speed 8- and 10-bit data acquisition systems and in optical memory servo systems. Its low power makes it ideal for high packaging density applications such as multiple pole active filters.

$SPECIFICATIONS (@ + 25^{\circ}C \text{ and } \pm 5V \text{ dc, unless otherwise noted})$

Model	Conditions	Min	AD847J	Man	Min	AD847A/S	Man	Tielde
INDUT CHARACTERISTICS	Conditions	1VIII	Тур	max	ANIII	Тур	Max	Units
INPUT CHARACTERISTICS			0.5	1		0.5	1	mV
mput onior tompe	T _{min} to T _{max}		0.5	2.5		0.5	4	mV
Input Offset Voltage Drift			15	30		15	30	μV/°C
INPUT BIAS CURRENT			2.5	5		2.5	5	μA
	T _{min} to T _{max}			6			6	μΑ
Input Offset Current	T to T		150	300		150	300	nA
Input Offset Current Drift	I min to I max		03	400		03	400	nA nA/°C
GAIN	· · · · · · · · · · · · · · · · · · ·					0.5		MP C
Open Loop	$V_s = \pm 5V$							
	$V_{OUT} = \pm 2.5 V$							
	$R_L \ge 500\Omega$	2	3		2	3		V/mV
	$R_L = 150\Omega$		1			1		V/mV
	$V_S = \pm 15V$ Vorr = $\pm 12V$				ļ			
	$R_L = 2k\Omega$	3			3	5		V/mV
	T _{min} to T _{max}	1.5			1.5			V/mV
Differential Gain			0.1		ł	0.1		dB
	······································		0.1			0.1		degree
DYNAMIC CHARACTERISTICS	$f = 20MH_{2}V_{1} = \pm 15V_{2}$		50			50		MU-
Gain Bandwidth Toduct	$V_{s} = \pm 5V$		35			35		MHz
Slew Rate	$V_S = \pm 15V$	225	300		225 🔬	300		V/µs
	$V_S = \pm 5V$		200		A.S.	200		V/µs
Settling Time to 0.1%	$V_s = \pm 5V$		65	W		65		ns
	-2.5V to + 2.5V Step. Av = -1			BEA. W	Panel H	,		
	$R_L = 2k\Omega$			the in the				
	$V_S = \pm 15V$		a Million	A W How we	獵			
Diana Manala	10V Step		80	all in	A A	80		ns
Phase Margin	$V_S = \pm 15V$ $C_r = 10pF$	Alth	NO B W	ADATE OF	A SPA TH	j#**30		degree
	$R_L = 2k\Omega$	4 11.4	A M .		Mar 1			
INPUT RESISTANCE	Differential	A th	300	6 M. alpenter		300		kΩ
Input Capacitance	I = SUMHZ	alifitan and	1.5 Ho - H			1.5		pr
COMMON-MODE VOLTAGE RANGE		attentite H		and the second		+4.3		v
	Vs = ± 15V	the All	+ 14.3	Hand B	Sta Mar	+ 14.3		v
	Winner Hann	a Wander	- 13.	A M .		-13.4		v
Common-Mode Rejection	$V_s = \pm 5V$	attitt	Changel Wei	all [[]]				-
	$V_{CM} = \pm 2.5V$	86 🦷	95		86	95		dB
	$V_{\rm CM} = \pm 12V$	86	95		86	95		dB
	T _{min} to T _{max}	80			80			dB
Power Supply Rejection Ratio		80	90		80	90		dB
Input Noise Voltage	f = 10 kHz		15			15		nV/VHz
			1.5			1.5		
Output Voltage Swing	$V_s = \pm 5V$							
	$R_L \ge 2k\Omega$	±3.6			±3.6			v
	$\mathbf{R_L} = 150\Omega$	±2.5			±2.5			v
	$V_s = \pm 15V$ $P_s = 210$	+12			+ 12			V
	$R_L = 500\Omega$	± 12 ± 10			± 12 ± 10			v
Short-Circuit Current			35			35		mA
POWER SUPPLY								
Operating Range		±4.5	_	±18	±4.5	_	±18	v
Quiescent Current	T + T		5	6.0		5	6.0 7.2	mA
	1 min to 1 max			0.9			1.4	ша
I EMPERATURE KANGE Rated Performance							`	
Commercial (0 to + 70°C)		AD8471	N	AD847JR				
Military $(-55^{\circ}C \text{ to } + 125^{\circ}C)$				-		AD847SC	2	
PACKAGE OPTIONS ¹								
Plastic (N-8)			AD847JN	I				
Cerdip (Q-8)			1 00 47 10		AD847AC	2, AD847SC	2	
JUIC(R-0)	L	I	AD84/JR		L			

.

NOTE ¹See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications marked in **boldface** are tested on all production units at final electrical test.

High-Speed, Low-Power Monolithic Op Amp

AD848

FEATURES

300V/μs Slew Rate
80ns Settling Time to 0.1%
175MHz Gain Bandwidth Product with Only 5mA of Quiescent Current
Stable Performance with Any Capacitive Load
Stable Operation with a Minimum Gain of 5
0.5mV Offset Voltage
Performance Specified for ±5V and ±15V Operation
±3V Output Swing into 150Ω Load
0.1dB Differential Gain
0.1dB Differential Phase
Available in Plastic, Cerdip and SO Package

APPLICATIONS

High Bandwidth, High Gain Communication Systems Video and R_F Amplification 8- and 10-Bit Data Acquisition Systems Cable Drivers

Improved Replacement for National LM6164 Series

PRODUCT DESCRIPTION

The AD848 is a high-speed, high-gain, low-power monolithic operational amplifier which achieves its performance by utilizing Analog Devices' unique junction isolated complementary bipolar process. It achieves its high speed while only requiring 5mA from the power supplies. This product is designed, specified and tested for $\pm 5V$ to $\pm 15V$ operation. For $\pm 5V$ operation its output can swing $\pm 3V$ into a 150Ω load. The AD848 is available in 8-pin plastic, cerdip and small outline packages. Options are available which operate over commercial, industrial and military temperature ranges.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\dots \dots \dots$
Differential Input Voltage ²
Output Short-Circuit Duration Indefinite
Internal Power Dissipation
Plastic
Cerdip
SO
Lead Temperature (Soldering 10sec) + 260°C
Storage Temperature Range65°C to +150°C
Maximum Junction Temperature + 150°C

AD848 CONNECTION DIAGRAM

8-Pin Plastic Mini-DIP, Small Outline and Cerdip

PRODUCT HIGHLIGHTS

The AD848 high-speed monolithic operational amplifier achieves a remarkable 175MHz gain bandwidth product and 300V/ns slew rate while drawing only 5mA from the power supply lines.

The circuit is optimized and tested for $\pm 5V$ and $\pm 15V$ power supply voltages.

3 The AD848 is internally compensated for operation with a gain of 5 and remains stable when driving a capacitive load.

- . The amplifier can drive doubly terminated 75Ω coaxial transmission lines, making it ideal as a video and R_F cable driver.
- 5. The AD848 is one of a series of high-speed amplifiers featuring low standby power which utilize Analog Devices' proprietary complementary bipolar process. It is a direct replacement for National Semiconductor's LM 6164 series of amplifiers with greatly improved gain and dc performance.
- 6. The AD848 has applications in video and R_F amplification, as a gain block in high-speed 8- and 10-bit data acquisition systems and in optical memory servo systems. Its low power makes it ideal for high packaging density applications such as multiple pole active filters.

$SPECIFICATIONS (@ + 25^{\circ}C \text{ and } \pm 5V \text{ dc, unless otherwise noted})$

Model	Conditions	A	D848J	Мах	A	D848A/S	Max	Units
INPUT CHARACTERISTICS			- , P			-75		
Input Offset Voltage	T + T		0.5	1		0.5	1	mV
Input Offset Voltage Drift	I min to I max		5	1.5		5	2 10	μV/°C
INPUT BIAS CURRENT			2.5	5		2.5	5	μA
Input Offert Current	T _{min} to T _{max}		150	6 300		150	6 300	μA
input Onset Current	T _{min} to T _{max}		130	400		150	400	nA
Input Offset Current Drift			0.3	·····		0.3		nA/°C
GAIN Open Loop	$V_{a} = \pm 5V$							
Open Loop	$V_{OUT} = \pm 2.5V$							
	$R_L = 500\Omega$ $R_z = 150\Omega$	10	15		10	15 5		V/mV V/mV
	$V_S = \pm 15V$		5			2		() m (
	$V_{OUT} = \pm 12V$ $R_{out} = 2hO$	20	20		20	20		V/mV
	T_{min} to T_{max}	10	50		10	50		V/mV
Differential Gain			0.1			0.1		dB
Differential Phase			0.1	*****		0.1		degree
Gain Bandwidth Product	$f = 20MHz, V_S = \pm 15V$		175			175		MHz
	$V_S = \pm 5V$	225	120		225	120		MHz
Slew Rate	$V_s = \pm 15V$ $V_s = \pm 5V$	225	300 200		225	200	1	V/µs V/µs
Settling Time to 0.1%	$V_s = \pm 5V$		65		A	65		ns
	-2.5V to $+2.5VAV = -5.$				No.			
	$R_L = 2k\Omega$							
	$V_s = \pm 15V$ 10V Step		80 *	E Ster 1	1947	80		ns
Phase Margin	$V_S = \pm 15V$		50	J. Man the	13	50		degree
	$C_L = 10 pF$ $R_r = 2k\Omega$	19	18 18 1	9 ^{- 10}	s. Em			
INPUT RESISTANCE	Differential	(<i>M</i>)	1,500	Contraction of	and the second	1,500		kΩ
Input Capacitance	f = 50MHz	a the set	1.5			1.5		pF
COMMON-MODE VOLTAGE RANGE	$V_{\rm S} = \pm 5V$	a the second	43			+ 4.3		V
	$V_S = \pm 15 V_c$	and the	+ 19.3	- FA		+ 14.3		v
	0000	The second second	13.4	with press	dija.	- 13.4		V
Common-Mode Rejection	$V_{S} = \pm 3V$ $V_{CM} = \pm 2.5V$	90	105		90	105		ub
	$V_S = \pm 15V$	A TOPAL	105	(the		105		dB
	$V_{CM} = \pm 12V$	90 86	A R		90 86			dB
Power Supply Rejection Ratio		90	100		90	100		
Input Noise Voltage Input Noise Current	f = 10 kHz f = 10 kHz		4 1.5			4 1.5		pA/\sqrt{Hz}
OUTPUT CHARACTERISTICS			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		L			
Output Voltage Swing	$V_S = \pm 5V$				+26			¥,
	$R_L \gtrsim 500\Omega$ $R_L = 150\Omega$	± 3.6 ± 2.5			± 3.6 ± 2.5			v
	$V_s = \pm 15V$				+ 12			V
	$\mathbf{R}_{\mathrm{L}} = 2\mathbf{R}\Omega$ $\mathbf{R}_{\mathrm{L}} = 500\Omega$	± 12 ± 10			± 12 ± 10			v
Short-Circuit Current	2		35			35		mA
POWER SUPPLY		+ 4 5		+ 19	+45		+ 19	V
Operating Voltage Range Ourescent Current		±4.5	5	± 18 6.0	±4.5	5	6.0	mA
	T _{min} to T _{max}			6.9			7.2	mA
TEMPERATURE RANGE								
Commercial (0 to +70°C)		AD848J	N	AD848JR				
Industrial $(+40^{\circ}\text{C to} + 85^{\circ}\text{C})$						AD8485	2	
$\frac{\text{Millitary}(-55^{\circ}\text{Uto} + 125^{\circ}\text{U})}{\text{PAOK ACE OPTIONS}}$	ļ					770402	×	
Plastic (N-8)			AD848]	IN				
Cerdip (Q-8)			4 50 401	I B	AD848A	Q, AD848S	Q	
50IC(K-8)	l		AD048		l			

NOTE ¹See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications marked in **boldface** are tested on all production units at final electrical test.

AD849

AD849 CONNECTION DIAGRAM

FEATURES 300V/μs Slew Rate 80ns Settling Time to 0.1% 750MHz Gain Bandwidth Product with Only 5mA of Quiescent Current Stable Performance with Any Capacitive Load Stable Operation with a Minimum Gain of 25 0.5mV Offset Voltage Performance Specified for ±5V and ±15V Operation ±3V Output Swing into 150Ω Load 0.1dB Differential Gain 0.1dB Differential Phase Available in Plastic, Cerdip and SO Package Improved Replacement for National LM6165 Series

APPLICATIONS

High Gain, High Bandwidth Communication Systems Video and R_F Amplification 8- and 10-Bit Data Acquisition Systems Cable Drivers

PRODUCT DESCRIPTION

The AD849 is a high-speed, high-gain, low-power monolithic operational amplifier which achieves its performance by utilizing Analog Devices' unique junction isolated complementary bipolar process. It achieves its high speed while requiring only SmA from the power supplies. This product is designed, specified and tested for $\pm 5V$ to $\pm 15V$ operation. For $\pm 5V$ operation are output can swing $\pm 3V$ into a 1500 load. The AD849 is available in 8-pin plastic, cerdip and small outline packages. Options are available which operate over commercial, industrial and military temperature ranges.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 1$	18V
Differential Input Voltage	:6V
Output Short-Circuit Duration Indefin	nite
Internal Power Dissipation	
Plastic	BD
Cerdip	6W
SOIC	BD
Lead Temperature (Soldering 10sec) +26	0°C
Storage Temperature Range 65°C to +15	0°C
Maximum Junction Temperature + 15	0°C

PRODUCT HIGHLIGHTS

2

P. The AD849 high-speed monolithic operational amplifier achieves a remarkable 750MHz gain bandwidth product and 300V/µs slew rate while drawing only 5mA from the power supply lines.

The circuit is optimized and tested for $\pm 5V$ and $\pm 15V$ power supply voltages.

3. The AD849 is internally compensated for operation with a gain of 25 and remains stable when driving a capacitive load.

- The amplifier can drive doubly terminated 75Ω coaxial transmission lines, making it ideal as a video and R_F cable driver.
- 5. The AD849 is one of a series of high-speed amplifiers featuring low standby power which utilize Analog Devices' proprietary complementary bipolar process. It is a direct replacement for National Semiconductor's LM 6165 series of amplifiers with greatly improved gain and dc performance.
- 6. The AD849 has applications in video and R_I- amplification, as a gain block in high-speed 8- and 10-bit data acquisition systems and in optical memory servo systems. Its low power makes it ideal for high packaging density applications such as multiple pole active filters.

2

SPECIFICATIONS (@ + 25°C and ± 5V dc, unless otherwise noted)

Model			AD849J	_	A	D849A/S		
	Conditions	Min	Тур	Max	Min	Тур	Max	Units
INPUT CHARACTERISTICS			0.5	1	<i>e</i>	0.5	1	mV
input officer voltage	T _{min} to T _{max}		0.5	1.5		05	2	mV
Input Offset Voltage Drift			1	5		1	5	μV/°C
INPUT BIAS CURRENT	T T		2.5	5		2.5	5	μA
Input Offset Current	I min to I max		150	6 300		150	6 300	μA nA
	T _{min} to T _{max}			400			400	nA
Input Offset Current Drift			03			03		nA/°C
GAIN								
Open Loop	$V_S = \pm 5V$ $V_{OUT} = \pm 2.5V$							
	$R_L = 500\Omega$	30	45		30	45	*	V/mV
	$R_{L} = 150\Omega$		20			20		V/mV
	$V_S = \pm 15V$ $V_{OUT} = \pm 12V$							
	$R_L = 2k\Omega$	50	80		50	80		V/mV
Differential Cour	T _{min} to T _{max}	25	0.1		25	0.1		V/mV
Differential Phase			0.1			0.1		degree
DYNAMIC CHARACTERISTICS					44			
Gain Bandwidth Product	$f = 20MHz, V_S = \pm 15V$		750		the E	750		MHz
Slow Poto	$V_s = \pm 5V$ $V_s = \pm 15V$	225	520	antare (225	520		MHz
Siew Rate	$V_S = \pm 15V$ $V_S = \pm 5V$	223	200	eth. Went	223.49	200		V/μs V/μs
Settling Time to 0 1%	$V_{S} = \pm 5V$		65 🕷	a R	- in-	65		ns
	-2.5V to +2.5V		A THE		1			
	$R_{\rm L} = 2k\Omega$			· 1	a Mantha			
	$V_s = \pm 15V$	16.27		Walter End	and the second			
Phase Margin	10V Step V ₀ = $\pm 15V$	V M	⁸⁰ 50 1			80 50		ns degree
Thase Margin	$C_L = 10 pF$	M		M allow		50		uegree
	$R_L = 2k\Omega$	4	V W star					
INPUT RESISTANCE	Differential	with them.	15	ne GA	s.	15		kΩ
	a soundaiz	W 3h	1.5 **	<u> i ji</u>		1.5		рг
COMMON-MODE VOLTAGE RANGE	$V_{\pm} = \pm 5V$	and an	a3	r Aller		+43		v
	$V_S = \pm 15V$	M.	+ 4.3			+14.3		v
C	W 611	100	- 13.4		100	- 13 4		V
Common-Mode Rejection	$V_S = \pm 5V$ $V_{CM} = \pm 2.5V$	100	115		100	115		ав
ν.	$V_S = \pm 15V$	100	115		100	115		dB
	$V_{CM} = \pm 12V$	05		1	05			4P
Power Supply Rejection Ratio	I min to I max	100	110		100	110		dB
Input Noise Voltage	f = 10kHz		4			4		nV/\sqrt{Hz}
Input Noise Current	f = 10 kHz		1.5			1.5		pA/∨Hz
OUTPUT CHARACTERISTICS	$V_{\rm r} = \pm 5V$							
output voltage ownig	$R_{I} \ge 500\Omega$	±3.6			±3.6			v
	$\mathbf{R}_{\mathrm{L}} = 150\Omega$	±2.5			±2.5			v
a de la constante de	$V_{S} = \pm 15V$ $R_{r} = 2kO$	+12			+ 12			v
	$R_{I} = 500\Omega$	±10			± 10	,		v
Short-Circuit Current			35			35		mA
POWER SUPPLY				. 10				.,
Operating Voltage Range Opiescent Current		±4.5	5	±18 6.0	±4.5	5	±18 6.0	w mA
2	T _{min} to T _{max}		-	6.9		-	7.2	′mA
TEMPERATURE RANGE								
Rated Performance		ADALO	N	A DO OT				
Commercial (0 to \pm 70°C) Industrial (-40° C to \pm 85°C)		AD849J	IN	AD849JK		AD849AC)	
Military $(-55^{\circ}C \text{ to } + 125^{\circ}C)$						AD849SQ	2	
PACKAGE OPTIONS ¹								
Plastic (N-8)			AD849J	N				
Cerdip (Q-8) SOIC (R-8)	-		AD8491	R	AD849A	2, AD849SC	ł	
	L	L						L

NOTE ¹See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications marked in **boldface** are tested on all production units at final electrical test

Ultrahigh-Frequency Operational Amplifier

AD5539

FEATURES

Improved Replacement for Signetics SE/NE5539

AC PERFORMANCE

Gain Bandwidth Product: 1.4GHz typ Unity Gain Bandwidth: 220MHz typ High Slew Rate: 600V/µs typ Full Power Response: 82MHz typ Open-Loop Gain: 47dB min, 52dB typ

DC PERFORMANCE

All Guaranteed DC Specifications Are 100% Tested For Each Device Over Its Full Temperature Range – For All Grades and Packages V_{OS} : 5mV max Over Full Temperature Range (AD5539J) I_B: 20 μ A max (AD5539J) CMRR: 70dB min, 85dB typ PSRR: 100 μ V/V typ MIL-STD-883B Parts Available

PRODUCT DESCRIPTION

The AD5539 is an ultrahigh-frequency operational amplifier designed specifically for use in video circuits and RF amplifiers. Requiring no external compensation for gains greater than 5, it may be operated at lower gains with the addition of external compensation.

As a superior replacement for the Signetics NE/SE5539, each AD5539 is 100% dc tested to meet all of its guaranteed dc specifications over the full temperature range of the device.

The high slew rate and wide bandwidth of the AD5539 provide low-cost solutions to many otherwise complex and expensive high-frequency circuit design problems.

The AD5539 is available specified to operate over either the commercial (AD5539JN/JQ) or military (AD5539SQ) temperature range. The commercial grade is available either in 14-pin plastic or cerdip packages. The military version is supplied in the cerdip package.

AD5539 CONNECTION DIAGRAM Plastic DIP (N) Package or Cerdip (Q) Package

- **PRODUCT HIGHLIGHTS** 1. All guaranteed dc specifications are 100% tested.
- 2. The AD5539 drives 50Ω and 75Ω loads directly.
- 3. Input voltage noise is less than $4nV\sqrt{Hz}$.
- 4. Low-cost RF and Video speed performance.
- 5. ± 2 volt output range into a 150 Ω load.
- 6. Low cost.
- 7. Chips available.

2

$\label{eq:specifications} SPECIFICATIONS (@ +25^{\circ}c \text{ and } V_s = \pm 8V \text{ dc, unless otherwise noted})$

		AD5539J			AD5539S		s x
Model	Min	Тур	Max	Min	Тур	Max	Units
INPUT OFFSET VOLTAGE							
Initial Offset ¹		2	5		2	3	mV
T _{min} to T _{max}			6			5	mV
INPUT OFFSET CURRENT							
Initial Offset ²		0.1	2		0.1	1	uA
T _{min} to T _{max}			5			3	μA
INPUT BLASCURRENT							······
Initial ²							
$V_{CM} = 0$		6	20	[6	13	uА
Either Input		•		ļ	•		F
T _{min} to T _{max}			40			25	μA
FREQUENCY RESPONSE							
$R_{\rm I} = 150\Omega^3$							
Small Signal Bandwidth		220			220		MHz
$A_{CL} = 2^4$							
Gain Bandwidth Product		1400			1400		MHz
$A_{CL} = 26 dB$							
Full Power Response							
$A_{CL} = 2^4$		68			68		MHz
$A_{CL} = 7$		82			82		MHz
$A_{CL} = 20$		65			65		MHz
Settling Time (1%)		12			12		ns
Slew Kate		600			600		V/µs
Total Harmonia Distortion		4			4		ns
$\mathbf{P}_{-} - \infty$		0.010			0.010		0/
$R_{L} = \infty$ $B_{T} = 1000^{3}$		0.010			0.010		- 70 - 06
$V_{OUT} = 2V p - p$		0.010			0.010		70
$A_{CL} = 7, f = 1 \text{ kHz}$							
INPUT IMPEDANCE		100			100		kΩ
OUTPUT IMPEDANCE (f<10MHz)		2			2		Ω
INPUT VOL TAGE RANGE						·····	
Differential ⁵							
(Max Nondestructive)		250			250		mV
Common-Mode Voltage							
(Max Nondestructive)		2.5			2.5		v
Common-Mode Rejection Ratio							
$\Delta V_{CM} = 1.7 V$							
$R_s = 100\Omega$	70	85		70	85		dB
T_{\min} to T_{\max}	60			60			dB
INPUT VOLTAGE NOISE							
Wideband rms Noise (RTI)		5		ļ	5		μV
$BW = 5MHz; R_S = 50\Omega$							
Spot Noise		4			4		nV/√Hz
$F = 1 \text{KHz}; \text{K}_{\text{S}} = 50\Omega$							
OPEN LOOP GAIN							
$V_0 = +2.3V, -1.7V$. <u>.</u>			1			
$K_L = 150\Omega^2$	47	52	58	47	52	58	aB
$\mathbf{K}_{L} = 2\mathbf{K}_{1}\mathbf{I}$	4/		28 62	48		5/	ab
$I_{\min} \cup I_{\max} - K_L = 2KM$	L ⁴³		03	1 **		00	uD

	AD5539J				AD5539S				
Model	Min	Тур	Max	Min	Тур	Max	Units		
OUTPUT CHARACTERISTICS									
Positive Output Swing									
$R_L = 150\Omega^3$	+2.3	+2.8		+2.3	+2.8		v		
$R_L = 2k\Omega$	+2.3	+ 3.3		+2.5	+ 3.3		v		
T _{min} to T _{max} with									
$R_L = 2k\Omega$	+2.3			+2.3			v		
Negative Output Swing									
$R_L = 150\Omega^3$		-2.2	-1.7		-2.2	-1.7	v		
$R_L = 2k\Omega$		-2.9	-1.7		-2.9	-2.0	v		
T _{min} to T _{max} with									
$R_L = 2k\Omega$			-1.5			-1.5	V		
POWER SUPPLY (No Load, No Resistor to $-V_S$)									
Rated Performance		±8			±8		v		
Operating Range	±4.5		+ 10	±4.5		+ 10	v		
Quiescent Current									
Initial I _{CC} +		14	18		14	17	mA		
T _{min} to T _{max}			20			18	mA		
Initial I _{CC} –		11	15		11	14	mA		
T _{min} to T _{max}			17			15	mA		
PSRR									
Initial		100	1000		100	1000	μV/V		
T_{min} to T_{max}			2000			2000	μV/V		
TEMPERATURE RANGE									
Operating,									
Rated Performance									
Commercial $(0 \text{ to } + 70^{\circ}\text{C})$	AD553	9JN, AD5	539JQ						
$Military(-55^{\circ}C to + 125^{\circ}C)$				A	D5539SC	2			
PACKAGE OPTIONS ⁶									
Plastic (N-14)	AD553	9JN							
Cerdip (Q-14)	AD553	9JQ		A	D5539SC	2			

NOTES ¹Input Offset Voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}C$. ²Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}C$. ³ $R_X = 4700$ to $-V_S$. ⁴Externally compensated.

⁵Defined as voltage between inputs, such that neither exceeds +2.5V, -5.0V from ground.

⁶See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications in **boldface** are tested on all production units at final electrical test. Results from those tests are used to because of the second of the s

ABSOLUTE MAXIMUM RATINGS¹

upply Voltage	±10V
nternal Power Dissipation	50mW
nput Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots + 2.5V$,	– 5.0V
Differential Input Voltage	0.25V
torage Temperature Range Q65°C to +	· 150°C
torage Temperature Range N65°C to +	· 125°C
Operating Temperature Range	
AD5539JN 0 to	+ 70°C
AD5539JQ 0 to	+ 70°C
AD5539SQ	· 125°C

Lead Temperature Range (Soldering 60 seconds) 300°C

NOTES

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OFFSET NULL CONFIGURATION

 $\text{OUTPUT NULL RANGE} \cong + V_{S}\left(\frac{R_{F}}{R_{\text{NULL}}}\right) \text{TO } - V_{S}\left(\frac{R_{F}}{R_{\text{NULL}}}\right)$

OFFSET NULL CONFIGURATION

Typical Characteristics

Figure 2. Output Voltage Swing

vs. Resistive Load

Figure 1. Output Voltage Swing vs. Supply Voltage

т. - 15 - 20 L - 3 - 2 0 1 2 OUTPUT VOLTAGE - VOLTS

Figure 4. Positive Supply Current vs. Supply Voltage

Figure 7. Common-Mode Rejection Ratio vs. Frequency

Figure 5. Input Voltage vs. Output Voltage for Various Temperatures

Figure 8. Harmonic Distortion vs. Frequency - Low Gain

Figure 3. Maximum Common-Mode Voltage vs. Supply Voltage

Figure 6. Low Frequency Input Noise vs. Frequency

Figure 9. Harmonic Distortion vs. Frequency - High Gain

Figure 10. Full Power Response

Figure 11. Deviation from Ideal Gain vs. Closed-Loop Voltage Gain

FUNCTIONAL DESCRIPTION

The AD5539 is a two-stage, very-high-frequency amplifier. Darlington input transistors Q1, Q4 – Q2, Q3 form the first stage – a differential gain amplifier with a voltage gain of approximately 50. The second stage, Q5, is a single-ended amplifier whose input is derived from one phase of the differential amplifier output; the other phase of the differential output is then summed with the output of Q5. The all NPN design of the AD5539 is configured such that the emitter of Q5 is returned, via a small resistor to ground; this eliminates the need for separate level shifting circuitry.

The output stage, consisting of transistors Q9 and Q10, is a Darlington voltage follower with a resistive pull-down. The bias section, consisting of transistors Q6, Q7 and Q8, provides a stable emitter current for the input section, compensating for temperature and power supply variations.

SOME GENERAL PRINCIPLES OF HIGH-FREQUENCY CIRCUIT DESIGN

In designing practical circuits with the AD5539, the user must remember that whenever very high frequencies are involved, some special precautions are in order. All real-world applications circuits must be built using proper RF techniques: the use of short interconnect leads, adequate shielding, groundplanes, and very low-profile IC sockets. In addition, very careful bypassing of power supply leads is a must.

Low-impedance transmission line is frequently used to carry signals at RF frequencies: 50Ω line for telecommunications purposes and 75Ω for video applications. The AD5539 offers a relatively low output impedance; therefore, some consideration must be given to impedance matching. A common matching technique involves simply placing a resistor in series with the amplifier output that is equal to the characteristic impedance of the transmission line. This provides a good match (although at a loss of 6dB), adequate for many applications.

All of the circuits here were built and tested in a 50Ω system. Care should be taken in adapting these circuits for each particular use. Any system which has been properly matched and terminated in its characteristic impedance should have the same small-signal frequency response as those shown in this data sheet.

APPLYING THE AD5539

The AD5539 is stable for closed-loop gains of 4 or more as an inverter and at (noise) gains of 5 or greater as a voltage follower. This means that whenever the AD5539 is operated at noise gains below 5, external frequency compensation must be used to insure stable operation.

The following sections outline specific compensation circuits which permit stable operation of the AD5539 down to follower (noise) gains of 3 (inverting gains of 2) with corresponding -3dB bandwidths up to 390MHz. External compensation is achieved by modifying the frequency response to the AD5539's external feedback network (i.e., by adding lead-lag compensation), so that the amplifier operates at a noise gain of 5 (or more) at frequencies over 44MHz, independent of signal gain.

Figure 13. Small Signal Open-Loop Gain and Phase vs. Frequency

GENERAL PRINCIPLES OF LEAD AND LAG COMPENSATION

The AD5539 has its first pole or breakpoint in its open-loop frequency response at about 10MHz (see Figure 13). At frequencies beyond 100MHz, phase shift increases such that the output lags the input by 180° – well before the unity gain crossover frequency. Therefore, severe peaking (and possible oscillation) will result if the AD5539 is operated at noise gains below 5, unless external compensation is employed. Figure 14 shows the uncompensated

Figure 14. AD5539 Uncompensated Response, Glosed-Loop Gain = 7

closed-loop frequency response of the AD5539 when operating at a noise gain of 7. Under these conditions, excess phase shift causes nearly 10dB of peaking at 150MHz.

Figure 15 illustrates the use of both lead and lag compensation to permit stable low-gain operation. The AD5539 is shown connected as an inverting amplifier with the required external components added to provide stability and improve high-frequency response. The stray capacitance between the amplifier summing junction and ground, C_x , represents whatever capacitance is associated with the particular type of op amp package used plus the stray wiring capacitance at the summing junction.

Evaluating the lead capacitance first (ignoring R_{LAG} and C_{LAG} for now): the feedback network, consisting of R2 and C_{LEAD} , has a pole frequency equal to:

$$F_{A} = \frac{1}{2\pi (C_{LEAD} + C_{X}) (R1 \parallel R2)}$$
 Equation 1

and a zero frequency equal to:

$$F_{B} = \frac{1}{2\pi (R1 \times C_{LEAD})}$$
 Equation 2

Usually, frequency F_A is made equal to F_B ; that is, $(R1C_X) = (R2 C_{LEAD})$, in a manner similar to the compensation used for an attenuator or scope probe. However, if the pole frequency, F_A , will lie above the unity gain crossover frequency (440MHz), then the optimum location of F_B will be near the crossover

Figure 16. A Model of the Feedback Network of the Inverting Amplifier

frequency. Both of these circuit techniques add a large amount of leading phase shift at the crossover frequency, greatly aiding stability.

The lag network (R_{LAG} , C_{LAG}) increases the feedback attenuation, i.e.: the amplifier operates at a higher noise gain, above some frequency, typically one tenth of the crossover frequency. As an example, to achieve a noise gain of 5 at frequencies above 44MHz, for the circuit of Figure 15, would require a network of:

$$R_{LAG} = \frac{R1}{(4R1/R2) - 1}$$
 Equation 3

and . . .

$$C_{LAG} = \frac{1}{2\pi R_{LAG} (44 \times 10^6)}$$
 Equation 4

It is worth noting that an R_{LAG} resistor may be used alone, to increase the noise gain above 5 at all frequencies. However, this approach has the disadvantage of also increasing the dc offset and low frequency noise errors by an amount equal to the increase in gain, in this case, by a factor of 5.

SOME PRACTICAL CIRCUITS

The preceding general principles may now be applied to some actual circuits.

A General Purpose Inverter Circuit

Figure 17 is a general purpose inverter circuit operating at a gain of -2.

Figure 17. A General Purpose Inverter Circuit

For this circuit, the total capacitance at the inverting input is approximately 3pF; therefore, C_{LEAD} from Equations 1 & 2 needs to be approximately 1.5pF. As shown in Figure 17, a small trimmer is used to optimize the frequency response of this circuit. Without a lag compensation network, the noise gain of the circuit is 3.0 and, as shown in Figure 18, the output amplitude remains within ± 0.5 dB to 170MHz and the -3dB bandwidth is 200MHz.

Figure 18. Response of the (Figure 17) Inverter Circuit Without a Lag Compensation Network

A lag network (Figure 15) can be added to improve the response of this circuit even further as shown in Figures 19 and 20. In almost all cases, it is imperative to make capacitor C_{LEAD} adjustable; in some cases, C_{LAG} must also be variable. Otherwise, component and circuit capacitance variations will dominate circuit performance.

Figure 19. Response of the (Figure 17) Inverter Circuit With an R_{LAG} Compensation Network Employed

Figure 20. Response of the (Figure 17) Inverter Circuit With an R_{LAG} and a C_{LAG} Compensation Network Employed

Figures 21 and 22 show the small and large signal pulse responses of the general purpose inverter circuit of Figure 17, with $C_{LEAD} = 1.5 pF$, $R_{LAG} = 330\Omega$ and $C_{LAG} = 3.5 pF$.

Figure 21. Small Signal Pulse Response of the (Figure 17) Inverter Circuit. Vertical Scale: 50mV/div; Horizontal Scale: 5ns/div.

Figure 22. Large Signal Response of the (Figure 17) Inverter Circuit. Vertical Scale: 200mV/div, Horizontal Scale: 5ns/ div.

A C_{LEAD} capacitor may be used to limit the circuit bandwidth and to achieve a single pole response free of overshoot

 $(-3dB \text{ frequency} = \frac{1}{2\pi R2C_{LEAD}}).$ If this option is selected, it is recommended that a C_{LEAD} be

If this option is selected, it is recommended that a C_{LEAD} be connected between Pin 12 and the summing junction, as shown in Figure 23. Pin 12 provides a separately buffered version of the output signal. Connecting the lead capacitor here avoids the excess output-stage phase shift and subsequent oscillation problems (at approx. 350MHz) which would otherwise occur when using the circuit of Figure 17 with a C_{LEAD} of more than about 2pF.

Figure 24 shows the response of the circuit of Figure 23 for each connection of C_{LEAD} . Lag components may also be added to this circuit to further tailor its response, but, in this case, the results will be slightly less satisfactory than connecting C_{LEAD} directly to the output, as was done in Figure 17.

Figure 23. A Gain of 2 Inverter Circuit with the C_{LEAD} Capacitor Connected to Pin 12

Figure 24. Response of the Circuit of Figure 23 with $C_{LEAD} = 10 pF$

A General Purpose Voltage Follower Circuit

Noninverting (voltage follower) circuits pose an additional complication, in that when a lag network is used, the source impedance will affect the noise gain. In addition, the slightly greater bandwidth of the noninverting configuration makes any excess phase shift due to the output stage more of a problem.

For example, a gain of 3 noninverting circuit with C_{LEAD} connected normally (across the feedback resistor – Figure 25) will require a source resistance of 200 Ω or greater to prevent UHF oscillation; the extra source resistance provides some damping as well as increasing the noise gain. The frequency response plot of Figure 26 shows that the highest – 3dB frequency of all the applications circuits can be achieved using this connection, unfortunately, at the expense of a noise gain of 14.2.

Figure 25. A Gain of 3 Follower with Both Lead and Lag Compensation

Figure 26. Response of the Gain of 3 Follower Circuit

Adding a lag capacitor (Figure 27) will greatly reduce the midband and low-frequency noise gain of the circuit while sacrificing only a small amount of bandwidth as shown in Figure 28.

Figure 27. A Gain of 3 Follower Circuit with both C_{LEAD} and R_{LAG} Compensation

Figure 28. Response of the Gain of 3 Follower with C_{LEAD} , C_{LAG} and R_{LAG}

These same principles may be applied when capacitor C_{LEAD} is connected to Pin 12 (Figure 29). Figure 30 shows the bandwidth of the gain of 3 amplifier for various values of R_{LAG} . It can be seen from these response plots that a high noise gain is still needed to achieve a reasonably flat response (the smaller the

Figure 29. A Gain of 3 Follower Circuit with C_{LEAD} Compensation Connected to Pin 12

Figure 30. Response of the Gain of 3 Follower Circuit with C_{LEAD} Connected to Pin 12

value of R_{LAG} , the higher the noise gain). For example, with a 220 Ω R_{LAG} and a 50 Ω source resistance, the noise gain will be 12.8, because the source resistance affects the noise gain.

Figures 31 and 32 show the small and large signal responses of the circuit of Figure 29.

Figure 31. The Small-Signal Pulse Response of the Gain of 3 Follower Circuit with R_{LAG} and C_{LEAD} Compensation to Pin 12. Vertical Scale: 50mV/div.; Horizontal Scale: 5ns/ div.

Figure 32. The Large-Signal Pulse Response of the Gain of 3 Follower Circuit with R_{LAG} and C_{LEAD} Compensation to Pin 12. Vertical Scale: 200mV/div; Horizontal Scale: 5ns/div.

A Video Amplifier Circuit with 20dB Gain (Terminated) High gain applications (14dB and up) require only a small lead capacitance to obtain flat response. The 26dB (20dB terminated) video amplifier circuit of Figure 33 has the response shown in Figure 34 using only approximately 0.5-1pF lead capacitance. Again, a small C_{LEAD} can be connected, either to the output or to Pin 12 with very little difference in response.

Figure 33. A 20dB Gain Video Amplifier for 75 Ω Systems

Figure 34. Response of the 20dB Video Amplifier

In color video applications, the quality of differential gain and differential phase response is very important. Figures 35, 36, 37 and 38 show the standard six-step modulated staircase waveform. The amplifier's response is plotted first by a vector scope, and then the magnified differential gain/differential phase target is plotted, first without the 20dB amplifier, then with the amplifier in the system.

Figures 37 and 38 have been expanded to provide the necessary resolution to show a differential gain of less than 0.5% and a differential phase less than 0.1° .

Figure 35. A Six-Step Modulated Staircase Waveform of the 20dB Video Amplifier Circuit

Figure 36. The 20dB Video Amplifier's Response Plotted on a Vector Scope

Figure 37. Differential Gain/Differential Phase Target with Generator Output Connected Directly to Vector Scope Input

Figure 38. Differential Gain/Differential Phase Target with Generator Output Connected to Video Amplifier Input – Amplifier is Output Connected to Vector Scope Input

MEASURING AD5539 SETTLING TIME

Measuring the very rapid settling times associated with AD5539 can be a real problem for the designer; proper component layout must be used and appropriate test equipment selected. In addition, both cable dispersion (a function of cable losses) and the quality of termination (SWR) directly affect the measurement. The circuit of Figure 39 was used to make a "brute force" AD5539 settling time measurement. The fixture containing the circuit was connected directly - using a male BNC connector (but no cable) – onto the front of a 50 Ω input oscilloscope preamp. A digital mainframe was then used to capture, average, and expand the error signal. Most of the small-scale waveform aberrations shown on the figure were caused by the oscilloscope itself, especially the glitch at 15ns. The pulse source used for this measurement was an EH-SPG2000 pulse generator set for a 1ns rise-time; it was coupled directly to the circuit using 18" of microwave 50Ω hard line.

Figure 39. AD5539 Settling Time Test Circuit

APPLICATIONS SUMMARY CHART

	R 1	R 2 ¹	R _{LAG}	C _{LAG} ²	C _{LEAD} ²	GAIN	GAIN FLATNESS (TRIMMED)	– 3dB BANDWIDTH
Gain = -1 to - 5 Circuit of Fig 17	<u>R2</u> G	2k	$\leq \frac{R1}{4\frac{R1}{R2} - 1}$	$\geq \frac{1}{2\pi (44 \times 10^6) R_{LAG}}$	$\approx \frac{3pF}{G}$	-2	±0.2dB	200MHz
Gain = -1 to - 5Circuit of Fig. 23	<u>R2</u> G	2k	$\leq \frac{R1}{4\frac{R1}{R2} - 1}$	$\geq \frac{1}{2\pi (44 \times 10^6) R_{LAG}}$	$\approx \frac{3pF}{G}$	-2	± ldB	180MHz
$Gain = +2 to +5^{3}$ Circuit of Fig 27	$\frac{R2}{G-1}$	2k	$\leq \frac{R1}{10\frac{R1}{R2} - 1}$	$\geq \frac{1}{2\pi (44 \times 10^6) R_{LAG}}$	$\approx \frac{3pF}{G-1}$	+ 3	± ldB	390MHz
$Gain = +2 to + 5^4$ Circuit of Fig. 29	$\frac{R2}{G-1}$	2k	$\leq \frac{R1}{10\frac{R1}{R2} - 1}$	NA	$\approx \frac{3pF}{G-1}$	+ 3	±0.5 dB	340MHz
Gain < - 5	<u>R2</u> G	1 5k	NA	NA	Trimmer ^s	- 20	±0.2dB	80MHz
Gain > + 5	$\frac{R}{G-1}$	1.5k	NA	NA	Trimmer ⁵	+ 20	±0.2dB	80MHz

G = Gain NA = Not Applicable

 $\label{eq:Values given for specific results summarized here - applications can be adapted for values different than those specified <math display="inline">^2$ It is recommended that $C_{1 \, EAD}$ and C_{LAG} be trimmers covering a range that includes the computed value above

 ${}^{3}R_{SOURCE} \ge 200\Omega$

 ${}^{4}R_{SOURCE} ≥ 50Ω$. ⁵Use Voltronics CPA20 1-2.5pF Teflon Trimmer Capacitor (or equivalent)

The photos of Figures 40 and 41 demonstrate how the AD5539 easily settles to 1% (1mV) in less than 12ns; settling to 0.1% (100µV) requires less than 25ns.

Figure 40. Error Signal from AD5539 Settling Time Test Circuit - Falling Edge. Vertical Scale: 5ns/div.; Horizontal Scale: 500µV/div.

Figure 41. Error Signal from AD5539 Settling Time Test Circuit - Rising Edge. Vertical Scale: 5ns/div.; Horizontal Scale: 500µV/div.

Figure 42 shows the oscilloscope response of the generator alone, set up to simulate the ideal test circuit error signal (Figure 43).

Figure 42. The Oscilloscope Response Alone Directly Driven by the Test Generator. Vertical Scale: 5ns/div.; Horizontal Scale: 500µV/div.

Figure 43. A Simulated Ideal Test Circuit Error Signal

Figure 44. A Wide Bandwidth Voltage-Controlled Amplifier

A 50MHz VOLTAGE-CONTROLLED AMPLIFIER

Figure 44 is a circuit for a 50MHz voltage-controlled amplifier (VCA) suitable for use in high-quality video-speed applications. This circuit uses the AD5539 as an output amplifier for the AD539, a high bandwidth multiplier. The outputs from the two signal channels of the AD539 are applied to the op amp in a subtracting configuration. This connection has two main advantages: first, it results in better rejection of the control voltage, particularly when over-driven ($V_X < 0$ or $V_X > 3.3V$). Secondly, it provides a choice of either noninverting or inverting responses, using either input V_{Y1} or V_{Y2} respectively. In this circuit, the output of the op amp will equal:

$$V_{OUT} = \frac{V_X (V_{Y1} - V_{Y2})}{2V}$$
 for $V_X > 0$

Hence, the gain is unity at $V_X = +2V$. Since V_X can over-range to +3.3V, the maximum gain in this configuration is about 4.3dB. (Note: If Pin 9 of the AD539 is grounded, rather than connected to the output of the 5539N, the maximum gain becomes 10dB.)

The bandwidth of this circuit is over 50MHz at full gain, and is not substantially affected at lower gains. Of course, when V_X is zero (or slightly negative, to override the residual input offset) there is still a small amount of capacitive feedthrough at high frequencies; therefore, *extreme* care is needed in laying out the PC board to minimize this effect. Also, for small values of V_X , the combination of this feedthrough with the multiplier output can cause a dip in the response where they are out of phase. Figure 45 shows the ac response from the noninverting input, V_{Y2} , essentially identical. Test conditions: $V_{Y1} = 0.5V$ rms for values of V_X from + 10mV to +3.16V; this is with a 75 Ω load on the output. The feedthrough at $V_X = -10mV$ is also shown.

Figure 45. AC Response of the VCA at Different Gains $V_Y = 0.5V \text{ rms}$

The transient response of the signal channel at $V_x = +2V$, $V_y = V_{OUT} = +$ or -1V is shown in Figure 46; with the VCA driving a 75 Ω load. The rise and fall times are both approximately 7ns.

A few final circuit details: in general, the control amplifier compensation capacitor for Pin 2, C_C , must have a minimum value of 3000pF (3nF) to provide both circuit stability and maximum control bandwidth. However, if the maximum control bandwidth is not needed, then it is advisable to use a larger value of C_C , with typical values between 0.01 and 0.1µF. Like many aspects of design, the value of C_C will be a tradeoff: higher values of C_C will lower the high-frequency distortion, reduce the high-frequency crosstalk and improve the signal channel phase response. Conversely, lower values of C_C will provide a higher control channel bandwidth at the expense of degraded linearity in the output response when amplitude modulating a carrier signal.

Figure 46. Transient Response of the Voltage-Controlled Amplifier $V_X = \pm 2$ Volts, $V_Y = \pm 1$ Volt

The control channel bandwidth will vary in inverse proportion to the value of C_c , providing a typical bandwidth of 2MHz with a C_c of 0.01μ F and a V_x voltage of +1.7 volts.

Both the bandwidth and pulse response of the control channel can be further increased by using a feedforward capacitor, $C_{\rm ff}$, with a value between 5 and 20 percent of $C_{\rm C}$. $C_{\rm ff}$ should be carefully adjusted to give the best pulse response for a particular step input applied to the control channel. Note that since $C_{\rm ff}$ is connected between a linear control input (Pin 1) and a logarithmic node, the settling time of the control channel with a pulse input will vary with different control input step levels. Diode D1 clamps the logarithmic control node at Pin 2 of the AD539, (preventing this point from going too negative); this diode helps decrease the circuit recovery time when the control input goes below ground potential.

THE AD539/5539 COMBINATION AS A FAST, LOW FEEDTHROUGH, VIDEO SWITCH

Figure 47 shows how the AD539/5539 combination can be used to create a fast video speed switch suitable for many high-frequency applications including color key switching. It features both inverting and noninverting inputs and can provide an output of ± 1 V into a reverse-terminated 75 Ω load (or ± 2 V into 150 Ω). An optional output offset adjustment is provided. The input range of the video switch is the same as the output range: ± 1 V at either input generates ± 1 V (noninverting) or ∓ 1 V (inverting) across the 75 Ω load. The circuit provides a gain of about 1, when "ON", or zero when "OFF".

The differential configuration uses both channels of the AD539 not only to provide alternative input phases, but also to eliminate the switching pedestal due to step changes in the output current as the AD539 is gated on or off.

Figure 49 shows the response to a pulse of 0 to +1V on the signal channel. With the control input held at zero, the rise time is under 10ns. The response from the inverting input is similar.

The differential-gain and differential-phase characteristics of this switch are compatible with video applications. The incremental gain changes less than 0.05dB over a signal window of 0 to

Figure 47. An Analog Multiplier Video Switch

+ 1V, with a phase variation of less than 0.5 degree at the subcarrier frequency of 3.58MHz. The noise level of this circuit measured at the 75 Ω load is typically 200 μ V in a 0 to 5MHz bandwidth or approximately 100nV per root hertz. The noise spectral density is essentially flat to 40MHz.

case, an offset sine wave at 1MHz) was applied to the noninverting input. In Figure 48, the envelope response shows the output being fully switched in about 50ns. Note that the output is ON when the control input is zero (or more negative) and OFF for a control input of +1V or more. There is very little control-signal breakthrough.

The waveforms shown in Figures 48 and 49 were taken across a 75 Ω termination; in both photos, the signal of 0 to +1V (in this

Figure 48. The Control Response of the Video Switcher

Figure 49. The Signal Response of the Video Switcher

Wide-Bandwidth, Fast-Settling Operational Amplifier

AD9610

AD9610 FUNCTIONAL BLOCK DIAGRAM

FEATURES Ultrastable Unity Gain Bandwidth (100MHz) 18ns Settling Time to 0.1% Superior dc Performance Offset Voltage ± 0.3 mV Bias Current 2 μ A ± 21 mA Supply Currents

APPLICATIONS

Driving Flash Converters High-Speed DACs Radar, IF Processors Photodiode Preamps ATE/Pulse Generators Imaging/Display Drivers

GENERAL DESCRIPTION

The AD9610 is a fast-settling, wide-bandwidth dc-coupled transimpedance operational amplifier which combines superior dc specifications and exceptional dynamic performance. That combination provides remarkable versatility and utility for high-speed designers.

Thin-film technology and innovative design techniques help assure stable operation over the complete operating temperature range. Input offset voltage temperature drift is typically $5\mu V/^{\circ}C$; input bias current drift is typically $70nA/^{\circ}C$.

Unique internal architecture keeps the AD9610 inherently stable over its complete gain range and assures wide bandwidth at all gain settings. With G = -1, 3dB bandwidth is 100MHz; with G = -10, bandwidth is 95MHz. When G = -20, 3dB bandwidth is an incredible 75MHz. Slew rate, rise time, fall time, and settling time are also independent of gain.

The design of the AD9610 makes it easy to apply. The unit is internally compensated and needs no external compensation. An internal 1.5k Ω feedback resistor is available to the user by connecting Pin 4 to output Pin 11. Pins 2 and 8 are bypass pins and should be connected to ground through 33 – 50 Ω resistors and 0.1 μ F ceramic capacitors; effective decoupling of the power supplies is also important for proper operation.

Two temperature ranges are available. The AD9610BH is guaranteed over a case temperature range of -25° C to $+85^{\circ}$ C; the AD9610TH is for a range of -55° C to $+125^{\circ}$ C. Standard devices are produced in a MIL-STD-1772-certified facility; contact the factory for information on units screened to MIL-STD-883.

$\label{eq:specifications} \begin{array}{l} \textbf{SPECIFICATIONS} \\ \textbf{DC ELECTRICAL CHARACTERISTICS} (\pm v = \pm 15 v; \textbf{A}_v = -10; \textbf{R}_{IN} = 1500 \Omega; \textbf{R}_F = 15 k \Omega; \textbf{No } \textbf{R}_{LOND} \end{array} \end{array}$

		Sub-	AD%10BH/TH Typical		AD9610BF Min/Max	H ¹ @				
	Parameter(Conditions)	Group	@+25°C	−25°C	+25℃	+85℃	−55°C	+25℃	+125°C	Units
√	Offset Voltage	1,2,3	±0.3	±4.0	±1.0	±2.5	±4.0	±1.0	± 2.5	mV
\checkmark	Offset Voltage T _C ³	2,3	± 5				±25		±25	μV/°C
\checkmark	Input Bias Current									
	Inverting	1,2,3	±5	± 56	±15	± 35	± 56	±15	± 35	μA
	Noninverting	1,2,3	±15	±75	± 50	±62	±75	± 50	±62	μA
\checkmark	Input Bias Current T _C ³									
	Inverting	2,3	±70				± 330		± 330	nA/℃
	Noninverting	2,3	± 30				± 200		± 200	nA/°C
#	Inverting Impedance		20			×				Ω
#	Noninverting									
	Impedance		200k							Ω
	Capacitance		2							pF
#	Common-Mode Input		± 5	±5	±5	±5	±5	±5	±5	v
\checkmark	Internal Feedback Resistor (R _F)		1500		1490/			1490/		
					1510			1510		Ω
#	R _F Temperature Coefficient			±25		±25	±25		±25	ppm/°C
\checkmark	Common-Mode Rejection Ratio (CMRR) ⁴	4,5,6	>50	≥35	≥35	≥35	≥35	≥35	≥35	dB
	$\mathbf{CMRR} \left(\mathbf{R}_{\mathbf{F}} = 1500\Omega; \mathbf{R}_{\mathbf{IN}} = 150\Omega; \Delta \mathbf{V}_{\mathbf{S}} = 5\mathbf{V} \right)$		>60							dB
\checkmark	Common-Mode Sensitivity (CMS), ⁵									
	Referred to Input ($\Delta V_s = 5V$)									
	– CMS	4,5,6	3	8	8	8	8	8	8	μA/V
	+ CMS	4,5,6	3	8	8	8	8	8	8	μA/V
	CMSVOLTAGE	4,5,6	62	≥50	≥50	≥50	≥50	≥50	≥50	dB
#	Output Impedance (dc to 100kHz)		0.05							Ω
\checkmark	Output Voltage Swing ($R_{LOAD} = 200\Omega$)	1,2,3	±10	$\geq \pm 9$	$\geq \pm 9$	$\geq \pm 9$	$\geq \pm 9$	≥±9	$\geq \pm 9$	V
#	Output Current		± 50	$\geq \pm 50$	$\geq \pm 50$	$\geq \pm 50$	$\geq \pm 50$	$\geq \pm 50$	$\geq \pm 50$	mA
	(Continuous)									
\checkmark	Open Loop Transimpedance $Gain (200\Omega Load)$	4,5,6	>1.5	≥0.7	≥0.9	≥0.7	≥0.7	≥0.9	≥0.7	MΩ
\checkmark	Supply Current ⁶	1,2,3	21	≤27	≤25	≤27	≤27	≤25	≤27	mA
	Power Consumption ⁶		630	≤810	≤750	≤810	≤810	≤750	≤810	mW
\checkmark	Power Supply Rejection Ratio (PSRR) ⁴	4,5,6	>50	≥35	≥35	≥35	≥35	≥35	≥35	dB
	PSRR ($R_{\rm F} = 1500\Omega; R_{\rm IN} = 150\Omega; \Delta V_{\rm S} = 10V$)		>60							dB
\checkmark	Power Supply Sensitivity (PSS), ⁷									
	Referred to Input ($\Delta V_{S} = 10V$)									
	PSS _{VOLTAGE}	4,5,6	65	50	50	50	50	50	50	dB
	– PSS	4,5,6	3	8	8	8	8	8	8	μA/V
	+ PSS	4,5,6	3	8	8	8	8	8	8	μA/V

$\label{eq:action} \textbf{AC ELECTRICAL CHARACTERISTICS} ~ (\pm v = \pm 15 V; \textbf{A}_v = -10; \textbf{R}_{IN} = 150 \Omega; \textbf{R}_F = 1.5 k \Omega; \textbf{R}_{LOAD} = 200 \Omega)$

Ba	$ndwidth(-3dB)(V_{OUT}=100mV p-p)$									
\checkmark	G = -10	4, 5, 6	>100	≥80	≥80	≥80	≥80	≥80	≥80	MHz
	Amplitude of Peaking:		1							
\checkmark	DC to 60MHz	4,5,6	0	≤0.4	≤0.2	≤1.0	≤0.4	≤0.2	≤1.0	dB
#	>60MHz		0	≤0.6	≤0.3	≤1.8	≤0.6	≤0.3	≤1.8	dB
#	Phase Nonlinearity (dc to 45MHz)		1							•
#	Rise (Fall) Time ($V_{OUT} = 5V$ Step)		<3.5	≤4	≤4	≤4.3	≤4	≤4	≤4.3	ns
#	Slew Rate ($V_{OUT} = 18V$ Step)		>3.5	≥3	≥3	≥2.4	≥3	≥3	≥2.4	kV/μs
#	Settling Time to 0.1% (G = -10 ;									
	5V Output Step)		18	≤29	≤25	≤29	≤29	≤25	≤29	ns
#	Settling Time to 0.02% (G = -10 ;									
	5V Output Step)		30							ns
#	Overshoot Amplitude ($V_{OUT} = 5V$ Output Step)		<4	≤14	≤8	≤18	≤14	≤8	≤18	%
#	Propagation Delay		3.3	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	≤4.0	ns
J	Total Harmonic Distortion (Freq. = 20 MHz;									
·	Output Voltage = $2V p-p$)	4,5,6	55	50	50	50	50	50	50	dB
#	Input Noise ($R_{I,OAD} = 100\Omega$)									
	Voltage (5MHz to 150MHz)		0.7	≤1.2	≤1.5	≤2.0	≤1.2	≤1.5	≤2.0	nV/VHz
	Current (5MHz to 150MHz)		23	≤29	≤30	≤35	≤29	≤30	≤35	pA/√Hz
							1			
				1						

	Sub-	AD9610BH/TH Typical		AD9610BH Min/Max (1 @				
Parameter	Group	@+25°C	-25°C	+ 25°C	+85°C	– 55°C	+ 25°C	+125°C	Units
$\begin{array}{l} \textbf{OTHER INFORMATION} \\ \textbf{Case to Ambient, } \theta_{CA}{}^8 \\ \textbf{(Still Air; No Heat Sink)} \\ \textbf{Case to Ambient, } \theta_{CA}{}^8 \\ \textbf{(500 LFPM Air; No Heat Sink)} \\ \textbf{MTBF}{}^9 \end{array}$		65 38 $\geq 1.48 \times 10^{6}$	* * *	* *	* *	* *	* *	* *	°C/W °C/W hours
PACKAGE OPTION ¹⁰ TO-8 (H-12A)				AD9610BF	I				

NOTES

/ 100% tested (See Notes 1 and 2).

Specifications guaranteed by design; not tested.

*Specification same as AD9610BH/TH typical specification.

¹AD9610BH parameters preceded by a check ($\sqrt{}$) are tested at +25°C ambient temperature; performance is guaranteed over the

industrial temperature range (-25°C to +85°C) case temperature.

²AD9610TH parameters preceded by a check ($\sqrt{}$) are tested at 55°C case, +25°C ambient, and + 125°C case temperatures. Mil-processed versions are available.

 3 Offset voltage T_C and bias current T_C are guaranteed over the respective temperature ranges.

⁴CMRR and PSRR apply only for stated conditions.

⁵CMS values can be used to determine the CMRR for specific gain settings according to the following worst case relationships:

$$\begin{split} \Delta V_{OUT} &= [-CMS] \left[R_{F} \right] \left[\Delta V_{SUPPLY} \right] + [+CMS] \left[R2 \right] \left[1 + \frac{R_{F}}{R1} \right] \left[\Delta V_{SUPPLY} \right] + \left[CMS_{VOLT} \right] \left[1 + \frac{R_{F}}{R1} \right] \left[\Delta V_{SUPPLY} \right] \\ WHERE \ \Delta V_{SUPPLY} &= \Delta - V_{SUPPLY} \ AND \ \Delta + V_{SUPPLY} \\ CMRR &= -20 \ LOG \left[\left(\frac{\Delta V_{OUT}}{1 + \frac{R_{F}}{R1} \chi \ \Delta V_{SUPPLY}} \right) \right] \end{split}$$

⁶Supply current and power dissipation numbers are for quiescent operation (input is grounded). Values increase with higher frequency operation.

⁷PSS values can be used to determine the PSRR for specific gain settings according to the following worst case relationships (See diagram in 5 above):

$$\begin{split} \Delta V_{OUT} &= \left[-PSS \right] \left[R_F \right] \left[\Delta V_{SUPPLY} \right] + \left[+PSS \right] \left[R_2 \right] \left[1 + \frac{R_F}{R1} \right] \left[\Delta V_{SUPPLY} \right] + \left[PSS_{VOLT} \right] \left[1 + \frac{R_F}{R1} \right] \left[\Delta V_{SUPPLY} \right] \\ WHERE \ \Delta V_{SUPPLY} &= \Delta - V_{SUPPLY} \ OR \ \Delta + V_{SUPPLY} \\ PSRR &= -20 \ LOG \left[\left(\frac{\Delta V_{OUT}}{1 + \frac{R_F}{R1} \times \Delta V_{SUPPLY}} \right) \right] \end{split}$$

⁸Recommended maximum junction temperature is +165°C. See Thermal Model. ⁹MTBF calculated using MIL-HNBK 217D; Ground Fixed; Temperature (case) = +70°C.

¹⁰See Section 16 for package outline information.

Specifications subject to change without notice.

EXPLANATION OF GROUP A MILITARY SUBGROUPS	Subgroup 7 – Functional tests at +25°C.
Subgroup $1 - \text{Static tests at } + 25^{\circ}\text{C}$.	Subgroup 8 – Functional tests at maximum and minimum
Subgroup 2 – Static tests at maximum rated temperature.	rated temperatures.
Subgroup 3 – Static tests at minimum rated temperature.	Subgroup 9 – Switching tests at $+25^{\circ}$ C.
Subgroup 4 – Dynamic tests at $+25^{\circ}$ C.	Subgroup 10 - Switching tests at maximum rated temperatures.
Subgroup 5 – Dynamic tests at maximum rated temperature.	Subgroup 11 – Switching tests at minimum rated temperatures.
Subgroup 6 – Dynamic tests at minimum rated temperature.	Subgroup 12 – Periodically sample tested.
ABOOT LITTE MANUAL BATTACO	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	es	(:	ŧ,	٧s)	•	٠	•	•	•	•	•	•	٠	•	•	±18V
Operating Temperature Range (case)																	
AD9610BH																	-25°C to +85°C
AD9610TH				•													- 55°C to + 125°C

Power Dissipation	•		•	•	•	See Thermal Model
Junction Temperature	•		•			+165°C
Storage Temperature Range .			•			65°C to +150°C
Lead Temperature (soldering,	10	sec)).			+ 300°C

OPERATIONAL AMPLIFIERS 2-201

THIS MICROCIRCUIT IS COVERED BY TECHNOLOGY GROUP (I) PER MIL-M-38510

AD9610 LIFE TEST/BURN-IN CIRCUIT

THEORY OF OPERATION

The advantages of the transimpedance AD9610 Operational Amplifier become easier to understand when its operation is compared to the operation of conventional high-speed op amps.

The operation of the AD9610 Operational Amplifier is similar to a standard voltage-input differential amplifier in terms of setting gain and calculating noise. The primary difference between the two types is a low-impedance inverting input on the AD9610; this causes the unit to use current feedback, rather than voltage feedback, to achieve signal amplification.

Figure 1 and the discussion which follows help make a comparison between the AD9610 and "conventional" devices.

Two equations are necessary to describe the amplifier shown in Figure 1.

and the other sums the currents at the inverting input:

$$\frac{\mathbf{V}_{\mathrm{S}} - \mathbf{V}_{\mathrm{IN}}}{\mathbf{R}_{\mathrm{IN}}} + \frac{\mathbf{V}_{\mathrm{S}}}{\mathbf{R}_{\mathrm{S}}} + \frac{\mathbf{V}_{\mathrm{S}} - \mathbf{V}_{\mathrm{OUT}}}{\mathbf{R}_{\mathrm{F}}} = 0 \qquad (Equation B)$$

Rearranging and reducing Equation B; and substituting from Equation A results in a third equation:

$$\frac{V_{OUT}}{V_{IN}} = \frac{-A(\omega)R_{S}R_{F}/(R_{S}R_{F} + R_{IN}R_{F} + R_{IN}R_{S})}{1 + A(\omega)R_{IN}R_{S}/(R_{S}R_{F} + R_{IN}R_{F} + R_{IN}R_{S})} (Equation C)$$

For purposes of discussion, assume the amplifier shown in Figure 1 exhibits a single-pole frequency response. When it does, $A(\omega) = A_O/(1 + j\omega\tau)$ where A_O = open loop gain; and $1/\tau$ = the roll-off frequency. When these terms are substituted into Equation C, the result is:

$$\frac{V_{OUT}}{V_{IN}} = \frac{-A_{O}R_{S}R_{F}/(R_{S}R_{F} + R_{IN}R_{F} + R_{IN}R_{S})}{1 + j\omega\tau + \left[A_{O}R_{IN}R_{S}/(R_{S}R_{F} + R_{IN}R_{F} + R_{IN}R_{S})\right]}$$

Based on the idea that

$$1 + \left| A_0 R_{IN} R_s / (R_s R_F + R_{IN} R_F + R_{IN} R_S) \right|$$

. . . .

is approximately equal to

- -

$$\frac{A_{O}R_{IN}R_{S}}{(R_{S}R_{F}+R_{IN}R_{F}+R_{IN}R_{S})}$$

and G (closed loop gain) = R_F/R_{IN} , it becomes possible to simplify and substitute terms in the above equation to obtain:

$$\frac{V_{OUT}}{V_{IN}} = \frac{-G}{1 + \frac{j\omega\tau R_F}{A_O} \left[\frac{1}{R_{IN}} + \frac{1}{R_S} + \frac{1}{R_F} \right]}$$

The fundamental difference between the AD9610 and traditional amplifiers becomes apparent at this point.

In traditional voltage-imput amplifiers, the input resistance (R_S) approaches infinity. Consequently, $1/R_S$ approaches zero; and the term R_F $(1/R_{IN} + 1/R_S + 1/R_F)$ simplifies to the term R_F $(1/R_{IN} + 1/R_F)$. The latter can be reduced further to (G + 1). When substitutions are made, the gain/frequency relationship for a traditional amplifier design is expressed as:

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{-G}{1 + \frac{j\omega\tau}{A_0}[G+1]}$$

2-202 OPERATIONAL AMPLIFIERS

There is a dramatically different result for the AD9610.

This difference is because the value of R_S in the transimpedance amplifier is only 20 Ω . This is important when one realizes $R_S \parallel R_{IN} \parallel R_F$; and $R_S <<< R_{IN}$ and/or R_F . In this case, $(1/R_S + 1/R_{IN} + 1/R_F) \approx 1/R_S$. Substituting terms, a direct comparison with traditional amplifer relationships can be made:

$$\frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}} = \frac{-\mathbf{G}}{1 + \frac{\mathbf{j}\omega\tau}{\mathbf{A}_{\text{O}}} \left[\frac{\mathbf{R}_{\text{F}}}{\mathbf{R}_{\text{S}}}\right]}$$

Both amplifier types yield similar algebraic results, but there is one critical difference in how they are obtained.

As shown above, the closed loop gain (G) of the traditional amplifier is multiplied by the frequency-dependent term of the denominator; this means increasing frequencies or closed loop gain accelerates the gain roll-off.

In the AD9610, however, the constant R_F/R_S is multiplied by the frequency-dependent term; this means bandwidth remains relatively constant for any given value of gain.

Inside the AD9610, the design includes a 1.5k Ω feedback resistor to help reduce the effect of stray capacitances and make it easier to apply the amplifier. This internal R_F means the gain of the AD9610 is set by varying R_{IN}.

The differences in the architecture of the AD9610 vis-a-vis a traditional op amp cause its closed-loop frequency response to be considerably different from conventional units.

Figure 2 pictures a typical plot for a traditional single-pole amplifier.

Figure 2.

As shown, increasing the closed loop gain of a traditional op amp decreases the bandwidth of the amplifier; the precise amount of change will be determined by the actual roll-off characteristics of the op amp.

By contrast, the frequency response of the AD9610 changes very little when the gain is changed. Refer to Figure 3.

Variations in gain (established by varying values of $R_{\rm IN}$) have only a negligible effect on the bandwidth of the amplifier.

(NOTE: For a more complete explanation of the mathematics involved in comparing conventional op amps and the AD9610, refer to the Analog Devices application note entitled "Using the AD9610 Transimpedance Amplifier".)

Figure 3.

AD9610 FUNCTIONAL DESCRIPTION Refer to Figure 4, AD9610 Functional Circuit.

Figure 4. AD9610 Functional Circuit

The most prominent characteristic illustrated in this model of the unit is the combination of a high-impedance noninverting terminal and a low-impedance inverting terminal. This is achieved by buffering the noninverting terminal to create a high-impedance input; while maintaining a low impedance through the 20Ω characteristic of the inverting input.

Because of the low input impedance of the inverting input, all of the input signal voltage is impressed across the input resistor $(R_{IN} \text{ in Figure 6})$; this causes a direct voltage-to-current conversion to take place.

Conventional op amps use a volts/volts transfer function, while the transfer function of the AD9610 is volts/ μ A (or resistance).

Signal current flowing in the inverting terminal (Pin 5) will flow through the 20Ω resistor. The voltage developed across this input impedance becomes the input signal for the internal amplifier.

As a result of this action, the input current is converted to an output voltage; this is the reason for the open loop transfer function being expressed in ohms. To compensate for variations in offset voltage and current in the AD9610, both a voltage source and a current source are included in the unit. Input offset voltage (V_{OS}) is a dc error which appears at the output as $[V_{OS} (1+R_F/R_{IN})]$. In a similar fashion, the input bias current (I_{OS}) reflects as a dc error which appears at the output as $[I_{OS} (R_F)]$.

The current source connected to the inverting terminal effectively models the input offset current; and although bias currents flow in both terminals, the inverting input bias current is dominant. The combined actions of the internal voltage and current sources effectively compensate for discrepancies in offset voltage and current.

Power supply voltages applied to the AD9610 are separated, with one set of terminals designated for the output transistors (Pins 10 and 12) and another set for the internal amplifier (Pins 1 and 9). This splitting of the voltages makes it possible to limit voltage swings and current at the output, and helps regulate the junction temperatures of the output transistors.

APPLYING THE AD9610 OP AMP

In applying the AD9610 op amp, there are certain precautions which **must** be observed to protect the unit from damage:

- 1. Shorting either power supply input pin (Pin 10 or Pin 12) to the output (Pin 11) will destroy the device.
- Shorting the output (Pin 11) to ground will destroy the device; no internal protection is provided.

As explained earlier, the noninverting input of the AD9610 Operational Amplifier is a high impedance. This requires that it be driven from a low-impedance source, or connected to ground. Driving this input from a high impedance detracts from the wide bandwidth performance; connecting it to ground avoids the possibility of closed-loop ac peaking.

Because the internal biasing network of the AD9610 is connected to the +V and -V supply pins, it is important that these pins have adequate decoupling. Nominal supply voltages for the AD9610 are $\pm 15V$, but this can be reduced to a lower limit of $\pm 12V$ without serious degradation of high-speed performance. When $\pm 12V$ supplies are used, output voltage swings from the amplifier must be reduced.

Bypass Pins 2 and 8 should be decoupled to ground through $33 - 50\Omega$ resistors and $0.1\mu F$ capacitors to maintain stability on the bias network.

Feedback resistor R_F is internal to the AD9610 and has been precisely adjusted to allow the widest possible range of operating conditions. While it is possible to use an external feedback resistor for the device, the user is urged to avoid the temptation to "tune" performance with this technique because it will inevitably detract from ac performance.

A massive low-impedance ground plane is essential for optimum performance from the AD9610 because it provides a moderate level of shielding and helps reduce the effects of distributed capacitance.

But the benefits of a large ground plane can be diminished if components are grounded at multiple points on the ground plane. Single-point grounding is *always* preferred for high-speed circuits to avoid the possibility of voltage differentials which might result from multiple grounds.

The best high-frequency performance is obtained from the AD9610 when total output capacitance is minimized. Realistically, this is not always possible; but performance can be improved with a $5 - 30\Omega$ resistor in series with the output as shown in Figure 5.

Figure 5.

Isolation provided by the series resistor makes it possible for the AD9610 to drive loads well outside its design limits, but at some loss of speed. Isolating the capacitive load from the output of the amplifier is particularly useful when driving flash A/D converters.

The power supplies for the AD9610 must be decoupled effectively to obtain maximum performance from the device. Recommended choices are a 0.1μ F ceramic capacitor and a 10μ F tantalum capacitor in parallel on each supply. These connections show up in Figures 6 and 7 which illustrate the connections for inverting and noninvertering operation, respectively. Decoupling components should always be connected as closely as possible to the amplifier's voltage supply pins.

Figure 6. AD9610 Inverting Operation

If the expected output voltage swings are small, it is possible to operate the ouput stages from $\pm 5V$ supplies; this will reduce power dissipation and junction temperatures on the output transistors. For this, the $\pm 5V$ and $\pm 15V$ supplies must be decoupled separately.

Figure 7. AD9610 Noninverting Operation

As shown in Figures 6 and 7, bypass pins 2 and 8 should be decoupled individually with a 33 – 50 Ω resistor and 0.1 μ F capacitor in series to ground. Without this decoupling, power supply and common-mode rejection ratios (PSRR and CMMR) may be degraded. In some applications, the lack of this decoupling may show up as very high-frequency "ringing" on the output. R_{MATCH} in Figures 6 and 7 is used to match the output impedance of the driving source.

AD9610 POWER DISSIPATION

Quiescent power supply currents for the AD9610 are ± 21 mA. Supply currents this low allow the unit to be operated over a wide temperature range without damage. For high-temperature operation and long-term stability, however, the user is urged to use a heat sink. Two acceptable models for TO-8 packages are the Thermalloy 2240 and the IERC Up-TO8-48CB.

Refer to Figure 8.

Figure 8. Junction Temp. Rise vs. Load Current

The data in this illustration are typical characteristics when the AD9610 is operated from $\pm 15V$ supplies. Assume the desired output from the op amp is $\pm 10V$ swings at $\pm 50mA$ currents. For this combination, maximum junction temperature will be 100°C above the ambient temperature.

Since maximum allowable junction temperature is $+165^{\circ}$ C, the maximum ambient temperature which can be tolerated is $+65^{\circ}$ C. If there is a possibility the ambient may exceed this limit, heat sinking and/or heat removal is required. Additional details on the thermal characteristics of the unit are included in the AD9610 Thermal Model. (For more information not thermal protection, consult the Analog Devices application note "Using the AD9610 Transimpedance Amplifier".)

AD9160 Thermal Model

AD9610 PERFORMANCE

In the following section, graphs and photographs depict typical performance of the AD9610 for various characteristics.

AD9610 Frequency Response (A_V = \pm 1, \pm 2, \pm 5, \pm 10, \pm 50)

AD9610 Frequency Response ($A_V = \pm 1, \pm 2, \pm 5, \pm 10, \pm 50$)

Bandwidth vs. V_{CC}

Output Voltage vs. V_{CC}

Bandwidth vs. Load

AD9610 Small-Signal Pulse Response

GAIN = - 10; 3.4V/DIV; 10ns/DIV AD9610 Large-Signal Pulse Response

Small-Signal Output Resistance vs. Frequency (G = -10)

Small-Signal Output Phase Shift vs. Frequency (G = -10)

ľ							10 <i>m</i> V			
-	ŀ	Ï	••••	_/				• • • • •		
	ł			4	 _	-				
1	4	ŕ	****	.	 ••••		++++	++++	****	
-		t		f						
î	•••		~		 					

GAIN = -10; 5V OUTPUT, ERROR WINDOW ($\pm 5mV$) = 0 1%, 5ns/DIV

AD9610 Settling Time

ORDERING INFORMATION

Two models of the AD9610 Operational Amplifier are available. The AD9610BH is specified for operation over a case temperature range of -25° C to $+85^{\circ}$ C; the AD9610TH is intended for applications in which case temperature may be between -55°C and +125°C.

2-206 OPERATIONAL AMPLIFIERS

Wide Bandwidth, Fast-Settling Operational Amplifier

AD9611

FEATURES

Unity Gain Stable Small-Signal Bandwidth 280MHz Full Power Bandwidth 210MHz Settling – 13ns to 0.1% Rise/Fall Times 1.3ns/1.5ns Offset Voltage $\pm 0.5mV$ Bias Current $\pm 1\mu A$ Power Dissipation Independent of Load

APPLICATIONS

Driving Flash Converters High-Speed DACs Radar, IF Processors Baseband and Video Communications Photodiode Preamps ATE/Pulse Generators Imaging/Display Applications

GENERAL DESCRIPTION

The AD9611 is an ultrafast-settling, wide-bandwidth, dc-coupled operational amplifier that combines exceptional ac and dc specifications to establish a new standard of excellence in dc-coupled amplifiers.

Rise and fall times are 1.3ns and 1.5ns, respectively. The -3dB bandwidth is 280MHz (G = -5); the full-power bandwidth is 210MHz. The AD9611 settles to 0.1% in 13ns, and dc performance is also exceptional. Offset voltage is ± 0.5 mV and drifts only 5μ V/°C. The inverting and noninverting bias currents are 1 μ A.

The AD9611 requires $\pm 5V$ power supplies and employs an innovative current-steering output stage that keeps the total circuit power dissipation essentially constant regardless of output drive (for loads $\leq 100\Omega$). *Circuit power dissipation does not increase as the load is increased*; the unit can be operated up to $+110^{\circ}C$ in still air without heat sinking.

AD9611 FUNCTIONAL BLOCK DIAGRAM

Current feedback is used instead of voltage feedback to provide dynamic performance that is relatively independent of gain settings. Flat gain and phase response combine with excellent noise and distortion performance to provide a unity-gain-stable amplifier especially well suited for use in digital communication systems. The AD9611 is an excellent choice for driving the newest generation of ultrahigh-speed flash converters when system SNR and effective number of bits are important.

The AD9611 is constructed with discrete transistors on a precision thin-film substrate. The AD9611BH is rated for case temperatures from -25° C to $+85^{\circ}$ C; the AD9611TH is guaranteed from -55° C to $+125^{\circ}$ C. Contact the factory for information about 883 grade parts. All units are built and tested in a MIL-STD-1772-certified facility.

$\begin{array}{l} \textbf{SPECIFICATIONS} \\ \textbf{DC ELECTRICAL CHARACTERISTICS} (\pm V_{s} = \pm 5 V; \text{A}_{v} = -5; \text{R}_{\text{IN}} = 200 \Omega; \text{R}_{\text{FB}} = 1 \text{k} \Omega; \tilde{\text{R}}_{\text{LOAD}} = 100 \Omega) \end{array}$

_		Sub-	AD9611BH/TH Typical		AD9611BH Min/Max@	H ¹ Ø		AD9611 Min/Max	ГН ² «@	
_	Parameter (Conditions)	Group	@+25°C	-25°C	+25℃	+ 85°C	−55°C	+25℃	+125℃	Units
√ #	Offset Voltage Offset Voltage T_{C}^{3}	1,2,3	±0.5 ±5	±5.0	± 3.0	±4.3	± 5.0 ± 20	±3.0	± 4.3 + 20	mV uV/°C
J	Input Bias Current		-]						1
	Inverting	1,2,3	±1	±40	± 5	±19	±40	±5	±19	μA
	Noninverting	1,2,3	±1	±25	±5	±15	± 25	±5	±15	μA
	Input Bias Current T _C ³			1						l'
	# Inverting		±140				± 275		±275	nA/°C
	# Noninverting		± 75				±175		±175	nA/°C
	Noninverting									
	Impedance		150							kΩ
	Capacitance		3							pF
\checkmark	Common-Mode Input Range	1,2,3	±1.5	±1.4	±1.4	±1.25	±1.4	±1.4	±1.25	v
\checkmark	Internal Feedback Resistor (R _{FB})		1000	987/	990/	987/	987/	990/	987 /	
				1013	1010	1013	1013	1010	1013	Ω
#	R _{FB} Temperature Coefficient			±25		±25	±25		±25	ppm/°C
\checkmark	Common-Mode Rejection Ratio $(\Delta V_{CM} = 0.5V)^4$	4,5,6	42	≥32	≥34	≥32	≥32	≥34	≥32	dB
\checkmark	Common-Mode Sensitivity (CMS) ⁵									
	Referred to Input									
	-CMS	4,5,6	5	≤24	≤20	≤24	≤24	≤20	≤24	μA/V
	+ CMS	4,5,6	5	≤24	≤20	≤24	≤24	≤20	≤24	μA/V
	Output Impedance (dc to 1MHz)		0.03							Ω
	Output Impedance @ 100MHz		0.4/18							Ω/nH
√	Output Voltage Swing	1,2,3	± 3	$\geq \pm 2.8$	$\geq \pm 2.8$	$\geq \pm 2.5$	$\geq \pm 2.8$	$\geq \pm 2.8$	$\geq \pm 2.5$	V
#	Output Current (continuous)		± 50	$\geq \pm 40$	≥±40	$\geq \pm 40$	$\geq \pm 40$	$\geq \pm 40$	$\geq \pm 40$	mA
#	Open-Loop Transimpedance Gain (100 Ω Load)		>0.35	≥0.1	≥0.2	≥0.2	≥0.1	≥0.2	≥0.2	ΜΩ
\checkmark	+ Supply Current(5V) ⁶	1,2,3	70	≤85	≤77	≤77	≤85	≤77	≤77	mA
\checkmark	- Supply Current($-5V$) ⁶	1,2,3	74	≤88	≤80	≤80	≤88	≤80	≤80	mA
	Power Consumption ⁶		720	≤865	≤785	≤785	≤865	≤785	≤785	mW
\checkmark	Power Supply Rejection Ratio $(\Delta V_s = 0.5V)^4$	4,5,6	46	≥35	≥37	≥35	≥35	≥37	≥35	dB
J	Power Supply Sensitivity (PSS) ⁷	. ,								
	Referred to Input									
	– PSS	4.5.6	4	<17	<14	<17	<17	<14	<17	A/V
	+ PSS	4.5.6	4	<17	-14 <14	<17	<17	<14	<17	
_		.,,,,,		<u> -'''</u>			<u> </u>			

AC ELECTRICAL CHARACTERISTICS ($\pm V_{S} = \pm 5V$; $A_{V} = -5$; $R_{IN} = 200\Omega$; $R_{FB} = 1k\Omega$; $R_{LOAD} = 100\Omega$ unless otherwise specified)

				1			· · · · · ·			
\checkmark	Bandwidth $(-3dB)(V_{OUT} = 1V p-p)$	4,5,6	>280	≥250	≥250	≥220	≥250	≥250	≥220	MHz
	Full Power Bandwidth ($V_{OUT} = 3V p - p$)		>210							MHz
	Slew Rate		1900							V/µs
	Amplitude of Peaking:									
\checkmark	dc to $70 MHz (V_{OUT} = 1 V p - p)$	4,5,6	0	0.2	0.2	0.2	0.2	0.2	0.2	dB
\checkmark	$>70MHz(V_{OUT} = 1Vp-p)$	4,5,6	0	≤0.8	≤0.8	≤1.6	≤0.8	≤0.8	≤1.6	dB
	Phase Nonlinearity (dc to 120MHz)		1							0
#	Rise Time ($V_{OUT} = 1V$ Step)		1.3	≤1.5	≤1.5	≤1.7	≤1.5	≤1.5	≤1.7	ns
#	Fall Time ($V_{OUT} = 1V$ Step)		1.5	≤1.7	≤1.7	≤1.9	≤1.7	≤1.7	≤1.9	ns
#	Rise Time ($V_{OUT} = 3V$ Step)		1.4	≤1.6	≤1.8	≤2.1	≤1.6	≤1.8	≤2.1	ns
#	Fall Time ($V_{OUT} = 3V$ Step)		1.6	≤2.0	≤2.0	≤2.1	≤2.0	≤2.0	≤2.1	ns
#	Settling Time to 1%		7	≤12	≤12	≤13	≤12	≤12	≤13	ns
	$(V_{OUT} = 1.5V \text{ Step})$									
#	Settling Time to 0.1%		13	≤19	≤19	≤22	≤19	≤19	≤22	ns
	$(V_{OUT} = 3V \text{ Step}; R_L = 50\Omega)$									
	Settling Time to 0.05%		16							ns
	$(V_{OUT} = 3V \text{ Step}; R_L = 50\Omega)$									
#	Overshoot Amplitude ($V_{OUT} = 2V$ Step)	1	4	≤14	≤14	≤18	≤14	≤14	≤18	%
	Overdrive Recovery to 1% (2X; 50ns)									
	Positive Rail to Linear Region		20							ns
	Negative Rail to Linear Region		40							ns
	Propagation Delay		2.1							ns
V	2nd Harmonic Distortion	4,5,6	- 54	≤ 50	≤ -50	≤-42	≤ -50	≤ -50	≤ - 42	dB
·	$(f = 60MHz; V_{OUT} = 2V p-p)$									
J	3rd Harmonic Distortion	4,5,6	- 58	≤ - 51	≤ -51	≤ - 44	≤-51	≤ - 51	≤ - 44	dB
	$(f = 60MHz; V_{OUT} = 2V p-p)$			1			1			
		1		1						

2-208 OPERATIONAL AMPLIFIERS

	Sub-	AD%11BH/TH Typical		AD9611BH Min/Max@	l Q		AD96117 Min/Max	Г Н (@``	
Parameter	Group	@+25°C	– 25°C	+ 25°C	+85℃	−55°C	+25℃	+125℃	Units
Noise # Voltage (5MHz to 280MHz) # Current (5MHz to 280MHz) # Equivalent Integrated Input (5MHz to 280MHz)		1.0 21 75	≤1 4 ≤25 ≤92	≤1.4 ≤25 ≤92	≤1 7 ≤28 ≤106	≤1.4 ≤25 ≤92	≤1.4 ≤25 ≤92	≤1.7 ≤28 ≤106	nV/\sqrt{Hz} pA/\sqrt{Hz} μV
Other Information Case to Ambient, $\theta_{CA}^{8,9}$ (Still Air; No Heat Sink) Case to Ambient, $\theta_{CA}^{8,9}$ (500 LFPM Air; No Heat Sink) MTBF (Mean Time Betwen Falures) (T _{CASE} = 70°C, Ground Fixed; per MIL-HDBK-217D)		50 30 ≥1 96 × 10 ⁶	* *	* *	* *	* *	* *	* *	°C/W °C/W hours
PACKAGE OPTION ¹⁰ TO-8(H-12A)				AD9611BH	I		AD96117	н	

For applications assistance, call Computer Labs Division (# (919) 668-9511

NOTES

/ 100% tested (See Notes 1 and 2)

Specifications guaranteed by design, not tested

*Specification same as AD9611BH/TH typical specification

¹AD9611BH parameters preceded by a check ($\langle \rangle$) are tested at +25°C ambient temperature, performance is guaranteed over the industrial temperature range (-25°C to +85°C) case temperature

²AD9611TH parameters preceded by a check (/) are tested at - 55°C case, + 25°C ambient, and + 125°C case temperatures ³Offset voltage T_C and bias current T_C are guaranteed over the respective temperature ranges

⁴CMRR and PSRR apply only for stated conditions

⁵CMS values can be used to determine the CMRR for specific gain settings according to the following worst case relationships

⁶Supply current and power dissipation numbers are for quescent operation ($V_{IN} = 0V$). A proprietary output stage assures total circuit power dissipation does not increase as a function of output current and $R_{1 \cap AD}$. (See Text) 'PSS values can be used to determine the PSRR for specific gain settings according to the following worst case relationships

'PSS values can be used to determine the PSRR for specific gain settings according to the following worst case relationships (See diagram in 5 above):

 $\Delta V_{OUT} = [-PSS] [R_F] [\Delta V_{SUPPLY}] - [+PSS] [R2] \left[1 + \frac{R_F}{R1}\right] [\Delta V_{SUPPLY}]$

WHERE $\Delta V_{SUPPLY} = \Delta - V_{SUPPLY} \text{ OR } \Delta + V_{SUPPLY}$

$$PSRR = -20 \ LOG \left[\frac{\Delta \ V_{OUT}}{(\Delta V_{SUPPLY})} \right]$$

⁸Recommended maximum junction temperature is +165°C.

⁹Bottom of unit raised approximately 0 125" (3 2mm) above surface of copper-clad board ¹⁰See Section 16 for package outline information.

Specifications subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Supply Voltages $(\pm V_S)$
Analog Input
Inverting Input Sink Current
Continuous Output Current ± 50mA
Operating Temperature Range (Case)
AD9611BH
AD9611TH
Power Dissipation See Thermal Model
Junction Temperature
Storage Temperature Range 65°C to + 150°C
Lead Temperature (soldering, 10 sec.) + 300°C

EXPLANATION OF GROUP A MILITARY SUBGROUPS

	Subgroup 1 - Static tests at +25°C.	Subgroup 7 - Functional tests at +25°C.
	(10% PDA calculated against Subgroup 1 for high-rel versions)	Subgroup 8 – Functional tests at maximum and minimum
	Subgroup 2 – Static tests at maximum rated temperature.	rated temperatures.
	Subgroup 3 – Static tests at minimum rated temperature.	Subgroup 9 - Switching tests at +25°C.
	Subgroup 4 – Dynamic tests at + 25°C.	Subgroup 10 - Switching tests at maximum rated temperatures.
1	Subgroup 5 - Dynamic tests at maximum rated temperature.	Subgroup 11 - Switching tests at minimum rated temperatures.
1	Subgroup 6 – Dynamic tests at minimum rated temperature.	Subgroup 12 – Periodically sample tested.

2

THEORY OF OPERATION

The advantages of using the transimpedance AD9611 operational amplifier instead of a conventional high-speed op amp are based on the difference in the way the two types of amplifiers operate.

The AD9611 operational amplifier uses current feedback, rather than the voltage feedback common to traditional amplifiers. Current feedback amplifiers provide significantly more bandwidth at given gain settings than traditional amplifiers do.

Both types are similar in terms of setting gain and calculating noise, but there is a major difference in the input stages when comparing current feedback (transimpedance) amplifiers and voltage feedback amplifiers.

Traditionally, conventional amplifiers have two high-impedance inputs. Within the AD9611, however, the inputs are connected across a unity gain buffer; this causes the noninverting input to be a high impedance and the inverting input to be low impedance.

Under normal operating conditions, the inverting input current is very small. The AD9611 operation is similar to a traditional amplifier in that the voltage between the input terminals and the bias currents are, ideally, zero.

Figure 1.

Closed-loop bandwidth (CLBW) of the AD9611 is first-order independent of its closed-loop gain (G). Its transfer function can be expressed as:

1.
$$\frac{V_0}{V_s} \cong \frac{G}{\frac{R_F}{T(s)}\left(1 + \frac{R_N}{RI}\right) + 1}$$

where:

 R_F is the internal feedback resistor; $R_F = 1k\Omega$

- R1 is the gain-setting input resistor
- T(s) is the transimpedance gain as a function of frequency (s) and is independent of gain-setting resistors; $T(s) = V_{O}(s)/I_{IN}(s)$
- $G = R_{\rm F}/R1$ (closed-loop gain)
- R_N is the open-loop input impedance (typically 22 Ω in the 200MHz 300MHz band)

When closed-loop gain is greatly increased, CLBW is only slightly diminished because of the low input impedance of R_N . The ratio of CLBW for any gain to CLBW at G = -0 can be determined using the following relationship:

2.
$$\frac{\text{CLBW } (\text{G} = \textbf{x})}{\text{CLBW } (\text{G} = 0)} \cong \frac{1}{\left[1 - \frac{\text{R}_{\text{N}}}{\text{R}_{\text{F}}}\text{G}\right]} = \frac{1}{(1 - 0.022\text{G})}$$

As an example, when G = -20, the CLBW will be 70% of the CLBW when G = 0 (typically 310MHz).

In the AD9611, R_F is internal and has a value of $1k\Omega$; this design helps reduce the effect of stray capacitances and makes it easier to apply the amplifier. The low input impedance at the inverting input means all of the input signal voltage is impressed across R1; this causes a direct voltage-to-current conversion to take place.

Using only the feedback resistor within the unit means the gain of the AD9611 can be set by varying only R1.

APPLYING THE AD9611 OP AMP

In applying the AD9611 op amp, there are certain precautions which **must** be observed to protect the unit from damage:

- 1. Shorting either power supply input pin (Pins 9/10 or Pins 1/12) to the output (Pin 11) will destroy the device.
- 2. Shorting the output (Pin 11) to ground will destroy the device; no internal protection is included.

As noted earlier, the noninverting input of the AD9611 operational amplifier is a high impedance. This requires that it be driven from a low-impedance source, or connected to a low impedance when used in the inverting mode. Driving this input from a high impedance will reduce bandwidth. Feedback resistor R_F is internal to the AD9611 and has been precisely adjusted to allow a wide range of operating conditions. In some instances, the user may want to obtain higher closed-loop gains than those which can be achieved with only the internal feedback resistor. It is possible to use an external feedback resistor in series with the internal $lk\Omega R_F$ to achieve relatively higher gains, but bandwidth will be reduced. Table I lists typical bandwidths at G = -5 with varying amounts of feedback resistance. In this listing, the R_F which is shown is the total resistance, including the internal $lk\Omega$.

Value of R _F	– 3dB Bandwidth
lkΩ .	280MHz
1.5kΩ	175MHz
2kΩ	135MHz
2.5kΩ	125MHz

Table I

Good layout practices are always crucial to realize the full potential of the AD9611. A massive ground plane is strongly recommended. The ground plane provides a low impedance path for all power supply and signal currents, and suppresses EMI.

Ceramic 0.1μ F decoupling capacitors should be placed as close to the specified pins shown in Figures 2 and 3 as possible; preferably, the distance should be less than 0.1 inch. The $(10\mu$ F) tantalum capacitors for additional decoupling of each power supply should be placed within one inch of their specified pins.

Run lengths must be kept as short as possible; if the signal path must be longer than two or three inches, use terminated coaxial cable and/or microstrip techniques. Impedance mismatches will cause signal reflections and system distortion.

Output impedance of the driving source should equal $R_{MATCH} ||R1|$ (inverting mode) or R_{MATCH} (noninverting mode). A suggested layout is shown on the last page of this data sheet.

Parasitic capacitance associated with ZIF (and other) device sockets will severely degrade the performance of the AD9611; if sockets **must** be used, individual pin sockets for each lead are strongly encouraged.

Figure 3. AD9611 Noninverting Operation

The best high-frequency performance of the AD9611 is achieved when total output capacitance (C_L) is at a minimum. Realistically, this is not always possible; but performance can be improved if a series resistor is used at the output of the amplifier, as shown in Figure 4.

Figure 4. Isolating Capacitive Loads

The unit will drive capacitive loads without appreciable degradation in either settling time or pulse fidelity. For driving capacitive loads >8pF (if $R_L = 50\Omega$) and >4pF (if $R_L = 500\Omega$), isolation resistor R_S should be connected in series with the AD9611 output.

Figure 5. Output Capacitance vs. Compensation

Isolating the capacitive load from the amplifier's output is particularly useful when driving flash A/D converters.

REDUCING OUTPUT VOLTAGE DRIFT

The expected dc error at the output of the AD9611 is a function of input offset voltage (V_{IO}), and inverting and noninverting bias currents (I_{B-} and I_{B+}). The calculation is the same as it would be for conventional amplifiers.

Bias currents vary inversely with temperature and typically track to within 10% of each other at high temperatures (+25°C to +125°C); and within 30% at low temperatures (-55°C to +25°C).

Figure 6. Bias Currents vs. Temperature

Output offset voltage drift (V_{OD}) in the inverting mode can be markedly reduced, especially at high temperatures, by inserting a resistor (R2) between the noninverting input (Pin 6) and ground. This connection is shown in Figure 7.

For this configuration, output offset voltage can be determined as follows:

$$V_{O} = V_{IO} \left(1 + \frac{R_{F}}{Rl} \right) + I_{B+} (R2) \left(1 + \frac{R_{F}}{Rl} \right) - I_{B-} (R_{F})$$

where:

 $\begin{array}{l} R1 = \text{gain-setting resistor} \\ R_F = \text{internal feedback resistor (1k}\Omega) \\ R2 = R1 \| R_F \\ C_S \geq (16,200/R2) pF \end{array}$

A shunt capacitor (C_s) must be connected in parallel with R2 when using this technique to maintain the amplifier's maximum bandwidth, stability, and low-noise performance. The value of the shunt is shown above.

As an example, assume the AD9611 is set up for a gain of -5; R1 should be 200 Ω ; R2 should be 167; and C_S should be 97pF. Resistor R2 reduces V_{OD} by indirectly nulling the bias current drifts. The reduction in V_{OD} is dramatically reduced from what

Figure 7. Reducing Offset Drift

it would be by simply grounding Pin 6. At high gain settings, the reduction in $V_{\rm OD}$ becomes relatively less because $V_{\rm IO}$ starts to dominate.

AD9611 PERFORMANCE

The following graphs and drawings provide additional information on the performance of the AD9611 transimpedance operational amplifier. The data which are shown are based on typical characteristics.

Gain and Phase vs. Frequency - Inverting

Small-Signal Pulse Response

Gain and Phase vs. Frequency – Noninverting

Large-Signal Pulse Response

Maximum Temperatures vs. Output Power

TEMPERATURE vs. OUTPUT POWER

The chart above illustrates an important characteristic of the AD9611 amplifier. A proprietary design feature of the output stage assures a constant case temperature regardless of the amount of output power. This is in marked contrast to most conventional amplifiers, in which increasing amounts of power raise the case temperature of the device as junction temperature increases.

This unique feature of the unit means that no heat sinking is required in still air at ambient temperatures as high as $+110^{\circ}$ C; with air flow of 500 LFPM, the device can be operated to $+125^{\circ}$ C before heat sinking is necessary.

Bandwidth vs. R_{LOAD} ($A_V = -5$)

3rd Order Two-Tone Intermod Intercept (Gain = -5; $R_{LOAD} = 50\Omega$)

AD9611 Thermal Model

AD9611 LAYOUT INFORMATION

The suggested layout of the AD9611 shown below is based on the proven performance of the AD9611 Evaluation Board. The user is urged to use a similar layout when incorporating the amplifier into the system in which it will operate.

In the layout, resistors are film; 0.1W; $\pm 1\%$; 50ppm. Capacitors C1 and C2 are tantalum; 10 μ F; 20%; 35V. C3 – C8 are ceramic; 0.1 μ F; 20%; 50V. Connectors J1 – J3 are Amphenol BNC type; pin sockets are available from Amp as part number 6-330808-0 (closed end) or part number 6-330808-3 (open end).

The input connections shown below are based on the layout of the evaluation board. Refer to Figure 2 (inverting operation) and Figure 3 (noninverting operation) for schematic details.

Suggested Layout Input Connections

AD9611 Suggested Layout Component Side, Viewed from Top

AD9611 Suggested Layout Component Side (Top) Viewed from Top

AD9611 Suggested Layout Solder Side (Bottom) Viewed from Top

Ultrafast FET Operational Amplifiers

2

ADLH0032G/ADLH0032CG

FEATURES

2nd Source; Replaces All LH0032G High Slew Rate; 500V/ μ s Wide 70MHz Bandwidth Operation Guaranteed -55°C to +125°C (ADLH0032G) High Input Impedance of 10¹² Ω 2mV Input Offset Voltage

APPLICATIONS ADC and SHA Input Buffers High Speed Integrators Video Amplifiers

BOTTOM VIEW

GENERAL DESCRIPTION

The ADLH0032G and ADLH0032CG are high slew rate, high input impedance, differential operational amplifiers, suitable for numerous applications in high-speed signal processing. These second-source devices are the same in every characteristic as other LH0032G/LH0032CG amplifiers.

Featuring a wide 70MHz bandwidth, high input impedance $(10^{12} \Omega)$, and high output drive capacity, the ADLH0032G and ADLH0032CG have already been designed into such applications as summing amplifiers in high-speed DACs, Buffer Amps in ADCs and high-speed SHAs, as well as other applications normally reserved for special purpose video amplifiers.

The ADLH0032G is guaranteed over the extended temperature range from -55° C to $+125^{\circ}$ C, while the commercial grade ADLH0032CG is guaranteed from -25° C to $+85^{\circ}$ C. Both devices are packaged in a TO-8 metal can package.

Figure 1. Offset Null

SPECIFICATIONS

Model	ADLH	0032G, A	ADLH003	32CG				
ABSOLUTE MAXIMUM RATINGS Supply Voltage Power Dissipation Differential Input Voltage Input Voltage Operating Temperature Range Storage Temperature Range Lead Temperature (soldering, 10s	±18V See Ct ±30V ±VS ADLH0032G -55°C ADLH0032CG -25°C -65°C Sec) 300°C	to +125 to +85° to +150	stic Curve °C C °C	s				
		ADL	H0032G		AD	LH00320	CG	1
Parameter DC ELECTRICAL CHARACTERIS	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage ²	$T_J = +25^{\circ}C$		2	5 10		5	15 20	mV
Input Offset Current ²	$T_J = +25^{\circ}C$		5	25 25		10	50 5	pA nA
Input Bias Current ²	$T_J = +25^{\circ}C$		10	100 50		25	200 15	pA nA
Average Offset Voltage Drift			25	50		25	50	μV/°C
Large Signal Voltage Gain	$V_{OUT} = \pm 10V, F = 1kHz,$ $R_{L} = 1k\Omega, T_{C} = +25^{\circ}C$ $V_{OUT} = \pm 10V, R_{L} = 1k\Omega,$ F = 1kHz	60 57	70		60	70		dB dB
Input Voltage Range	<u> </u>	±10	±12		+10	+12		V
Output Voltage Swing	$R_{I} = 1k\Omega$	±10	±13.5		±10	±13		v
Power Supply Rejection Ratio	$\Delta V_{S} = \pm 10 V^{-1}$	50	60	4	50	60		dB
Common Mode Rejection Ratio	$\Delta V_{IN} = 10V$	50	60		50	60		dB
Supply Current	$T_C = +25^{\circ}C$		18	20		20	22	mA
AC ELECTRICAL CHARACTERIST	TICS ³							
Slew Rate Settling Time	$A_V = +1, \Delta V_{IN} = 20V$	350	500		350	500		V/µs
to 1% of Final Value	$A_V = -1, \Delta V_{IN} = 20V$		100			100		ns
Settling Time to 0.1% of Final Value Small Signal Rise Time	$A_{V} = -1, \Delta V_{IN} = 20V$ $A_{V} = +1, \Delta V_{IN} = 1V$		300 8	20		300 8	20	ns ns
Small Signal Delay Time	$A_V = +1, \Delta V_{IN} = 1V$		10	25		10	25	ns
MTBF Meantime Between Failures	1.0608 × 10 ⁷							hours

NOTES

These specifications apply for Vg = ± 15 V and -55° C to $\pm 125^{\circ}$ C for the ADLH0032G and -25° C to $\pm 85^{\circ}$ C for the ADLH0032CG.

² Due to high speed automatic test techniques employed these parameters are correlated to junction temperature.

³ These specifications apply for $V_S = \pm 15V$, $R_L = 1k\Omega$, $T_C = \pm 25^{\circ}C$.

Specifications subject to change without notice.

ORDERING INFORMATION

Model	Temperature Range	Package Option*		
ADLH0032CG	$-25^{\circ}C$ to $+85^{\circ}C$	TO-8 (H-12A)		
ADLH0032G	$-55^{\circ}C$ to $+125^{\circ}C$	TO-8 (H-12A)		

*See Section 16 for package outline information.

POWER SUPPLY DECOUPLING

The ADLH0032G/ADLH0032CG, like most high-speed circuits, are sensitive to stray capacitances and layout. Power supplies should be bypassed as near to $\pm V$ (Pins 10 and 12) as possible, using low inductance capacitors such as 0.01μ F disc ceramics. Components for compensation should also be located close to the appropriate pins to reduce stray capacitances. A large ground plane area for low-impedance ground paths is highly recommended.

HEAT SINKING

The ADLH0032G/ADLH0032CG are specified for operation without any heat sink. Since internal power dissipation does create a significant temperature rise, improved bias current performance can be achieved by using a small heat sink such as the Thermalloy 2241 or equivalent. Since the case of the ADLH0032G/ADLH0032CG has no internal connection, it may be electrically connected to the heat sink. This, however,

will affect the stray capacitances to all pins, therefore requiring adjustment of all circuit compensation values.

INPUT CAPACITANCE

Inverting Input:

For optimum performance, the inverting input should be compensated by a small capacitance, around 10pF, across the feedback resistor. This is because the 5pF input capacitance may cause significant time constants with high-value resistors. The capacitor value may be changed somewhat depending on the effects of layout and closed loop gain.

Noninverting Input:

To divert leakage currents away from the noninverting input and to reduce the effective input capacitance, it is desirable to bootstrap the case and/or a guard conductor to the inverting input. The resulting input capacitance of a unity gain follower configured this way will be less than 1 picofarad.

Figure 3. Current Mode Multiplexer

Figure 4. Unity Gain Follower

Figure 5. High Speed Sample and Hold

Typical Performance Curves

*Includes Contribution From Source Resistance VOLTAGE GAIN – V/V

High Speed Buffer Amplifiers

ADLH0033G/ADLH0033CG

ADLH0033G/ADLH0033CG

OUTLINE AND PIN DESIGNATIONS

FEATURES

2nd Source-Replaces All LH0033G Series Wide Bandwidth-dc to 100MHz High Slew Rate-1500V/ μ s Operates on Single or Dual Power Supplies Operation Guaranteed -55°C to +125°C (ADLH0033G) High 10^H Ω Input Impedance

APPLICATIONS

High-Speed Line Drivers Video Impedance Transformation High-Speed A/D Input Buffers Nuclear Instrumentation Amplifiers Coaxial Cable Drive

used between the op amp's output and the input of the ADLH0033G.

HEAT SINKING

To assure maximum output drive capability of the ADLH0033G/ADLH0033CG over temperature, heat sinks should be used. The cases are electrically isolated from the circuit and thus may be connected to system grounds.

POWER SUPPLY BYPASSING

To prevent oscillation, power supply bypassing is recommended. Use low-inductance ceramic disc caps, keeping lead lengths as short as possible $(1/4'' \text{ to } 1/2'' \max \text{ from device package})$, connected between ground plane and each supply lead. Use one or two $0.1\mu\text{F}$ caps in parallel with a $4.7\mu\text{F}$ tantalum for best results.

Figure 2. Short Circuit Protection Using Current Limiting Resistors (R_{LIM})

GENERAL DESCRIPTION

The ADLH0033G and ADLH0033CG are superhigh speed (1500V/ μ s slew rate) and high input impedance (10¹¹ Ω) buffer amplifiers, designed to replace all LH0033 series amplifiers in applications such as high-speed line drivers or as high impedance buffers for fast A/D converters and comparators.

The ADLH0033G is guaranteed over the temperature range of -55° C to $+125^{\circ}$ C, while the commercial grade ADLH0033CG is guaranteed over the range of -25° C to $+85^{\circ}$ C.

Guaranteed operation over temperature of the ADLH0033G is achieved by using specially selected junction FET's and the latest state-of-the-art laser trimming techniques. They are available in the industry standard 12 pin TO-8 metal can.

OPERATION WITHIN AN OP AMP LOOP

When using the ADLH0033G/ADLH0033CG as a current booster or isolation buffer with op amps such as LH0032, 118, 741, etc., an isolation resistor of at least 47Ω must be

Figure 1. Offset Adjustment

2

SPECIFICATIONS

	ADLH003	3G	ADLHO	1033CG					
ABSOLUTE MAXIMUM RAT	INGS								
Supply Voltage (V+ - V-)		40V							
Maximum Power Dissipatio	n (see curves)	1.5W							
Maximum Junction Temper	ature	175°C							
Input Voltage		Equalto	Supplie	\$					
Continuous Output Current	t i i i i i i i i i i i i i i i i i i i	±100mA							
Peak Output Current		±250mA							
Operating Temperature	ADLH0033G	-55°C to	o +125°€	2					
	ADLH0033CG	-25°C to	o +85°C						
Storage Temperature Range	2	-65°C to	> +150°€	3					
Lead Temperature (Soldern	ng, 10 sec.)	300°C							
-	-	. 1	A	DLH003	3G	AD	LH00330	CG	
Parameter	Conditions		min	typ	max	min	typ	max	Units
DC ELECTRICAL CHARACT	ERISTICS ^{1,2}								
Input Bias Current	$T_C = 25^{\circ}C$			0.1	0.15		0.15		nA
•	5				10			5	nA
Input Impedance	$R_L = 1k\Omega$		10 ¹⁰	1011		10 ¹⁰	1011		Ω
Voltage Gain	$V_{IN} = 1V \text{ rms}, f = 1 \text{kHz},$		0.96	0.98	1.0	0.96	0.98	1.0	V/V
e .	$R_{L} = 1k\Omega, R_{S} = 100k\Omega$								
Output Offset Voltage	$R_s = 100k\Omega$, $T_c = 25$ °C			5	10		12	20	mV
	$R_{S} = 100 k\Omega$				15			25	mV
Output Offset Voltage TC	$R_{S} = 100k\Omega$			50	100		50	100	μV/°C
Output Impedance	$V_{IN} = 1V \text{ rms}, f = 1 \text{ kHz}$			6	10		6	10	Ω
	$R_{S} = 100k\Omega, R_{L} = 1k\Omega$								
Output Voltage Swing	$R_{L} = 1k\Omega$		±12	±13		±12	±13		v
	$R_{L} = 100\Omega, T_{C} = 25^{\circ}C$		±9			±9			v
Supply Current	$V_{IN} = 0V, V_S = \pm 15V$			20	25		21	25	mA
Power Consumption	$V_{IN} = 0V, V_S = \pm 15V$			600	660		630	720	mW
AC ELECTRICAL CHARACT	$\mathbf{FRISTICS} (\mathbf{T}_{c} = 25^{\circ} \mathbf{C} \mathbf{V}_{c} =$	+15V R	$r = 50\Omega$	$R_1 = 1k\Omega$	2)				
		-10 (), 10	1000	1500		1000	1400		Maria
Siew Rate	$V_{IN} = \pm 10V$		1000	100		1000	1400		V/µs
Bandwidth	$v_{IN} = 1 v rms$			100			100		Dermoor
Phase Nonlinearity	BW = 1 to 20MHz			2		-	2	e.	Degrees
Rise Time	$\Delta V_{IN} = 0.5 V$			2.9		5	5.2	,	
Propagation Delay	$\Delta v_{IN} = 0.5 v$			1.2			1.5		115
Harmonic Distortion	I>IKHZ			\0.1			\0.1		70
MTBF									
Meantime Between Failure	1.962×10 ⁷								hours
PACKAGE OPTION ³							-		
TO-8 (H-12A)			A	DLH003	G	AI	DLH0033	CG	
			I						

NOTES ¹ Unless otherwise specified, these specifications apply for +15V applied to pins 1 and 12, -15V applied to pins 9 and 10, and pin 6 connected to pin 7. ² Unless otherwise noted, specifications apply over a temperature range, -55°C<T_C<+125°C for the ADLH0033G, and -25°C<T_C<+85°C for the ADLH0033CG. Typical values shown are for T_C = 25°C.

³See Section 16 for package outline information.

Specifications subject to change without notice.

ORDERING INFORMATION

Model	Temperature Range
ADLH0033CG	-25°C to +85°C
ADLH0033G	-55°C to +125°C

Applying the ADLH0033G/ADLH0033CG

LAYOUT CONSIDERATIONS

As is the case with any high-speed design, proper layout is critical to avoid the introduction of unnecessary errors due to high-frequency coupling, stray capacitance, and the like.

Large ground planes should be used whenever possible to provide a low resistance, low inductance circuit path, as well as shielding the effects of high-frequency coupling. Sockets should be avoided, as the increased inter-lead capacitance can degrade bandwidth. Input and output connections should be kept as short as practical.

OFFSET ADJUSTMENT

The ADLH0033G/ADLH0033CG are factory trimmed for output voltage offsets well within the guaranteed limits, thereby eliminating the need to calibrate each device individually. To use this feature, simply connect Pin 6 (OFFSET PRESET) to Pin 7 (OFFSET ADJUST).

When it is desirable to eliminate any errors due to output offsets, the circuit of Figure 1 may be used to adjust these errors to zero.

SHORT CIRCUIT PROTECTION

The circuit of Figure 2 is used to protect the ADLH0033G/ ADLH0033CG from short circuits on the output. The value of R_{LIM} is determined by the following:

$$R_{LIM} \cong \frac{V^+}{I_{sc}} = \frac{V^-}{I_{sc}}$$

Where I_{sc} = Output Current under short circuit conditions ≤ 100 mA.

Note that output voltage swing will also be somewhat limited in this configuration, however, decoupling of Pins 1 and 9 through disc type capacitors to ground as shown in Figure 2 will restore full output swing for transient pulses.

OPERATION WITH ASYMMETRICAL SUPPLIES

Since Symmetrical Power Supplies may not always be desirable or available, the ADLH0033G/ADLH0033CG is designed to operate on Asymmetrical Supplies. This causes an apparent output offset; however, this is because of the amplifier's gain of less than unity. To accurately predict the output voltage shift due to Asymmetrical Supplies, use the following formula:

$$A_{VO} \cong (1 - A_V) \frac{(V + - V)}{2} = 0.005 (V + - V)$$

Where A_V = No Load Voltage Gain, typically 0.99 V+ = Positive Supply Voltage V- = Negative Supply Voltage

Of course, these apparent offsets may be adjusted to zero by using the circuit shown in Figure 1, OFFSET ADJUSTMENT.

CAPACITIVE LOADING

The ADLH0033G/ADLH0033CG have been designed to drive capacitive loads of several thousand picofarads (such as coaxial cable) without oscillation. In these applications, peak current resulting from (C \times dv/dt) should be limited below the absolute maximum peak current rating of ±250mA.

Also, power dissipation due to driving capacitive loads plus standby power should be kept below the total power rating of 1.5W.

Figure 3. Coaxial Cable Drive

Figure 4. Wideband Two Pole High Pass Filter

Figure 5. High Speed Peak Detector

Figure 6. High Speed Shield/Line Driver

OPERATIONAL AMPLIFIERS, 2-221

Typical Performance Curves

1

Positive Pulse Response

Negative Pulse Response

Frequency Response

Ultralow Offset Voltage Op Amp

AD 0P-07

FEATURES

Ten Times More Gain than Other OP-07 Devices (3.0M min) Ultralow Offset Voltage: 10μV Ultralow Offset Voltage Drift: 0.2μV/°C Ultralow Noise: 0.35μV p-p No External Components Required Monolithic Construction High Common-Mode Input Range: ±14.0V Wide Power Supply Voltage Range: ±3V to ±18V Fits 725, 108A/308A Sockets Military Parts and Plus Parts Available 8-Pin Plastic Mini-DIP, Cerdip, Small Outline or TO-99 Hermetic Metal Can Available in Wafer-Trimmed Chip Form

AD OP-07 CONNECTION DIAGRAMS

Small Outline (R) Package

PRODUCT HIGHLIGHTS

- 1. Increased open-loop voltage gain (3.0 million, min) results in better accuracy and linearity in high closed-loop gain applications.
- 2. Ultralow offset voltage and offset voltage drift, combined with low input bias currents, allow the AD OP-07 to maintain high accuracy over the entire operating temperature range.
- Internal frequency compensation, ultralow input offset voltage and full device protection eliminate the need for additional components. This reduces circuit size and complexity and increases reliability.
- 4. High input impedances, large common mode input voltage range and high common mode rejection ratio make the AD OP-07 ideal for noninverting and differential instrumentation applications.
- Monolithic construction along with advanced circuit design and processing techniques result in low cost.
- The input offset voltage is trimmed at the wafer stage. Unmounted chips are available for hybrid circuit applications.

PRODUCT DESCRIPTION

The AD OP-07 is an improved version of the industry-standard OP-07 precision operational amplifier. A guaranteed minimum open-loop voltage gain of 3,000,000 (AD OP-07A) represents an order of magnitude improvement over older designs; this affords increased accuracy in high closed-loop gain applications. Typical input offset voltages as low as $10\mu V$, typical bias currents of 0.7nA, internal compensation and device protection eliminate the need for external components and adjustments. An input offset voltage temperature coefficient of $0.2\mu V/^{\circ}C$ (typ) and long-term stability of $0.2\mu V/$ month (typ) eliminate recalibration or loss of initial accuracy.

A true differential operational amplifier, the AD OP-07 has a high common-mode input voltage range (\pm 13V, min) commonmode rejection ratio (typically up to 126dB) and high differential input impedance (50M Ω typ); these features combine to assure high accuracy in noninverting configurations. Such applications include instrumentation amplifiers, where the increased open-loop gain maintains high linearity at high closed-loop gains.

The AD OP-07 is available in five performance grades. The AD OP-07E, AD OP-07C and AD OP-07D are specified for operation over the 0 to $+70^{\circ}$ C temperature range, while the AD OP-07A and AD OP-07 are specified for -55° C to $+125^{\circ}$ C operation. All devices are available in either the TO-99 hermetically sealed metal cans or the hermetically sealed cerdip packages, while the industrail grades are also available in plastic 8-pin mini-DIPs and small outline packages.

Model	<u> </u>		AD OP-0	7C	AD OP-07D						
Paramatar	Symbol	Min	Tun	May	Min	Tun	Max	Min	Typ	Max	
OPEN LOOP GAIN	A _{VO}	2,000 1,800 300	5,000 4,500 1,000	Max	1,200 1,000 300	4,000 4,000 1,000	Max	1,200 1,000 300	4,000 4,000 1,000		
OUTPUT CHARACTERISTICS Maximum Output Swing	V _{om}	± 12.5 ± 12.0 ± 10.5 ± 12.0	± 13.0 ± 12.8 ± 12.0 ± 12.6		$\pm 12.0 \pm 11.5 \pm 11.0$	± 13.0 ± 12.8 ± 12.0 ± 12.6	i	± 12.0 ± 11.5 ± 11.0	$\pm 13.0 \pm 12.8 \pm 12.6$		
Open-Loop Output Resistance	Ro		60			60			60		
FREQUENCY RESPONSE Closed Loop Bandwidth Slew Rate	BW SR		0.6 0.17			0.6 0.17			0.6 0.17		
INPUT OFFSET VOLTAGE Initial Adjustment Range	V _{os}		30 45 ±4	75 130		60 85 ±4	150 250		60 85 ±4	150 250	
Average Drift No External Trim With External Trim Long Term Stability	TCV _{OS} TCV _{OSN} V _{OS} /Time		0.3 0.3 0.3	1.3 1.3 1.5		0.5 0.4 0.4	1.8 1.6 2.0		0.7 0.7 0.5	2.5 2.5 3.0	
INPUT OFFSET CURRENT Initial	I _{OS}		0.5 0.9	3.8 5.3		0.8 1.6	6.0 8.0		0.8 1.6	6.0 8.0	
Average Drift	TCI _{OS}		8	35		12	50		12	50	
INPUT BIAS CURRENT Initial	I _B		$\pm 1.2 \\ \pm 1.5$	±4.0 ±5.5		± 1.8 ± 2.2	±7.0 ±9.0		± 2.0 ± 3.0	±12 ±14	
INPUT RESISTANCE	ICIB		15			10	50		10		
Differential Common Mode	R _{IN} R _{INCM}	15	50 160		8	33 120		7	· 31 120		
INPUT NOISE Voltage Voltage Density	e _n p-p e _n		0.35 10.3 10.0	0.6 18.0 13.0		0.38 10.5 10.2	0.65 20.0 13.5		0.38 10.5 10.2	0.65 20.0 13.5	
Current Current Density	i _n p-p i _n		9.6 14 0.32 0.14 0.12	11.0 30 0.80 0.23 0.17		9.8 15 0.35 0.15 0.13	11.5 35 0.90 0.27 0.18		9.8 15 0.35 0.15 0.13	11.5 35 0.90 0.27 0.18	
INPUT VOLTAGE RANGE Common Mode	CMVR	± 13.0 ± 13.0	± 14.0 ± 13.5		± 13.0 ± 13.0	± 14.0 ± 13.5		± 13.0 ± 13.0	± 14.0 ± 13.5		
Common-Mode Rejection Ratio	CMRR	106 103	123 123		100 97	120 120		94 94	110 106		
POWER SUPPLY Current, Quiescent Power Consumption Rejection Ratio	I _Q P _D PSRR	94	3.0 90 6.0 107	4.0 120 9.0	90	3.5 105 6.0 104	5.0 150 9.0	90	3.5 105 6.0 104	5.0 150 9.0	
OPERATING TEMPERATURE		90	104		86	100		86	100		
RANGE	T_{min}, T_{max}	0		+ 70	0		+ 70	0		+ 70	
PACKAGE OPTIONS ³ Small Outline (R-8) Plastic Mini-DIP (N-8) Cerdip (Q-8) TO-99 (H-08A)		A A A	AD OP-07EN AD OP-07EQ AD OP-07EH		AD OP-07CR AD OP-07CN AD OP-07CQ AD OP-07CH			A A A	AD OP-07DN AD OP-07DQ AD OP-07DH		

NOTES

NOTES ¹Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of ¹power Additionally, the AD OP-07A offset voltage is guaranteed fully warmed up. ²Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. Time over extended periods of time and is extrapolated from high temperature test data. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically $2.5 \,\mu$ V – Parameter is not 100% tested. 90% of units meet this specification. ³See Section 16 for package outline information.

CDECIEICATIONC

	AD OP-0	7 A		AD OP-07	1		
Min	Тур	Max	Min	Тур	Max	Test Conditions	Units
3,000 2,000 300	5,000 4,000 1,000		2,000 1,500 300	5,000 4,000 1,000		$\begin{array}{l} R_L {\geq} 2k\Omega, V_O {=} \pm 10V \\ R_L {\geq} 2k\Omega, V_O {=} \pm 10V, T_{min} \text{ to } T_{max} \\ R_L {=} 500\Omega, V_O {=} \pm 0.5V, V_S {=} \pm 3V \end{array}$	V/mV V/mV V/mV
±12.5 ±12.0 ±10.5 ±12.0	± 13.0 ± 12.8 ± 12.0 ± 12.6 60		± 12.5 ± 12.0 ± 10.5 ± 12.0	± 13.0 ± 12.8 ± 12.0 ± 12.6 60		$ \begin{array}{l} R_L \geqslant 10k\Omega \\ R_L \geqslant 2k\Omega \\ R_L \geqslant 1k\Omega \\ R_L \geqslant 2k\Omega, T_{min} \text{ to } T_{max} \\ V_O = 0, I_O = 0 \end{array} $	V V V V Ω
	0.6 0.17			0.6 0.17		$A_{VCL} = +1.0$ R _L ≥2k	MHz V/µs
	10 25 ±4	25 60 ¹		30 60 ±4	75 200 ¹	Note 1 T_{min} to T_{max} $R_{p} = 20k\Omega$	μV μV mV
	0.2 0.2 0.2	0.6 0.6 1.0		0.3 0.3 0.2	1.3 1.3 1.0	$\begin{array}{l} T_{min} \text{ to } T_{max} \\ R_{P} = 20 k \Omega, T_{min} \text{ to } T_{max} \\ \text{Note 2} \end{array}$	μV/°C μV/°C μV/Month
-	0.3 0.8 5	2.0 4.0 25		0.4 1.2 8	2.8 5.6 50	T _{min} to T _{max} T _{min} to T _{max}	nA nA pA/°C
	±0.7 ±1.0 8	± 2.0 ± 4.0 25		±1.0 ±2.0 13	±3.0 ±6.0 50	T _{min} to T _{max} T _{min} to T _{max}	nA nA pA/°C
30	80 200		20	60 200			ΜΩ GΩ
	0.35 10.3 10.0 9.6 14 0.32 0.14 0.12	0.6 18.0 13.0 11.0 30 0.80 0.23 0.17		0.35 10.3 10.0 9.6 14 0.32 0.14 0.12	0.6 18.0 13.0 11.0 30 0.80 0.23 0.17	$\begin{array}{l} 0.1 Hz \ to \ 10 Hz \\ f_O = 1 k Hz \\ 0.1 Hz \ to \ 10 Hz \\ f_O = 1 k Hz \end{array}$	μV p-p nV/\Hz nV/\Hz nV/\Hz pA-p pA/\Hz pA/\Hz pA/\Hz
±13.0 ±13.0	±14.0 ±13.5		± 13.0 ± 13.0	± 14.0 ± 13.5		T_{min} to T_{max}	v v
110 106	126 123		110 106	126 123			dB dB
100 94	3.0 90 6.0 110 106	4.0 120 8.4	100 94	30 90 6.0 110 106	4.0 120 8.4		mA mW mW dB dB
- 55		+ 125	- 55		+ 125		°C
	AD OP-07 AD OP-07	'AQ 'AH		AD OP-0 AD OP-0	7Q 7H		

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation (Note 1)
Differential Input Voltage ± 30V
Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm V_S$
Output Short Circuit Duration Indefinite
Storage Temperature Range
Operating Temperature Range
AD OP-07A, AD OP-07
AD OP-07E, AD OP-07C, AD OP-07D 0 to +70°C
Lead Temperature Range (Soldering 60sec) + 300°C
NOTES

Note 1: Maximum package power dissipation vs. ambient temperature.

	Maximum Ambient	Derate Above Maximum
Package Type	Temperature for Rating	Ambient Temperature
TO-99(H)	80°C	7.1mW/°C
Mini-DIP(N)	36°C	5.6mW/°C
Cerdip(Q)	75°C	6.7mW/°C

THE AD OP-07 IS AVAILABLE IN WAFER-TRIMMED CHIP FORM FOR PRECISION HYBRIDS CONSULT THE FACTORY FOR DETAILS

Offset Voltage Test Circuit

Burn-In Circuit

AD OP-07 ORDERING GUIDE

Model	Package Option	Temperature Range (°C)	Max Initial Offset (µV)	Max Offset Drift (µV/°C)
AD OP-07EH	TO-99	0 to + 70	75	1.3
AD OP-07EN	Mini-DIP	0 to + 70	75	1.3
AD OP-07EQ	Cerdip	0 to + 70	75	1.3
AD OP-07CH	TO-99	0 to + 70	150	1.8
AD OP-07CN	Mini-DIP	0 to + 70	150	1.8
AD OP-07CQ	Cerdip	0 to + 70	150	1.8
AD OP-07CR	Small Outline	0 to + 70	150	1.8
AD OP-07DH	TO-99	0 to + 70	150	2.5
AD OP-07DN	Mini-DIP	0 to + 70	150	2.5
AD OP-07DQ	Cerdip	0 to + 70	150	2.5
AD OP-07AH	TO-99	- 55 to + 125	25	0.6
AD OP-07AQ	Cerdip	- 55 to + 125	25	0.6
AD OP-07H	TO-99	- 55 to + 125	75	1.3
AD OP-07Q	Cerdip	- 55 to + 125	75	1.3

CHIP DIMENSIONS AND BONDING DIAGRAM Dimensions shown in inches and (mm).

The AD OP-07 may be directly substituted for other OP-07's as well as 725, 108/208/308, 108A/208A/308A, 714, OP-05 or LM11 devices, with or without removal of external frequency compensation or offset nulling components. If used to replace 741 devices, offset nulling components must be re-

Figure 1. Optional Offset Nulling Circuit and Power Supply Bypassing

moved (or referenced to $+V_S$). Input offset voltage of the AD OP-07 is very low, but if additional nulling is required, the circuit shown in Figure 1 is recommended.

The AD OP-07 provides stable operation with load capacitances up to 500pF and $\pm 10V$ swings; larger capacitances should be decoupled with 50 Ω resistor.

Stray thermoelectric voltages generated by dissimilar metals (thermocouples) at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

Although the AD OP-07 features high power supply rejection, the effects of noise on the power supplies may be minimized by bypassing the power supplies as close to pins 4 and 7 of the AD OP-07 as possible, to load ground with a good-quality 0.01μ F ceramic capacitor as shown in Figure 1.

Performance Curves (typical @ $T_A = +25^{\circ}C$, $V_S = \pm 15V$, AD OP-07 Grade Device unless otherwise noted)

AD OP-07 Open Loop Gain Curve

Open Loop Gain vs. Temperature

AD OP-07 Low Frequency Noise (See Test Circuit, on the Previous Page)

Open Loop Frequency Response

Typical Performance Curves

Closed Loop Response for Various Gain Configurations

Input Wideband Noise vs. Bandwidth (0.1kHz to Frequency Indicated)

CMRR vs. Frequency

Power Consumption vs. Power Supply

Maximum Undistorted Output vs. Frequency

Offset Voltage vs. Time

PSRR vs. Frequency

Output Voltage vs. Load Resistance

ANALOG DEVICES

Ultralow-Noise Precision Op Amp

AD OP-27

FEATURES

- Ultralow Noise: 80nV p-p (0.1Hz to 10Hz), 3nV/ \sqrt{Hz} at 1kHz Ultralow Offset Voltage Drift: 0.2μ V/°C High Offset Stability Over Time: 0.2μ V/month High Slew Rate: 2.8V/ μ s High Gain Bandwidth Product: 8MHz Low Offset Voltage: 10 μ V High CMRR: 126dB Over ± 11V Input Voltage Range Fits OP-07, OP-05, OP-06, 5534, 725, 714 and 741 Sockets Military Grade and Plus Parts Available 8-Pin Plastic Mini-DIP, Cerdip or TO-99 Hermetic
- Metal Can

Available in Wafer-Trimmed Chip Form

PRODUCT DESCRIPTION

The AD OP-27 offers the combined features of high precision, ultralow noise and high speed in a monolithic bipolar operational amplifier. State-of-the-art performance for high accuracy amplification of very low level signals, where inherent device noise can be the limiting factor, is attainable with the AD OP-27. As a device directly compatible with other low noise op amps, the AD OP-27 features industry standard dc performance; typical input offset voltages of $10\mu V$ and typical input offset voltage temperature coefficients of $0.2\mu V/^{\circ}C$. The super low input voltage noise performance of the AD OP-27 is characterized by an en p-p (typ) of 80nV (0.1Hz to 10Hz), an e_n (typ) of $3.0nV/\sqrt{Hz}$ (at 1kHz) and a 1/f noise corner frequency of 2.7Hz. AC specifications including a 2.8V/ μ s (typ) slew rate and an 8MHz (typ) gain bandwidth product are possible without sacrificing dc accuracy. Long-term stability is assured by an input offset voltage drift specification of 0.2µV/month.

Source resistance related errors with the AD OP-27 are minimized by a low input bias current at ambient of $\pm 10nA$ (typ) and an input offset current of 7nA (typ). An input bias current cancellation circuit limits bias and offset currents over the extented temperature range to $\pm 20nA$ (typ) and 15nA (typ), respectively. Other factors inducing input referred errors such as power supply variations and common-mode voltages are attenuated by a PSRR and CMRR of at least 120dB.

The AD OP-27 is available in six performance grades. The AD OP-27E, AD OP-27F and AD OP-27G are specified for operation over the -25° C to $+85^{\circ}$ C temperature range, while the AD OP-27A, AD OP-27B and AD OP-27C are specified for -55° C to $+125^{\circ}$ C operation. All devices are available in either the TO-99 hermetically sealed metal cans or the hermetically sealed cerdip packages, while the E, F and G grades are also available in plastic mini-DIPs.

AD OP-27 CONNECTION DIAGRAMS

PRODUCT HIGHLIGHTS

- 1. Precision amplification of very low level, low frequency voltage inputs is enhanced by ultralow input voltage noise.
- 2. The AD OP-27 maintains high dc accuracy over an extended temperature range due to ultra-low offset voltage, offset voltage drift and input bias current.
- Internal frequency compensation, factory adjusted offset voltage and full device protection eliminate the need for additional components. Circuit size and complexity are reduced while reliability is increased.
- 4. Long-term stability and accuracy is assured with low offset voltage drift over time.
- 5. Input referred errors are greatly reduced by superior common mode and power supply rejection characteristics.
- 6. Monolithic construction along with advanced circuit design and processing techniques result in low cost.

SPECIFICATIONS ($T_A = +25^{\circ}C$, $V_S = \pm 15V$, unless otherwise specified)

Model	AD OP-27G				AD OP-22	7 F	AD OP-27E			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
OPEN LOOP GAIN	A _{vo}	700 400 200 450	1,500 1,500 500 1,000		1,000 800 250 700	1,800 1,500 700 1,300		1,000 800 250 750	1,800 1,500 700 1,500	
OUTPUT CHARACTERISTICS Voltage Swing	Vo	±11.5 ±10.0 ±11.0	± 13.5 ± 11.5 ± 13.3		± 12.0 ± 10.0 ± 11.4	± 13.8 ± 11.5 ± 13.5		±12.0 ±10.0 ±11.7	± 13.8 ± 11.5 ± 13.6	
Open-Loop Output Resistance	Ro		70			70			70	
FREQUENCY RESPONSE Gain Bandwidth Product Slew Rate	GBW SR	5.0 1.7	8.0 2.8		5.0 1.7	8.0 2.8		5.0 1.7	8.0 2.8	
INPUT OFFSET VOLTAGE Initial	V _{os}		30 55	100 220		20 40	60 140		10 20	25 60
Average Drift Long Term Stability Adjustment Range	TCV _{OS} V _{OS} /Time		0.4 0.4 ±4.0	1.8 2.0		0.3 0.3 ±4.0	1.3 1.5		0.2 0.2 ±4.0	0.6 1.0
INPUT BIAS CURRENT Initial	I _B		±15 ±25	± 80 ± 150		±12 ±18	± 55 ± 95		± 10 ± 14	± 40 ± 60
INPUT OFFSET CURREN'T Initial	I _{OS}		12 20	75 135		9 14	50 85		7 10	35 50
INPUT NOISE Voltage Voltage Density	e _n p-p e _n		0.09 3.8 3.3 3.2 1.7	0.25 8.0 5.6 4.5		0.08 3.5 3.1 3.0 1.7	0.18 5.5 4.5 3.8 4.0		0.08 3.5 3.1 3.0 1.7	0.18 5.5 4.5 3.8 4.0
, ,	*n		1.0 0.4	- 0.6		1.0 0.4	2.3 0.6		1.0 0.4	2.3 0.6
INPUT VOLTAGE RANGE Common Mode	CMVR	±11.0 ±10.5	$\substack{\pm 12.3\\\pm 11.8}$		± 11.0 ± 10.5	$^{\pm 12.3}_{\pm 11.8}$		± 11.0 ± 10.5	$^{\pm12.3}_{\pm11.8}$	
Common-Mode Rejection Ratio	CMRR	100 96	120 118		106 102	123 121		114 110	126 124	
INPUT RESISTANCE Differential Common Mode	R _{IN} R _{INCM}	0.8	4 2		1.2	5 2.5		1.5	6 3	
POWER SUPPLY Rated Performance Operating Current, Quiescent Rejection	I _Q PSR		±15 ±(4–18) 3.3 2 2	5.6 20 32		± 15 $\pm (4-18)$ 3.0 1 2) 4.6 10 16		± 15 ± (4–18) 3.0 1 2	4.6 10 15
Power Consumption	P _d		100	170		90	140		90	140
OPERATING TEMPERATURE F	RANGE T _{min} , T _{max}	- 25		+ 85	- 25		+ 85	- 25		+ 85
PACKAGE OPTIONS ³ Plastic Mini-DIP (N-8) Cerdip (Q-8) TO-99 (H-08A)		AD AD AD	OP-27GN OP-27GQ OP-27GH	[AD AD AD	OP-27FN OP-27FQ OP-27FF	1 2 1	AD AD AD	OP-27EN OP-27FQ OP-27EH	T 2 T

NOTES ¹Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power A and E grades are guaranteed fully warmed up. ²Long-Term Input Offset Voltage Stability refers to the average trend line of V_{OS} vs. time after the first 30 days.

³See Section 16 for package outline information. Specifications subject to change without notice.

AD OP-27C		AD OP-27B			AD OP-27A			Conditions	Units	
Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
700 400 200 300	1,500 1,500 500 800		1,000 800 250 500	1,800 1,500 700 1,000		1,000 800 250 600	1,800 1,500 700 1,200		$\begin{split} R_L &\geq 2k\Omega, V_{OUT} = \pm 10V \\ R_L &\geq 1k\Omega, V_{OUT} = \pm 10V \\ R_L &= 600\Omega, V_{OUT} = \pm 1V, V_S = \pm 4V \\ R_L &\geq 2k\Omega, V_{OUT} = \pm 10V, T_a = \min to max \end{split}$	V/mV V/mV V/mV V/mV
±11.5 ±10.0 ±10.5	$\pm 13.5 \\ \pm 11.5 \\ \pm 13.0 \\ 70$		± 12.0 ± 10.0 ± 11.0	$\pm 13.8 \\ \pm 11.5 \\ \pm 13.2 \\ 70$		±12.0 ±10.0 ±11.5	$\pm 13.8 \\ \pm 11.5 \\ \pm 13.5 \\ 70$		$R_{L} \ge 2k\Omega$ $R_{L} \ge 600\Omega$ $R_{L} \ge 2k\Omega, T_{a} = \min \text{ to max}$ $I_{OUT} = 0A, V_{OUT} = 0V$	V V V Ω
5.0 1.7	8.0 2.8		5.0 1.7	8.0 2.8		5.0 1.7	8.0 2.8		R _L ≥2kΩ	MHz V/µs
	$30700.40.4\pm 4.0$	100 300 1.8 2.0		20 50 0.3 0.3 ± 4.0	60 200 1.3 1.5		$10300.20.2\pm 4.0$	25 60 0.6 1.0	$(Note 1) \\ T_a = min to max \\ T_a = min to max \\ (Note 2) \\ R_p = 10k\Omega$	μV μV μV/°C μV/month mV
	±15 ±35	±80 ±150		±12 ±28	± 55 ± 95		$\begin{array}{c} \pm 10 \\ \pm 20 \end{array}$	±40 ±60	$T_a = min to max$	nA nA
	12 30	75 135		9 22	50 85		7 15	35 50	$T_a = min to max$	nA nA
	0.09 3.8 3.3 3.2 1.7 1.0 0.4	0.25 8.0 5.6 4.5 - - 0.6	,	0.08 3.5 3.1 3.0 1.7 1.0 0.4	0.18 5.5 4.5 3.8 4.0 2.3 0.6		0.08 3.5 3.1 3.0 1.7 1.0 0.4	0.18 5.5 4.5 3.8 4.0 2.3 0.6	0.1Hz to 10Hz $f_o = 10Hz$ $f_o = 30Hz$ $f_o = 1000Hz$ $f_o = 10Hz$ $f_o = 10Hz$ $f_o = 10Hz$ $f_o = 1000Hz$	$ \begin{array}{l} \mu V p-p \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \\ pA/\sqrt{Hz} \end{array} $
±11.0 ±10.2	$\pm 12.3 \pm 11.5$ 120		±11.0 ±10.3	± 12.3 ± 11.5 123		±11.0 ±10.3	± 12.3 ± 11.5 126		$T_a = min to max$ $V_{CM} = \pm 11V$	V V dB
94	116		100	119		108	122		$V_{CM} = \pm 10V, T_a = \min to \max$	dB
0.8	4 2		1.2	5 2.5		1.5	6 3			ΜΩ GΩ
	±15 ±(4-18) 3.3 2 4 100	5.6 20 51 170		± 15 $\pm (4-18)$ 3.0 1 2 90	4.6 10 20 140		± 15 $\pm (4-18)$ 3.0 1 2 90	4.6 10 16 140	$\begin{split} V_{S} &= \pm 15V \\ V_{S} &= \pm 4V \text{ to } \pm 18V \\ V_{S} &= \pm 4.5V \text{ to } \pm 18V, $	V V mA μV/V μV/V mW
- 55		+ 125	- 55		+ 125	- 55		+ 125		°C
AD AD	OP-27CQ OP-27CH		AD AD	OP-27BQ OP-27BH		AD AD	OP-27AQ OP-27AH			

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage					. ±18V
Internal Power Dissipation (Note 1)					500mW
Input Voltage					$ \pm V_S$
Output Short Circuit Duration					Indefinite
Differential Input Voltage (Note 2)					. ±0.7V

Differential Input Current (Note 2) $\ldots \ldots \ldots \pm 25$ mA
Storage Temperature Range
Operating Temperature Range
AD OP-27A, AD OP-27B, AD OP-27C 55°C to + 125°C
AD OP-27E, AD OP-27F, AD OP-27G 25°C to + 85°C
Lead Temperature Range (Soldering 60sec)

NOTES:

Maximum package power dissipation vs. ambient temperature.											
Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature										
80°C	7.1mW/°C										
36°C	5.6mW/°C										
75°C	6.7mW/°C										
	ver dissipation vs. ambien Maximum Ambient Temperature for Rating 80°C 36°C 75°C										

Note 2: The AD OP-27's inputs are protected by back-to-back diodes. To achieve low noise current limiting resistors could not be used. If the differential input voltage exceeds ± 0.7V, the input current should be limited to 25mA.

CHIP DIMENSIONS AND BONDING DIAGRAM

AD OP-27 ORDERING GUIDE

Model	Package Option*	Temperature Range (°C)	Max Initial Offset (µV)	Max Offset Drift (µV/°C)
AD OP-27GH	TO-99	- 25 to + 85	100	1.8
AD OP-27GN	Mini-DIP	-25 to + 85	100	1.8
AD OP-27GQ	Cerdip	- 25 to + 85	100	1.8
AD OP-27FH	TO-99	- 25 to + 85	60	1.3
AD OP-27FN	Mini-DIP	- 25 to + 85	60	1.3
AD OP-27FQ	Cerdip	- 25 to + 85	60	1.3
AD OP-27EH	TO-99	- 25 to + 85	25	0.6
AD OP-27EN	Mini-DIP	-25 to + 85	25	0.6
AD OP-27EQ	Cerdip	-25 to + 85	25	0.6
AD OP-27CH	TO-99	- 55 to + 125	100	1.8
AD OP-27CQ	Cerdip	- 55 to + 125	100	1.8
AD OP-27BH	TO-99	- 55 to + 125	60	1.3
AD OP-27BQ	Cerdip	- 55 to + 125	60	1.3
AD OP-27AH	TO-99	- 55 to + 125	25	0.6
ADOP-27AQ	Cerdip	- 55 to + 125	25	0.6

*See Section 16 for package outline information.

APPLICATION NOTES FOR THE AD OP-27

The AD OP-27 can be used in the sockets of many of the popular precision bipolar input operational amplifiers on the market. Elimination of external frequency compensation or nulling circuitry may be possible in many cases. In 741 replacement situations, if nulling has been implemented, it should be modified or removed for optimum AD OP-27 performance.

In applications where the initial factory adjusted input offset voltage provides insufficient accuracy, further offset trimming can be accomplished with the resistor network shown in Figure 1. The adjustment range attainable using a 10k Ω potentiometer will be ± 4 mV. If a smaller adjustment range is required, the sensitivity of the nulling can be increased by using a smaller potentiometer in series with fixed resistor(s). For example, a 1k Ω pot in series with two 4.7k Ω resistors will yield a $\pm 280\mu$ V range.

Figure 1. Optional Offset Nulling Circuit and Power Supply Bypassing

Zeroing the initial offset with potentiometers other than 10k Ω , but between 1k Ω and 1M Ω , will introduce an additional input offset voltage temperature drift error of from 0.1 to 0.2 μ V/°C. Additionally, by intentionally trimming in a dc level shift a voltage dependent offset drift will be created. It will be approximately the input offset voltage at 25°C divided by 300 (in μ V/ °C).

Parasitic thermocouple EMF's can be generated where dissimilar metals meet the contacts to the input terminals of the AD OP-27. These temperature dependent voltages can manifest themselves as drift type errors. Optimized temperature performance will be obtained when both contacts are maintained at the same temperature—a temperature close to the device's package.

Output stability with the AD OP-27 is possible with capacitive loads of up to 2000pF and $\pm 10V$ output swings. Larger capacitances should be decoupled with a 50 Ω resistor.

High closed loop gain and excellent linearity can be achieved by operating the AD OP-27 within an output current range of ± 10 mA. Minimizing output current will provide the highest linearity.

Figure 2. Burn-In Circuit

SLEW RATE DISCUSSION

In unity gain buffer applications with feedback resistances of less than 100Ω where the input is driven with a fast, large (greater than 1V) pulse, the output waveform will appear as in Figure 3.

Figure 3. Unity Gain Buffer/Pulsed Operation

During the initial portion of the output slew the input protection back-to-back diodes effectively short the output to the input. A current limited only by the output short circuit protection will be drawn from the source. After the input diodes saturate, the amplifier will slew at its nominal $2.8V/\mu s$. With feedback resistances of more than 500Ω the output is capable of handling the current requirements without limiting (less than 20mA at 10V) and the amplifier will stay in the linear region.

As with all operational amplifiers a feedback resistance of greater than $2k\Omega$ will create a pole with the input capacitance (8pF). Additional phase shift will be introduced and the phase margin will be reduced. A small capacitor (20 to 50pF) in parallel with the feedback resistor will alleviate this problem.

CAUTION: NOISE MEASUREMENTS

Precise measurement of the extremely low input noise associated with the AD OP-27 is a difficult task. In order to observe the rated noise in the 0.1Hz to 10Hz frequency range the following cautions should be exercised.

(1) The test time to measure 0.1Hz to 10Hz noise should not exceed 10 seconds. As shown in the noise test frequency response plot in this data sheet the 0.1Hz corner is only defined by a single zero. A test time of 10 seconds acts as an additional zero to eliminate noise contributions from frequencies lower than 0.1Hz.

(2) Warm-up for a least five minutes will eliminate temperature induced effects. During the first few minutes the offset voltage typically increases $4\mu V$. In a 10 second measurement interval prior to temperature stabilization the reading could include several nanovolts of warm-up offset error in addition to the noise.

(3) For reasons similar to (2) the device under test should be well shielded from air currents or other heat sinks to eliminate the possibility of temperature changes over time invalidating the measurements. Sudden motion in the vicinity or physical contact with the package can also increase the observed noise.

An input voltage noise spectral density test is recommended when measuring noise on a large number of units. Because the l/f noise corner frequency is around 3Hz, a 1kHz noise voltage density measurement combined with a 0.1Hz to 10Hz peak-to-peak noise reading will guarantee l/f and white noise performance over the rated frequency spectrum.

Typical Performance Curves (@ $T_A = +25^{\circ}C$, $V_S = \pm 15V$)

Input Voltage Noise Spectral Density

Input Voltage Noise vs. Temperature

Total Noise vs. Source Impedance

Comparison of Op Amp Input Voltage Noise Spectrums

Input Voltage Noise vs. Supply Voltage

0.1Hz to 10Hz Noise Test Frequency

Response

SANOWDITI- LHz

Input Wideband Noise vs. Bandwidth (0.1Hz to Frequency Indicated)

Input Current Noise Spectral Density

0.1Hz to 10Hz p-p Voltage Noise

0.1Hz to 10Hz Noise Test Bandpass Filter (Voltage Gain = 50,000)

Input Offset Voltage Turn-On Drift vs. Time

Input Offset Current vs. Temperature

Slew Rate, Gain Bandwidth Product and Phase Margin vs. Temperature

Undistorted Output Swing vs. Frequency

Long Term Offset Stability @ Temperature

Open Loop Frequency Response

Open Loop Gain vs. Supply Voltage

Output Swing vs. Resistive Load

Input Bias Current vs. Temperature

Open Loop Gain and Phase Shift vs. Frequency

Open Loop Gain vs. Resistive Load

Output Short Circuit Current vs. Time

Power Supply Rejection Ratio vs. Frequency

Unity Gain Follower Pulse Response (Small Signal)

Supply Current vs. Supply Voltage

CMRR vs. Frequency

۰

Unity Gain Follower Pulse Response (Large Signal)

Common-Mode Input Range vs. Supply Voltage

Ultralow-Noise, High-Speed Precision Op Amp ($A_{VCL} \ge 5$)

AD OP-37

FEATURES

Ultralow Noise: 80nV p-p (0.1Hz to 10Hz), 3nV/ \sqrt{Hz} at 1kHz High Speed: 17V/ μ s High Gain Bandwidth Product: 63MHz Ultralow Offset Voltage Drift: 0.2 μ V/°C High Offset Stability Over Time: 0.2 μ V/°C High Offset Voltage: 10 μ V High CMRR: 126dB Over ±11V Input Voltage Range Fits OP-07, OP-05, OP-06, 5534, LH0044, 5130, 3510, 725, 714 and 741 Sockets in Gains \geq 5 Military Grade and Plus Parts Available 8-Pin Plastic Mini-DIP, Cerdip or TO-99 Hermetic Metal Can

Available in Wafer-Trimmed Chip Form

PRODUCT DESCRIPTION

The AD OP-37 offers the combined features of high precision, ultralow noise and high speed in a monolithic bipolar operational amplifier. High-speed accurate amplification of very low level signals, where inherent device noise can be the limiting factor, is attainable with the AD OP-37 in applications requiring gains greater than or equal to five. This instrumenation grade op amp features industry standard dc performance; typical input offset voltages of 10µV and typical input offset voltage temperature coefficients of 0.2µV/°C. The super low input voltage noise performance of the AD OP-37 is characterized by an en p-p (typ) of 80nV (0.1Hz to 10Hz), an e_n (typ) of 3.0nV/ \sqrt{Hz} (at 1kHz) and a 1/f noise corner frequency of 2.7Hz. High speed performance is assured by a typical 17V/µs slew rate and a typical 63MHz gain bandwidth product. Long-term stability is guaranteed by an input offset voltage drift specification of $0.2\mu V/month.$

Source resistance related input errors with the AD OP-37 are minimized by a low input bias current of $\pm 10nA$ (typ) and an input offset current of 7nA (typ). An input bias current cancellation circuit restricts bias and offset currents over the extended temperature range to $\pm 20nA$ (typ) and 15nA (typ), respectively. Other factors inducing input referred errors such as power supply variations and common-mode voltages are attenuated by a PSRR and CMRR of 120dB.

The AD OP-37 is available in six performance grades. The AD OP-37E, AD OP-37F and AD OP-37G are specified for operation over the -25° C to $+85^{\circ}$ C temperature range, while the AD OP-37A, AD OP-37B and AD OP-37C are specified for -55° C to $+125^{\circ}$ C operation. All devices are available in either the TO-99 hermetically sealed metal cans or the hermetically sealed cerdip packages, while the industrial grades are also available in plastic mini-DIPs.

AD OP-37 CONNECTION DIAGRAMS

PRODUCT HIGHLIGHTS

- High speed accurate amplification (gains ≥ 5) of very low level low frequency voltage inputs is enhanced by a high gain bandwidth product and ultralow input voltage noise.
- The AD OP-37 maintains high dc accuracy over an extended temperature range due to ultralow offset voltage, offset voltage drift and input bias current.
- Internal frequency compensation, factory adjusted offset voltage and full device protection eliminate the need for additional components. Circuit size and complexity are reduced while reliability is increased.
- 4. Long-term stability and accuracy is assured with low offset voltage drift over time.
- 5. Input referred errors are greatly reduced by superior commonmode and power supply rejection characteristics.
- Monolithic construction along with advanced circuit design and processing techniques result in low cost.

SPECIFICATIONS ($T_A = +25^{\circ}C$, $V_S = \pm 15V$, unless otherwise specified) Model AD OP-37G AD OP-37F AD OP-37E Parameter Symbol Min Max Min Max Min Тур Max Тур Тур OPEN LOOP GAIN 700 1,500 1.000 1,800 1,000 1,800 Avo 400 1,500 800 1,500 800 1,500 200 500 250 700 250 700 450 1,000 700 1,300 750 1,500 OUTPUT CHARACTERISTICS Voltage Swing Vo ±11.5 ± 13.5 ±12.0 ± 13.8 ±12.0 ±13.8 ± 10.0 ± 11.5 ± 10.0 ± 11.5 ±10.0 ± 11.5 ± 11.0 ± 13.3 ± 11.4 ± 13.5 ± 11.7 ± 13.6 Ro **Open-Loop Output Resistance** 70 70 70 FREOUENCY RESPONSE Gain Bandwidth Product GBW 45 63 45 63 45 63 40 40 40 Slew Rate SR 11 17 11 17 11 17 INPUT OFFSET VOLTAGE 30 100 20 60 25 Initial Vos 10 55 220 140 40 20 60 TCVos Average Drift 0.4 1.8 0.3 1.3 0.2 0.6 Long-Term Stability V_{OS}/Time 0.4 2.0 1.5 0.3 0.2 1.0 Adjustment Range ± 4.0 ± 4.0 ± 4.0 INPUT BIAS CURRENT Initial ±15 ± 80 I_B ± 12 ±55 ± 10 ±40 ±25 ± 150 ± 18 ±95 ± 14 ± 60 INPUT OFFSET CURRENT 12 9 Initial 75 50 7 35 Los 135 20 14 85 10 50 INPUT NOISE 0.09 0.08 Voltage enp-p 0.25 0.18 0.08 0.18 Voltage Density e_n 3.8 8.0 3.5 5.5 3.5 5.5 3.3 5.6 3.1 4.5 3.1 4.5 3.2 4.5 3.0 3.8 3.0 3.8 Current Density 1.7 1.7 4.0 1.7 4.0 in _ 1.0 2.3 1.0 1.0 2.3 0.4 0.6 0.4 0.6 0.4 0.6 INPUT VOLTAGE RANGE Common Mode CMVR ± 11.0 ±12.3 ±11.0 ± 12.3 ±11.0 ±12.3 ±10.5 ± 11.8 ± 10.5 ±10.5 ± 11.8 ± 11.8 Common-Mode Rejection 100 CMRR Ratio 120 106 123 114 126 96 118 102 121 110 124 INPUT RESISTANCE R_{IN} Differential 0.8 4 1.2 5 1.5 6 Common Mode 2 2.5 RINCM 3 POWER SUPPLY Rated Performance ±15 ±15 ±15 Operating $\pm (4 - 18)$ $\pm (4-18)$ $\pm (4 - 18)$ 5.6 Current, Quiescent I_Q PSR 3.3 3.0 4.6 3.0 4.6 Rejection 2 20 10 10 1 1 2 32 2 16 2 15 **Power Consumption** 100 170 90 P_d 140 90 140 **OPERATING TEMPÉRATURE RANGE** - 25 +85- 25 +85- 25 T_{min}, T_{max} +85PACKAGE OPTIONS³ Plastic Mini-DIP (N-8) AD OP-37GN AD OP-37FN AD OP-37EN Cerdip(Q-8) AD OP-37GQ AD OP-37FQ AD OP-37EQ TO-99(H-08) AD OP-37GH AD OP-37FH AD OP-37EH

NOTES

¹Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of

power. A and E grades are guaranteed fully warmed up. ²Long-Term Input Offset Voltage Stability refers to the average trend line of V_{OS} vs. time after the first 30 days.

³See Section 16 for package outline information.

Specifications subject to change without notice.

AD OP.37C		AD OP-37B				AD OP-3	7 A	Conditions	Units	
Min	Tvp	Max	Min	Typ	Max	Min	Tvp	Max	CONTROLO	0
700 400 200 300	1,500 1,500 500 800		1,000 800 250 500	1,800 1,500 700 1,000		1,000 800 250 600	1,800 1,500 700 1,200		$eq:rescaled_$	V/mV V/mV V/mV V/mV
±11.5 ±10.0 ±10.5	± 13.5 ± 11.5 ± 13.0 70		± 12.0 ± 10.0 ± 11.0	± 13.8 ± 11.5 ± 13.2 70		± 12.0 ± 10.0 ± 11.5	± 13.8 ± 11.5 ± 13.5 70		$R_{L} \ge 2k\Omega$ $R_{L} \ge 600\Omega$ $R_{L} \ge 2k\Omega, T_{a} = \min \text{ to max}$ $I_{OUT} = 0A, V_{OUT} = 0V$	V V V Ω
45 - 11	63 63 17		45 - 11	63 40 17		45 - 11	63 40 17		$ \begin{array}{l} f_{o}=10kHz\\ f_{o}=1MHz\\ R_{L}{\geqslant}2k\Omega \end{array} $	MHz MHz V/µs
	30 70 0.4 0.4 ± 4.0	100 300 1.8 2.0		20 50 0.3 0.3 ± 4.0	60 200 1.3 1.5		$10300.20.2\pm 4.0$	25 60 0.6 1.0	(Note 1) $T_a = \min to \max$ $T_a = \min to \max$ (Note 2) $R_p = 10k\Omega$	μV μV μV/°C μV/month mV
	±15 ±35	± 80 ± 150		±12 ±28	± 55 ± 95		± 10 ± 20	±40 ±60	$T_a = min to max$	nA nA
	12 30	75 135		9 22	50 85		7 15	35 50	$T_a = min to max$	nA nA
	0.09 3.8 3.3 3.2 1.7 1.0 0.4	0.25 8.0 5.6 4.5 - 0.6		0.08 3.5 3.1 3.0 1.7 1.0 0.4	0.18 5.5 4.5 3.8 4.0 2.3 0.6		0.08 3.5 3.1 3.0 1.7 1.0 0.4	0.18 5.5 4.5 3.8 4.0 2.3 0.6	$\begin{array}{l} 0.1 Hz \ to \ 10 Hz \\ f_{o} = 10 Hz \\ f_{o} = 30 Hz \\ f_{o} = 1000 Hz \\ f_{o} = 100 Hz \\ f_{o} = 30 Hz \\ f_{o} = 30 Hz \\ f_{o} = 1000 Hz \end{array}$	$\begin{array}{c} \mu V p \text{-} p \\ n V / \sqrt{\text{Hz}} \\ n V / \sqrt{\text{Hz}} \\ n V / \sqrt{\text{Hz}} \\ p A / \sqrt{\text{Hz}} \\ p A / \sqrt{\text{Hz}} \\ p A / \sqrt{\text{Hz}} \end{array}$
± 11.0 ± 10.2	±12.3 ±11.5		±11.0 ±10.3	$\pm 12.3 \\ \pm 11.5$		±11.0 ±10.3	±12.3 ±11.5		$T_a = min to max$	v v
100 94	120 116		106 100	123 119		114 108	126 122			dB dB
0.8	4 2		1.2	5 2.5		1.5	6 3			ΜΩ GΩ
	± 15 ± (4–18) 3.3 2 4 100	5.6 20 51 170		± 15 $\pm (4-18)$ 3.0 1 2 90	4.6 10 20 140		± 15 ±(4–18 3.0 1 2 90	4.6 10 16 140	$\begin{split} V_S &= \pm 15V \\ V_S &= \pm 4V \text{ to } \pm 18V \\ V_S &= \pm 4.5V \text{ to } \pm 18V, T_a = \min \text{ to max} \\ V_{OUT} &= 0V \end{split}$	V V mA μV/V μV/V mW
- 55		+ 125	- 55		+ 125	- 55		+ 125		°C
	AD OP-37 AD OP-37	CQ CH		AD OP-37 AD OP-37	'BQ 'BH		AD OP-37 AD OP-37	YAQ YAH	1	

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

OPERATIONAL AMPLIFIERS 2-239

2

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 1$	8V
Internal Power Dissipation (Note 1) 500n	nW
Input Voltage	Vs
Output Short Circuit Duration Indefin	nite
Differential Input Voltage (Note 2)	7V

NOTES:

Differential Input Current (Note 2) $\dots \dots \dots \pm 25m$. Storage Temperature Range $\dots \dots \dots -65^{\circ}C$ to $+150^{\circ}$	A C
Operating Temperature Range	
AD OP-37A, AD OP-37B, AD OP-37C 55°C to + 125°	С
AD OP-37E, AD OP-37F, AD OP-37G25°C to +85°	С
Lead Temperature Range (Soldering 60sec)	С

 Note 1:
 Maximum package power dissipation vs. ambient
 temperature.

 Maximum Ambient
 Derate Above Maximum

 Package Type
 Temperature for Rating
 Ambient Temperature

 TO-99(H)
 80°C
 7.1mW/°C

 Mini-DIP(N)
 36°C
 5.6mW/°C

 Cerdip (Q)
 75°C
 6.7mW/°C

Note 2: The AD OP-37's inputs are protected by back-to-back diodes. To achieve low noise current limiting resistors could not be used. If the differential input voltage exceeds ± 0.7V, the input current should be limited to 25mA.

CHIP DIMENSIONS AND BONDING DIAGRAM

THE AD OP-37 IS AVAILABLE IN WAFER-TRIMMED CHIP FORM CONSULT THE FACTORY FOR DETAILS

AD OP-37 ORDERING GUIDE

Model	Package*	Temperature Range (°C)	Max Initial Offset (µV)	Max Offset Drift (µV/°C)
AD OP-37GH	TO-99	- 25 to + 85	100	1.8
AD OP-37GN	Mini-DIP	- 25 to + 85	100	1.8
AD OP-37GQ	Cerdip	- 25 to + 85	100	1.8
AD OP-37FH	TO-99	- 25 to + 85	60	1.3
AD OP-37FN	Mini-DIP	- 25 to + 85	60	1.3
AD OP-37FQ	Cerdip	- 25 to + 85	60	1.3
AD OP-37EH	TO-99	- 25 to + 85	25	0.6
AD OP-37EN	Mini-DIP	-25 to $+85$	25	0.6
AD OP-37EQ	Cerdip	- 25 to + 85	25	0.6
AD OP-37CH	TO-99	- 55 to + 125	100	1.8
AD OP-37CO	Cerdip	- 55 to + 125	100	1.8
AD OP-37BH	то-99	- 55 to + 125	60	1.3
AD OP-37BO	Cerdip	-55 to $+125$	60	1.3
AD OP-37AH	TO-99	- 55 to + 125	25	06
AD OP-37AO	Cerdip	- 55 to + 125	25.	0.6

*See Section 16 for package outline information

APPLICATION NOTES FOR THE AD OP-37

The AD OP-37 can be used in the sockets of many of the popular precision bipolar input operational amplifiers on the market. Elimination of external frequency compensation or nulling circuitry may be possible in many cases. In 741 replacement situations, if nulling has been implemented, it should be modified or removed for correct AD OP-37 performance.

In applications where the initial factory adjusted input offset voltage provides insufficient accuracy, further offset trimming can be accomplished with the resistor network shown in Figure 1. The adjustment range attainable using a 10k\Omega potentiometer will be ± 4 mV. If a smaller adjustment range is required, the sensitivity of the nulling can be increased by using a smaller potentiometer in series with fixed resistor(s). For example, a 1k Ω pot in series with two 4.7k Ω resistors will yield a $\pm 280\mu$ V range.

Figure 1. Optional Offset Nulling Circuit and Power Supply Bypassing

Zeroing the initial offset with potentiometers other than $10k\Omega$, but between $1k\Omega$ and $1M\Omega$, will introduce an additional input offset voltage temperature drift error of from 0.1 to $0.2\mu V/^{\circ}C$. Additionally, by intentionally trimming in a dc level shift a voltage dependent offset drift will be created. It will be approximately the input offset voltage at 25°C divided by 300 (in $\mu V/^{\circ}C$).

Parasitic thermocouple EMF's can be generated where dissimilar metals meet the contacts to the input terminals of the AD OP-37. These temperature dependent voltages can manifest themselves as drift type errors. Optimized temperature performance will be obtained when both contacts are maintained at the same temperature.

Output stability with the AD OP-37 is possible with capacitive loads of up to 1000pF and \pm 10V output swings. Larger capacitances should be decoupled with a 50 Ω resistor inside the feedback loop.

Although the AD OP-37 features high-power supply rejection, the effects of noise on the power supplies may be minimized by bypassing the power supplies as close to Pins 4 and 7 of the AD OP-37 as possible, to load ground with a good quality 0.01μ F ceramic capacitor as shown in Figure 1. High closed loop gain and excellent linearity can be achieved by operating the AD OP-37 within an output current range of ± 10 mA. Minimizing output current will provide the highest linearity.

Figure 2. Burn-In Circuit

CAUTION: NOISE MEASUREMENTS

Precise measurement of the extremely low input noise associated with the AD OP-37 is a difficult task. In order to observe the rated noise in the 0.1Hz to 10Hz frequency range the following cautions should be exercised.

(1) The test time to measure 0.1Hz to 10Hz noise should not exceed 10 seconds. As shown in the noise test frequency response plot in this data sheet the 0.1Hz corner is only defined by a single zero. A test time of 10 seconds acts as an additional zero to eliminate noise contributions from frequencies lower than 0.1Hz.

(2) Warm-up for a least five minutes will eliminate temperature induced effects. During the first few minutes the offset voltage typically increases 4μ V. In a 10 second measurement interval prior to temperature stabilization the reading could include several nanovolts of warm-up offset error in addition to the noise.

(3) For reasons similar to (2) the device under test should be well shielded from air currents or other heat sinks to eliminate the possibility of temperature changes over time invalidating the measurements. Sudden motion in the vicinity or physical contact with the package can also increase the observed noise.

An input voltage noise spectral density test is recommended when measuring noise on a large number of units. Because the l/f noise corner frequency is around 3Hz, a 1kHz noise voltage density measurement combined with a 0.1Hz to 10Hz peak-to-peak noise reading will guarantee l/f and white noise performance over the rated frequency spectrum.
Typical Performance Curves (@ $T_A = +25^{\circ}C$, $V_S = \pm 15V$)

Input Voltage Noise Spectral Density

Input Voltage Nose vs. Temperature

Total Noise vs. Source Impedance

0 1μF

Comparison of Op Amp Input Voltage Noise Spectrums

Input Voltage Noise vs. Supply Voltage

0.1Hz to 10Hz Noise Test Frequency Response

Input Wideband Noise vs. Bandwidth (0.1Hz to Frequency Indicated)

Input Current Noise Spectral Density

0.1Hz to 10Hz p-p Voltage Noise

0.1Hz to 10Hz Noise Test Bandpass Filter (Voltage Gain = 50,000)

Input Offset Voltage Turn-On Drift vs. Time

Input Offset Current vs. Temperature

Slew Rate, Gain Bandwidth Product and Phase Margin vs. Temperature

Undistorted Output Swing vs. Frequency

Long Term Offset Stability @ Temperature

Open Loop Frequency Response

Open Loop Gain vs. Supply Voltage

Output Swing vs. Resistive Load

Input Bias Current vs. Temperature

Open Loop Gain and Phase Shift vs. Frequency

Open Loop Gain vs. Resistive Load

Output Short Circuit Current vs. Time

Small Signal Overshoot vs. Capacitive Load

Power Supply Rejection Ratio vs. Frequency

CMRR vs. Frequency

Large Signal Pulse Response $(A_V = 5, R_L = 2k)$

Supply Current vs. Supply Voltage

Slew Rate vs. Resistive Load

Small Signal Pulse Response $(A_V = 5, R_L = 2k)$

Common-Mode Input Range vs. Supply Voltage

Slew Rate vs. Supply Voltage

Fast Settling Video Operational Amplifiers

HOS-050/HOS-050A/HOS-050C

FEATURES

80ns Settling to 0.1%; 200ns to 0.01% 100MHz Gain Bandwidth Product 55MHz 3dB Bandwidth 100mA Output @ ±10V

APPLICATIONS

D/A Current Converter Video Pulse Amplifier CRT Deflection Amplifier Wideband Current Booster

GENERAL DESCRIPTION

The HOS-050, HOS-050A, and HOS-050C op amps are very high speed wideband operational amplifiers designed to complement the Analog Devices' lines of high speed data acquisition products. They feature a 100MHz gain bandwidth product; slew rate of $300V/\mu s$; and settling time of 80ns to $\pm 0.1\%$.

The HOS-050A, HOS-050, and HOS-050C have typical input offset voltages of 10mV, 25mV, and 45mV, respectively.

All models have a rated output of ± 100 mA minimum, and an exceptional noise spec of only 7µV rms, dc to 2MHz; they are ideally suited for a broad range of video applications.

FAST-SETTLING OP AMPS

At one time, operational amplifiers could be specified according to slew rates, bandwidth, and drive capability; and these parameters would be sufficient. Settling time was not considered until the use of high speed video D/A converters became widespread.

The conversion speed of the D/A can be limited by the settling time of the output amplifier, so it has become essential to select an op amp whose settling time is compatible with the D/A converter.

The increased emphasis on settling time has, in some cases, created a preoccupation with slew rates in the minds of some designers. But slew rate is only one component in establishing settling time.

The amount of overshoot, and the ringing which are present at the end of a step function change also have an effect. These parameters, in turn, are influenced by the bandwidth (or lack of it) when operating the op amp with closed loop gains greater than one.

(continued after Specifications)

HOS-050/A/C PIN DESIGNATIONS

*PINS FOR CONNECTING OPTIONAL OFFSET POTENTIOMETER. RECOMMENDED VALUE IS 10K OHMS, WITH CENTER ARM CONNECTED TO +15V. NC = NO CONNECT

BOTTOM VIEW

Figure 1. HOS-050 Frequency Response

Figure 2. Power Dissipation vs. Temperature

SPECIFICATIONS (typical @ $+ 25^{\circ}C$ and $\pm 15V$ unless otherwise specified)

Model	HOS-050	HOS-050A	HOS-050C
ABSOLUTE MAXIMUM RATINGS			
Supply Voltages (V _S)	±18V	*	*
Power Dissipation	See Figure 2	*	*
Input Voltage	±Vs	*	*
Differential Input Voltage	$\pm V_S$	*	*
Operating Temperature Range (case)	- 55°C to + 125°C	*	- 25°C to + 85°C
Junction Temperature	175°C	*	*
Storage Temperature Range	-65°C to +150°C	*	*
Lead Temperature (soldering, 10 sec.)	300°C	*	*

DC ELECTRICAL CHARACTERISTICS

Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Open Loop Gain Rated Output	$R_{\rm L} = 100\Omega$ $R_{\rm L} = >100\Omega$		100			*			*		dB
Voltage Current		+ 10/ - 8			*			*			v
(not short circuit protected) Voltage	$\begin{array}{l} R_{\rm L} = >100\Omega \\ R_{\rm L} = >200\Omega \end{array} \label{eq:RL}$	± 10	± 100		*	*		*	*		mA V
Input Offset Voltage Initial vs. Temperature vs. Power Supply Voltage	Adjustable to Zero @ + 25°C		25 50 0.5	35 150		10 20	15 35		45 75 *	65 200	mV μV/°C mV/V
Input Bias Current Initial vs. Temperature	(a +25°C		1 Doubles	2		*	*		* *	*	nA /10°C
Input Offset Current Initial	(a + 25°C		± 100			*			*		pА
Input Impedance Dıfferentıal Common Møde	}In parallel with 5pF		10 ¹⁰ 10 ¹⁰			* *			* *		Ω Ω
Input Voltage Range Common Mode Differential Common Mode Rejection		± 10	70	± 18 ± 18	*	*	*	*	*	*	V V dB
Input Noise dc to 100kHz dc to 2MHz	$\mathbf{R}_{\mathrm{FF}} = 100\Omega; \mathbf{R}_{\mathrm{FB}} = 1 \mathrm{k}\Omega$		5 7			*			*		μV rms μV rms
ACTI DOTRICAL CHARACTER	remicel										

AC ELECTRICAL CHARACTERISTICS

Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Slew Rate	$A = -1; R_{FF} = R_{FB} = 500\Omega,$										
	$Load = 100\Omega$		300			*		1	*		V/µs
Noninverting Slew Rate	$A = 2; R_{FF} = R_{FB} = 1000\Omega;$										
	$Load = 100\Omega$		320			*			*		V/µs
Overload Recovery	50% Overdrive		400			*			*		ns
Unity Gain Bandwidth Product	$R_{FF} = R_{FB} = 500\Omega$		100			*			*		MHz
Small Signal Bandwidth, – 3dB	$A = -1, R_{FF} = R_{FB} = 500\Omega$		45			*			*		MHz
	$A = -1, R_{FF} = R_{FB} = 1000\Omega$		35			*			*		MHz
	$A = -2; R_{FF} = 500\Omega,$										
	$R_{FB} = 1000\Omega$		35			*			*		MHz
	$A = -4, R_{FF} = 250\Omega;$										
	$R_{FB} = 1000\Omega$		30			*			*		MHz
Output Impedance				<1			*			*	Ω
Noninverting Bandwidth, - 3dB	$A = 2; R_{FF} = R_{FB} = 1000\Omega,$										
	100Ω load; $10pF$ capacitance										
	5-volt p-p output		25			*			*		MHz
	4-volt p-p output		30			*			*		MHz
	2-volt p-p output		55			*			*		MHz
	$A = 3; R_{FF} = 500\Omega;$										
	$R_{FB} = 1000\Omega; 100\Omega, 1000 \Omega,$					•					
	or 2000Ω load; 10pF										
	capacitance										
	10-volt p-p output		17			*			*		MHz
	5-volt p-p output		25			*			*		MHz

1

Parameter Conditions Min Typ Max Min	ACELECTRICAL CHARACTERISTICS ¹ (Continued)		1	HOS-050		HOS-050A			HOS-050C			
$\begin{array}{c c} Nonnvertung Bandwidth, -3dB \\ (continued) & A = 5; R_{FI} = 500\Omega; \\ R_{FR} = 2000\Omega; 100\Omega; 000\Omega; \\ or 200001(load/10pF c capacitance \\ - s-volt p-poutput \\ - 4-volt p-poutput \\ - 4-volt p-poutput \\ - 4-volt p-poutput \\ - 2-volt p-poutput \\ - 4-volt p-poutput \\ - 5-volt p-po$	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
	Noninverting Bandwidth, -3dB	$A = 5; R_{FF} = 500\Omega;$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(continued)	$R_{FB} = 2000\Omega, 100\Omega, 1000\Omega,$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		or 2000 load/10pF										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		capacitance										
Full Power Bandwidth (-3dB) $4-volt p-poutput2-volt p-poutput3040*MHzMHzFull Power Bandwidth(-3dB)Output = \pm 5V, A = -1,R_1 = 100020**MHzSettling Time to 0.1%Inverting(See Figure 5)A = -1, R_{11} = R_{18} = 500\OmegaV_{OU1} = \pm 2.5V100**MHzNoninverting(See Figure 5)V_{OU1} = \pm 2.5VV_{OU1} = \pm 2.5V100**nsMax Load capacitance = 75pFV_{OU1} = \pm 2.5V200**nsMaxLoad capacitance = 75pFV_{OU1} = \pm 2.5V135*nsHarmonic Distortion(See Figure 9)Signal = 4MHz, 2V outputSignal = 4MHz, 2V outputSignal = 4MHz, 2V output-63*dBPower SupplyVoltageCurrentPower ConsumptionPower ConsumptionPower ConsumptionPower ConsumptionPower ConsumptionPower DispationRated performance\pm 12\pm 18****WWTemperature Range0125**WWWW$		5-volt p-p output		15			*			*		MHz
2-voltp-poutput40**MHzFull Power Bandwidth $(-3dB)$ Output $\pm 5V, A = -1, R_1 = 100\Omega$ 40*MHzSetting Time to 0.1% Inverting $A = -1, R_{11} = R_{1B} = 500\Omega$ $V_{OUT} = \pm 5V$ 20*MHzInverting (See Figure 5) $V_{OUT} = \pm 5V$ $V_{OUT} = \pm 2.5V$ 100**msNoninverting $A = 2, R_{FT} = R_{1B} = 500\Omega$ $Max Load capacitance = 75pF$ $V_{OUT} = \pm 5V$ 100**msNoninverting $A = 2, R_{FT} = R_{1B} = 500\Omega$ $Max Load capacitance = 75pF$ $V_{OUT} = \pm 25V$ 135*msHarmonic Distortion (See Figure 9) $A = -1; Load = 1000\Omega$ Signal = 4MHz, 2V output $Load = 1000\Omega$, $Load = 1000\Omega,$ Signal = 4MHz, 2V output-63**dBPower Supply Voltage Current Power DissipationRated performance Quescent ± 12 ± 18 ****WdcVoltage Current Power DissipationQuescent ± 20 ± 25 **WdcWdcTemperature Range ± 12 ± 18 ***WdcWdc		4-volt p-p output		30			*			*		MHz
Full Power Bandwidth ($-3dB$)I-voltp-poutput Output $\pm 5V, A = -1, R_1 = 1000$ 40*MHzSettling Time to 0.1% Inverting (See Figure 5) $A = -1, R_{11} = R_{1B} = 500\Omega$ $V_{OUT} = \pm 5V$ 20**MHzNonnverting (See Figure 5) $V_{OUT} = \pm 5V$ 100**nsNonnverting (See Figure 5) $A = 2, R_{1T} = R_{1B} = 500\Omega$ Max Load capacitance = 75pF $V_{OUT} = \pm 5V$ 200**nsMax Load capacitance = 75pF $V_{OUT} = \pm 25V$ 200**nsMarmonic Distortion (See Figure 9) $A = -1; Load = 1000\Omega$ Signal = 4MHz, 2V output Load = 1000Ω Signal = 4MHz, 2V output-63**dBPower Supply Voltage Current Power Consumption Power Consumption Power Consumption Power DisspationRated performance $U = 22$ ± 15 ± 12 ****Vdc VdcTemperature Range $U = 125$ ± 12 ± 18 ± 20 ***WW		2-volt p-p output		40			*			*		MHz
$ Full Power Bandwidth \\ (-3dB) \\ Settling Time to 0.1% \\ Inverting \\ (See Figure 5) \\ Noninvertung \\ (See Figure 5) \\ Noninvertung \\ A = -1, R_{11} = R_{1B} = 5000 \\ Max Load capacitance = 75pF \\ V_{OUT} = \pm 5V \\ V_{OUT} = \pm 2.5V \\ V_{OUT} = \pm 2.5$		1-volt p-p output		40			*			*		MHz
	Full Power Bandwidth	$Output = \pm 5V, A = -1,$										
Setting Time to 0.1% Inverting $A = -1$, $R_{11} = R_{1B} = 500\Omega$ $V_{OUT} = \pm 5V$ 100 \star \star nsNoninverting $A = 2$, $R_{FT} = R_{1B} = 500\Omega$ Max Load capacitance = 75pF $V_{OUT} = \pm 25V$ 100 \star \star nsNoninverting $A = 2$, $R_{FT} = R_{1B} = 500\Omega$ Max Load capacitance = 75pF $V_{OUT} = \pm 25V$ 200 \star \star nsHarmonic Distortion (See Figure 9) $A = -1$, $Load = 1000\Omega$ Signal = 4MHz, 2V output Load = 1000\Omega, Signal = 4MHz, 2V output -63 \star \star dBPower Supply VoltageLoad = 1000\Omega, Signal = 4MHz, 2V output -59 \star \star \star \star \star Power Supply VoltageQuescent ± 12 ± 18 \star \star \star \star \star V dcPower Dissipation Power DissipationQuescent $0 6$ \star \star \star W W Temperature Range L L L L \star \star W W	(-3dB)	$R_1 = 100\Omega$	1	20		ļ	*			*		MHz
	Settling Time to 0.1%	$A = -1, R_{11} = R_{1B} = 500\Omega$							i i			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Inverting	$V_{OU\Gamma} = \pm 5V$		100			*			*		ns
Noninverting $A = 2, R_{FT} = R_{1B} = 5000$ Max Load capacitance = 75pF Vour = $\pm 5V$ 200 \star \star nsHarmonic Distortion $A = -1; Load = 10000$ Signal = 4MHz, 2V output -63 \star \star ms Noninverting Harmonic Distortion (See Figure 10) $A = 2, R_{FT} = R_{FB} = 1000\Omega$, Load = 1000Ω , Signal = $4MHz, 2V$ output -63 \star \star dB Power Supply Voltage $Load = 1000\Omega$, Signal = $4MHz, 2V$ output -59 \star \star dB Power Supply Voltage $Quescent$ ± 15 \star \star \star Vdc Operating range ± 12 ± 18 \star \star \star \star Wdc Power DissipationQuescent 0.6 \star \star WW Power DissipationTemperature Range 1.25 \star \star WW	(See Figure 5)	$V_{OUI} = \pm 2.5 V$		80			*		1	*		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Noninverting	$A = 2, R_{FT} = R_{1B} = 500\Omega$	1									1
Vour = $\pm 5V$ Vour = $\pm 25V$ Vour = $\pm 25V$ (See Figure 9)200**nsHarmonic Distortion (See Figure 9) $A = -1; Load = 1000\Omega$ Signal = 4MHz, 2V output Load = 1000\Omega, Distortion (See Figure 10)-63**dBPower Supply Voltage Current Power Consumption Power Consumption Power DisspationRated performance Quescent ± 12 ± 18 ***dBTemperature Range 125 ***WW		Max Load capacitance = 75pF										
Harmonic Distortion (See Figure 9) $V_{OUI} = \pm 25$ V $A = -1; Load = 1000?$ Signal = 4MHz, 2V output $A = 2, R_{11'} = R_{FR} = 1000?$, Load = 1000?, Signal = 4MHz, 2V output135 -63 **nsPower Supply Voltage Current Power DissipationRated performance Operating range -59 **dBUsescent Power Dissipation Temperature RangeQuescent -125 **Vdc		$V_{OUF} = \pm 5V$		200			*			*		ns
Harmonic Distortion (See Figure 9) $A = -1; Load = 10000$ Signal = 4MHz, 2V output $A = 2, R_{11} = R_{FR} = 1000\Omega$, $Load = 1000\Omega$, $Signal = 4MHz, 2V output-63\stardBPower SupplyVoltageLoad = 1000\Omega,Signal = 4MHz, 2V output-59\star\stardBPower SupplyVoltageUoter = 15Operating range\pm 15\pm 12\star\starVdcQuescentQuescent\pm 2006\pm 25\star\star\star\starWdcPower DissipationTemperature RangeTemperature Range1 25\star\starW$		$V_{OUI} = \pm 2.5V$	1	135			*			*		ns
	Harmonic Distortion	$A = -1; Load = 1000\Omega$										
Nonnverting Harmonic Distortion (See Figure 10) $A = 2, R_{1T} = R_{FR} = 1000\Omega,$ Load = 1000Ω, Signal = 4MHz, 2V output -59 * dB Power Supply VoltageRated performance ± 15 ** Vdc VoltageOperating range ± 12 ± 18 ** Vdc Quiescent 20 ± 25 **WPower Dissipation06*WW	(See Figure 9)	Signal = 4MHz, 2V output		63			*			*		dB
Distortion (See Figure 10)Load = 10001, Signal = 4MHz, 2V output -59 *dBPower Supply VoltageRated performance ± 15 **VdcVoltage Current Power Consumption Power DissipationQuescent ± 12 ± 18 **VdcTemperature Range $1 25$ ***W	Noninverting Harmonic	$A = 2, R_{1'1'} = R_{1'B} = 1000\Omega,$				1						
Signal = 4MHz, 2V output -59 * * dB Power Supply Rated performance ±15 * * Voltage Voltage Operating range ±12 ±18 * * Voltage Current Quescent ±20 ±25 * * * W Power Consumption Quescent 06 * * W Temperature Range I 125 * * W	Distortion (See Figure 10)	$Load = 1000\Omega$,				1						}
Power Supply Voltage Rated performance ± 15 * * Vdc Voltage Operating range ± 12 ± 18 * * * Vdc Current Quescent ± 20 ± 25 * * * * MA Power Consumption Quescent 0.6 * * W W Power Dissipation 1.25 * * * W		Signal = 4MHz, 2V output		- 59			*			*		dB
VoltageRated performance± 15**VdcVoltageOperating range± 12± 18***VdcCurrentQuescent± 20± 25***MAPower ConsumptionQuescent0.6**WPower Dissipation1.25***W	Power Supply											1
VoltageOperating range± 12± 18****VdcCurrentQuescent± 20± 25***mAPower ConsumptionQuescent0.6**WPower Dissipation1.25**WTemperature Range*W	Voltage	Rated performance	1	± 15			*			*		V dc
Current Quescent ± 20 ± 25 * * mA Power Consumption Quescent 0.6 * * W Power Dissipation 1.25 * W W Temperature Range Image: Construction of the second sec	Voltage	Operating range	±12		±18	*		*	*		*	Vdc
Power Consumption Quescent 0 6 * W Power Dissipation 1 25 * * W Temperature Range 0 6 * * W	Current	Quiescent	1	± 20	± 25		*	*		*	*	mA
Power Dissipation 1 25 * W Temperature Range	Power Consumption	Quiescent		06			*			*		W
Temperature Range	Power Dissipation				1 25			*			*	w
	Temperature Range											}
Operating (Case) (See Figure 2 for -55 + 125 * * -25 + 85 °C	Operating (Case)	(See Figure 2 for	- 55		+125	*		*	- 25		+ 85	°C
Storage Derug Information) -65 +150 * * * * * °C	Storage	Derating Information)	- 65		+150	*		*	*		*	°C
			1			()7						11
Meantime Between Failures MIL-HNBK 217, Ground, 627 Hours	Meantime Between Failures	MIL-HNBK 217, Ground,	1			6 2/						Hours
$(M1BF) Fixed; Case = 70^{\circ}C $	(MTBF)	Fixed; Case = 70° C				$\times 10^{\circ}$						
Package Option ²	Package Option ²								1			
TO-8 (H-12A) HOS-050 HOS-050A HOS-050C	TO-8 (H-12A)			HOS-050		H	IOS-050	A	()	HOS-050	C	1

NOTES *Specification same as HOS-050 'Specification for Inverting Mode unless otherwise noted ²See Section 16 for package outline information

Individual socket assemblies (one per pin) are available from AMP as part number 6-330808-0 Specifications subject to change without notice

PIN DESIGNATIONS

	PINS	FUNCTION
	1	+ V
	2	GROUND
	3	OFFSET ADJ*
	4	OFFSET ADJ*
	5	- INPUT
1	6	+ INPUT
	7	NC
	8	GROUND
	9	- V
	10	V
	11	OUTPUT
	12	+ V

*PINS FOR CONNECTING OPTIONAL OFFSET POTENTIOMETER RECOMMENDED VALUE IS 10k OHMS, WITH CENTER ARM CONNECTED TO +15V

(continued from Features page)

The HOS-050 Series stands up under close scrutiny of these characteristics because of its 100MHz gain bandwidth product. The use of these amplifiers in a wide variety of applications has confirmed their suitability for video circuits.

VOLTAGE AMPLIFIERS/CURRENT BOOSTERS

Video op amps such as the HOS-050 are generally characterized by high gain bandwidth products, fast settling times, and high output drive.

One of the most common uses of video op amps is for D/A converter output voltage amplification or current boosting. Figure 3 is one example of this type of application. In this circuit, the internal resistance of the D/A is the feed forward resistor for the op amp.

Figure 3. Inverting Unipolar or Bipolar Voltage Output

The HDS Series D/A converters are fast-settling, current output D/As available in 8-, 10-, and 12-bit resolutions. Both TTL and ECL versions are available, and settling times range from 10ns for 8-bit units through 40ns for 12-bit units.

The circuit which is shown will provide a negative unipolar output with binary coding on the input, and bipolar offset grounded. It will provide a bipolar output with complementary offset binary coding on the input, and bipolar offset connected to I_{Ω} .

An approximation of the total settling time for the D/A op amp combination is calculated by:

$$T_{\rm S} = \sqrt{T_{\rm D}^2 + T_{\rm O}^2}$$

where T_D is D/A settling time and T_O is HOS-050 settling time.

This approximation is valid because both the D/A and the HOS-050 exhibit 6dB/octave roll-off charateristics (single pole response); and the combination of low D/A output capacitance and op amp input capacitance does not materially affect the formula.

The user of the HOS-050 should remember the current flowing in the feedback resistor (R1) must be subtracted from the output available from the HOS-050.

There is a tendency, because of this fact, to use a high value of feedback resistor to assure maximum current drive being available for driving low impedances; but this approach may create undesirable side effects.

Calculating the minimum load that can be driven under two conditions of feedback resistor values will serve to illustrate the difference.

Assume the feedback resistor value is 500Ω . If output voltage of the HOS-050 is 10 volts, and output current is 100mA, minimum load would be:

 $\frac{E_O\ max}{I_O\ max\ -\ I_{RFB}}=\frac{10V}{100mA\ -\ 20mA}=\frac{10V}{80mA}=\ 125\Omega\ minimum\ load$

where: $E_O max = peak$ voltage needed

 $I_{O} \max = \max \min$ continuous current HOS-050 can produce

I_{RFB} = current in feedback resistor at peak voltage

Assume the feedback resistor value is $5,000\Omega$. Minimum load would be:

E _O max	10V	10V	
$\frac{1}{I_0 \max - I_{RFB}} =$	$\overline{100\mathrm{mA} - 2\mathrm{mA}} =$	98mA	= 102Ω minimum load

Designs which strive for driving a minimum load (by increasing the feedback resistor) can create settling problems because of a fundamental characteristic of op amp circuits . . . the higher the feedback resistance, the slower the system response.

This phenomenon is the result of increased impedance for driving stray capacitances in the circuit employing the op amp, and fixed capacitances in the summing node.

Impedances need to be kept as low as possible consistent with low distortion; and stray capacitances need to be eliminated to the maximum possible extent. A large ground plane structure is recommended to help assure low ground impedances. In addition, 0.1μ F ceramic capacitors and $3-10\mu$ F tantalum capacitors connected as close as possible to power supply inputs will decrease the potential for parasitic oscillations and other noise signals.

Another argument for limiting the size of the feedback resistor is because of its effect on bandwidth. Bandwidth of the HOS-050 op amp and the value of the feedback resistor are inversely related.

At any given gain of the op amp, the gain setting with the widest bandwidth will be the one which employs the lower value of feedback. As an example, a gain of 1 can be achieved with R_{FF} = $R_{FB} = 500\Omega$; or $R_{FF} = R_{FB} = 1,000\Omega$. Small-signal bandwidth for the first combination is typically 45MHz; bandwidth for the second is typically 35MHz.

OFFSET AND GAIN ADJUSTMENT

Figure 4 shows a method of using the HOS-050 op amp which allows adjusting the offset and gain of the output voltage.

Figure 4. HOS-050 Offset and Gain Adjust

As shown, the gain of the circuit is established by the equation:

$$G = -\left(\frac{R_{FB}}{R_{FF}}\right)$$

where R_{FB} is the total of R_{GAIN} and Gain Adjust.

Once the user has established the desired gain for the illustrated circuit, the value of $R_{\rm FB}$ can be used to determine the correct value of $R_{\rm OFFSET}$ with the equation:

$$\mathbf{R}_{\mathbf{OFFSET}} = -\left(\frac{\mathbf{V}_{\mathbf{CC}} \times \mathbf{R}_{\mathbf{FB}}}{\Delta \mathbf{E}_{\mathbf{O}}}\right)$$

where ΔE_{O} is the desired amount of offset on the output.

Under these conditions, R_{OFFSET} will be 15k Ω :

$$R_{OFFSET} = -\left(\frac{15V \times [900 + 100]}{1V}\right)$$
$$R_{OFFSET} = -\left(\frac{15kV}{1V}\right)$$
$$R_{OFFSET} = 15,000\Omega$$

Figure 4 shows bipolar output operation. If unipolar output is desired, the appropriate V_{CC} should be removed from the Offset Adjust potentiometer.

The 0.1μ F capacitor attached to the wiper arm of the Offset Adjust control isolates the control and helps prevent adjustment noise from appearing on the output of the HOS-050.

 C_{FB} can be any value between 0 and 20pF, depending on the value of $R_{GAIN};$ and should be selected to optimize settling time for the particular circuit layout in which the HOS-050 is being used.

The Gain Adjust control should be a low value, low inductance cermet trimming potentiometer.

Note: R_{FF} , R_{GAIN} , C_{FB} and R_{OFFSET} must be located as close to the summing node of the HOS-050 as physically possible. This helps prevent additional capacitance in the summing node and corresponding bad effects on frequency response and settling times.

Variable controls (such as Offset Adjust and Gain Adjust) should never be tied to the summing node of the op amp. Their correct electrical locations are those shown in Figure 4.

Figure 5. Settling Time - Inverting Mode

SETTLING TIME MEASUREMENT

Although there are some exceptions, most members of industry are in agreement on the description which says settling time is:

The interval of time from the application of an ideal step function input until the closed-loop amplifier output has entered and remains within a specified error band.

The well-informed user needs to be alert to the consequences of settling time specs which do not meet that description.

This definition encompasses the major components which comprise

settling time. They include (1) propogation delay through the amplifier; (2) slewing time to approach the final output value; (3) the time of recovery from the overload associated with slewing; and (4) linear settling to within the specified error band.

Expressed in these terms, the measurement of settling time is obviously a challenge and needs to be done accurately to assure the user that the amplifier is worth consideration for his application.

Figure 6 is the test circuit for measuring settling time to 0.1%. This method creates a "false" summing junction and the error band is observed at that point.

Figure 6. Settling Time Test Circuit for 0.1% Settling

If one were to attempt the measurement at the "true" summing junction of the op amp, the results would be misleading. All scope probes will add capacitance to the input and will change the response of the system. Making the measurement at the output of the amplifier is also impractical, since scope nonlinearities and reading inaccuracies caused by overdriving the scope preclude accurate measurements to the tolerances which are required.

The false summing junction method causes the amplifier to subtract the output from the input; only one-half the actual error appears at the false junction, and it can be measured to the required accuracies.

The false junction is clamped with diodes to limit the voltage excursion appearing at that point. This is necessary because the amplifier will be overdriven and one-half its input voltage will appear at the junction. Without the clamps, the scope used for making the measurement would be overdriven and its recovery time would mask the settling time of the amplifier.

The test circuit for measuring settling time to 0.01%, Figure 7, is simply an extension of the same basic technique. Measuring to the closer tolerance requires additional gain in the circuit driving the oscilloscope.

Figure 7. Settling Time Test Circuit for 0.01% Settling

IMPEDANCE MATCHING

The characteristics of the HOS-050 operational amplifier make it an ideal choice for matching the impedances of video circuits to the impedances of transmission lines.

In this application, source and load terminating resistors will cause the output voltage to be halved at the end of the cable being driven by the op amp. This makes it necessary to set the gain of the circuit to provide twice the desired voltage.

Three different values of resistors and cables are "phantomed" into the figure as examples of possible characteristic impedances which might be used. Figure 8 is *not* meant to imply the HOS-050 can drive three cables simultaneously.

Figure 8. HOS-050 Impedance Matching

NONINVERTING OPERATION

The vast majority of video operational amplifiers display marked differences in settling times and bandwidths when operated in a noninverting mode instead of the inverting mode. There are a number of valid reasons for this characteristic.

Most high-speed op amps use feed-forward compensation for optimizing performance in the inverting mode. This is necessary to obtain wide gain-bandwidth products while maintaining dc performance in these types of devices. In effect, the op amp has a wideband ac channel which is not perfectly matched to the dc channel.

Feed-forward techniques enhance the performance of the op amp in the inverting mode by incressing the slew rate and smallsignal bandwidth. These techniques, however, also decrease the amplifier's tolerance to stray capacitances, so must be employed judiciously.

The overall input capacitance of the op amp is kept as low as possible in the design; and any mismatch in the capacitance of the two channels appears as an error in the output. Because of the inherently low total input capacitance of the op amp, even a small capacitive mismatch between channels shows up as a large effective error signal.

Decreasing the channel mismatch can be achieved only by complicating the design of the op amp with additional components, and rigorous selection of those components in the manufacturing process.

As a consequence, the mismatch is reduced to the smallest practical value consistent with the economics of producing and using the op amp. But it remains a mismatch, and manifests itself as a difference in performance in the inverting versus noninverting modes.

There are video op amps available at low cost which use a 741-type amplifier for high dc open loop gain in the noninverting channel. The user of these kinds of designs may sometimes gain an economic advantage, but at a high cost in performance. Bandwidths for noninverting applications are often measured in kHz, not MHz, for this approach.

A video op amp is acting as a voltage mode device at both inputs when operating in the noninverting mode. This contrasts with the inverting mode, where it is operating as a current mode device. The Analog Devices HOS-050 has different performance characteristics when operating as a noninverting amplifier, but the care used in the design makes the differences less pronounced than they are in many competing units.

The HOS-050 can be considered a true differential video op amp. It requires little or no external compensation because its rolloff characteristics approach a 6dB/octave slope. This helps the user determine summing errors and loop response; and helps assure the stability of the system.

The performance parameters for both inverting and noninverting operation are shown elsewhere in this data sheet (see SPECIFI-CATIONS section and figures). A comparison of the characteristics will highlight the similarities in performance, with the exceptions noted above.

Figure 9. Harmonic Distortion – Inverting

Figure 10. Harmonic Distortion – Noninverting

IN SUMMARY . . . A CAVEAT

Settling time specifications, bandwidth capabilities, harmonic distortion performance, and other parameters for video op amps cannot possibly include all possible situations and applications.

A multitude of seemingly insignificant conditions can have a major impact on the unit and its ability to operate in any given circuit.

The potential user is strongly urged to evaluate the effectiveness of the HOS-050 in the actual circuit in which it will be used. In many instances, the application conditions are different from the conditions used in specifying; there is no substitute for a trial in the proposed circuit to determine if the op amp will provide the desired results.

Low Offset, Fast Settling Video Operational Amplifier

HOS-060

FEATURES

<1mV V_{OS} Low Drift 80ns Settling to 0.1%; 200ns to 0.01% 100mA Output @ ±10V

APPLICATIONS

D/A Current Converter Video Pulse Amplifier CRT Deflection Amplifier Wideband Current Booster

GENERAL DESCRIPTION

The HOS-060 Operational Amplifier is an extension of the proven hybrid technology used in the HOS-050 series of op amps.

The FET input and high-performance characteristics, including wide bandwidth and fast settling, make it useful for a variety of applications in the processing of video signals.

Recent innovations in circuit design have been incorporated into the HOS-060 to make it extremely useful to the designer who needs outstanding performance in current boosting, voltage amplification, impedance matching, or a multiplicity of other high-frequency requirements.

Voltage offset and its temperature coefficient have been dramatically improved in the HOS-060; offset is as low as most high performance monolithic op amps.

The HOS-060 op amp is pin-for-pin compatible with its forerunner HOS-050 and is useable in the same diversity of video requirements. The reader is strongly urged to refer to the six-page data sheet for the HOS-050 op amp to obtain additional insight and details on potential uses for the HOS-060.

The HOS-060 Operational Amplifier package is the industry standard TO-8 metal can and operates over a case temperature range of -55° C to $+125^{\circ}$ C; the model number for the standard unit is HOS-060SH.

HOS-060 PIN DESIGNATIONS¹ TO-8 (H-12A) Package

BOTTOM VIEW

NOTES 'SEE SECTION 16/H-12A) FOR 'PACKAGE OUTLINE INFORMATION *PINS FOR CONNECTING OPTIONAL OFFSET POTENTIOMETER RECOMMENDED VALUE IS 10k OHMS, WITH CENTER ARM CONNECTED TO + 15V

Figure 2. Power Derating

SPECIFICATIONS (typical @ $+25^{\circ}$ c and $\pm 15^{\circ}$ unless otherwise specified)

Model	HOS-0605H
ABSOLUTE MAXIMUM RATINGS	
Supply Voltages (V _S)	$\pm 18V$
Power Dissipation	See Figure 2
Input Voltage	$\pm V_S$
Differential Input Voltage	$\pm V_s$
Operating Temperature Range (Case)	-55° C to $+125^{\circ}$ C
Junction Temperature	175°C
Storage Temperature Range	$-65^{\circ}C \text{ to } + 150^{\circ}C$
Lead Temperature (Soldering, 10sec)	300°C

DC ELECTRICAL CHARACTERISTICS

Parameter	Conditions	Min	Тур	Max	Units
Open Loop Gain Rated Output Current	$R_{L} = 100\Omega^{2}$		100		dB
(Not Short-Circuit Protected) Voltage	$R_{L} = >100\Omega$ $R_{L} = >200\Omega$	±10	±100		mA V
Input Offset Voltage Initial vs. Case Temperature	Adjustable to Zero @ + 25°C		± 0.5	±1.5	mV
- 55°C to + 125°C vs. Power Supply Voltage			35 0.5		μV/°C mV/V
Input Bias Current Initial vs. Temperature	(a +25°C		1 Doubles	2	nA /10°C
Input Offset Current Initial	(a +25°C			±100	pA
Input Impedance Differential Common Mode	}In Parallel with 5pF		10 ¹⁰ 10 ¹⁰		$\Omega \Omega$
Input Voltage Range Common Mode Differential Common-Mode Rejection		±10	70	±18 ±18	V V dB
Input Noise dc to 100kHz dc to 2MHz	$R_{FF} = 100\Omega; R_{FB} = 1k\Omega$		5 7		μV rms μV rms

AC ELECTRICAL CHARACTERISTICS¹

Parameter	Conditions	Min	Тур	Max	Units
Slew Rate	$A = -1; R_{FF} = R_{FB} = 500\Omega;$				
	$Load = 100\Omega$		300		V/µs
Noninverting Slew Rate	$A = 2; R_{FF} = R_{FB} = 1000\Omega;$				
	$Load = 100\Omega$		320		V/µs
Overload Recovery	50% Overdrive		400		ns
Unity Gain Bandwidth Product	$R_{FF} = R_{FB} = 500\Omega$		100		MHz
Small Signal Bandwidth, – 3dB	$A = -1; R_{FF} = R_{FB} = 500\Omega$		45		MHz
	$A = -1; R_{FF} = R_{FB} = 1000\Omega$		35		MHz
	$\mathbf{A} = -2; \mathbf{R}_{\mathbf{FF}} = 500\Omega;$				
	$R_{FB} = 1000\Omega$		35		MHz
	$\mathbf{A} = -4; \mathbf{R}_{\mathrm{FF}} = 250\Omega;$				
	$R_{FB} = 1000\Omega$		30		MHz
Output Impedance				<1	Ω
Noninverting Bandwidth, – 3dB	$A = 2; R_{FF} = R_{FB} = 1000\Omega;$				{
	100Ω Load; 10pF Capacitance				
	5V p-p Output		25		MHz
	4V p-p Output		30		MHz
	2V p-p Output		55		MHz
	$A = 3; R_{FF} = 500\Omega;$				
	$\mathbf{R}_{\mathbf{FB}} = 1000\Omega;$				
	Load = 100Ω , 1000Ω , or 2000Ω ;				
	Capacitance = $10pF$				
	10V Output		17		MHz
	5V p-p Output		25		MHz

AC ELECTRICAL CHARACTERISTICS¹ (Continued)

		H	IOS-060S	H	
Parameter	Conditions	Min	Тур	Max	Units
Noninverting Bandwidth, - 3dB (Continued)	$A = 5; R_{FF} = 500\Omega;$ $R_{FB} = 2000\Omega; 100\Omega, 1000\Omega,$ or 2000\(\Omega Load/10pF) Canacitance				
	5V p-p Output		15		MHz
	4V p-p Output		30		MHz
	2V p-p Output		40		MHz
	1V p-p Output		40		MHz
Full Power Bandwidth	$Output = \pm 5V; A = -1;$				
(-3dB)	$Load = 100\Omega$		20		MHz
Settling Time to 0.1%	$A = -1; R_{FF} = R_{FB} = 500\Omega$				
Inverting	$V_{OUT} = \pm 5V$		100		ns
	$V_{OUT} = \pm 2.5 V$		80		ns
Noninverting	$\mathbf{A} = 2; \mathbf{R}_{\mathbf{FF}} = \mathbf{\hat{R}}_{\mathbf{FB}} = 500\Omega$				
	Max Load Capacitance = 75pF				
	$V_{OUT} = \pm 5V$		200		ns
	$V_{OUT} = \pm 2.5 V$		135		ns
Harmonic Distortion	$A = -1; Load = 1000\Omega$				
(See Figure 5)	Signal = 4MHz; 2V Output		-63		dB
Noninverting Harmonic	$A = 2; R_{FF} = R_{FB} = 1000\Omega;$				1
Distortion (See Figure 6)	$Load = 1000\Omega;$				
	Signal = 4MHz; 2V Output		- 59		dB
Power Supply					
Voltage	Rated Performance		±15		V dc
Voltage	Operating Range	±12		±18	V dc
Current	Quiescent		±20	±25	mA
Power Consumption	Quiescent		0.6		W
Power Dissipation				1.25	W
Temperature Range					
Operating (Case)	(See Figure 2 for	- 55		+ 125	°C
Storage	Derating Information)	-65		+ 150	°C
Package Option ²					
TO-8(H-12A)					

NOTES

¹Specification for Inverting Mode unless otherwise noted.

²See Section 16 for package outline information.

*Specifications same as HOS-060SH

.

Individual socket assemblies (one per pin) are available from AMP as part number 6-330808-0.

Specifications subject to change without notice

PIN DESIGNATIONS

PINS	FUNCTION
1	+ V
2	GROUND
3	OFFSET ADJ*
4	OFFSET ADJ*
5	– INPUT
6	+ INPUT
7	NC
8	GROUND
9	-v
10	-v
11	OUTPUT
12	+V

*PINS FOR CONNECTING OPTIONAL OFFSET POTENTIOMETER, RECOMMENDED VALUE IS 10k OHMS, WITH CENTER ARM CONNECTED TO +15V. 2

VOLTAGE AMPLIFIERS/CURRENT BOOSTERS

Video op amps such as the HOS-060 are characterized by high gain bandwidth products, fast settling times, and high output drive.

One of the most common uses of video op amps is for D/A current to voltage conversion or current boosting. Figure 3 is one example of this type of application. In this circuit, the internal resistance of the D/A is the feed-forward resistor for the op amp.

Figure 3. Inverting Unipolar or Bipolar Voltage Output

The circuit which is shown will provide a negative unipolar output with binary coding on the input, and the bipolar offset pin grounded. It will provide a bipolar output with complementary offset binary coding on the input, and bipolar offset connected to $I_{\rm O}$.

OFFSET AND GAIN ADJUSTMENT

The low value of offset may preclude the need for adjustment, but Figure 4 shows a method of adjusting both offset and gain.

Figure 4. HOS-060 Offset and Gain Adjust

As shown, the gain of the circuit is established by the equation:

$$G = -\left(\frac{R_{FB}}{R_{FF}}\right)$$
 where $R_{FB} = R_{GAIN} + Gain Adjust$.

Once the user has established the desired gain for the illustrated circuit, the value of R_{FB} can be used to determine the correct value of R_{OFFSET} with the equation:

$$\mathbf{R}_{\mathbf{OFFSET}} = -\left(\frac{\mathbf{V}_{\mathbf{CC}} \times \mathbf{R}_{\mathbf{FB}}}{\Delta \mathbf{E}_{\mathbf{O}}}\right)$$

where ΔE_O is the desired amount of offset on the output.

Note: R_{FF} , R_{GAIN} , C_{FB} and R_{OFFSET} must be located as close to the summing node of the HOS-060 as physically possible. This helps prevent additional capacitance in the summing node and corresponding bad effects on frequency response and settling times.

Variable controls (such as Offset Adjust and Gain Adjust) should never be tied to the summing node of the op amp. Their correct electrical locations are those shown in Figure 4.

NONINVERTING OPERATION

The vast majority of video operational amplifiers display marked differences in settling times and bandwidths when operated in a noninverting mode instead of the inverting mode. There are a number of valid reasons for this characteristic.

Most high-speed op amps use feed-forward compensation for optimizing performance in the inverting mode. This is necessary to obtain wide gain-bandwidth products while maintaining dc performance in these types of devices. In effect, the op amp has a wideband ac channel which is not perfectly matched to the dc channel.

Feed-forward techniques enhance the performance of the op amp in the inverting mode by increasing the slew rate and smallsignal bandwidth. These techniques, however, also decrease the amplifier's tolerance to stray capacitances, so must be employed judiciously.

The Analog Devices HOS-060 has different performance characteristics when operating as a noninverting amplifier, but the care used in the design makes the differences less pronounced than they are in the designs of competing units.

The HOS-060 can be considered a true differential video op amp. It requires little or no external compensation because its rolloff characteristics approach a 6dB/octave slope. This helps the user determine summing errors and loop response; and helps assure the stability of the system.

The performance parameters for both inverting and noninverting operation are shown elsewhere in this data sheet (see SPECIFI-CATIONS section and figures). A comparison of the characteristics will highlight the similarities in performance, with the exceptions noted above.

Figure 5. Harmonic Distortion - Inverting

Figure 6. Harmonic Distortion – Noninverting

THE READER IS URGED TO CONSULT THE HOS-050 DATA SHEET FOR ADDITIONAL APPLICATIONS IN-FORMATION. THE HOS-060 IS PIN-FOR-PIN COMPATI-BLE WITH THE HOS-050 SERIES AND CAN BE USED IN SIMILAR WAYS.

Wide Bandwidth, High-Speed Buffer Amplifiers

HOS-100AH/HOS-100SH

FEATURES

Wide Bandwidth – dc to 125MHz High Slew Rate – 1500V/ μ s Operation Guaranteed -55°C to +125°C (SH) High Output Drive – ±10V with 100 Ω Load

APPLICATIONS

Current Boosters High Speed A/D Input Buffers Nuclear Instrumentation Amplifiers Coaxial Cable Drive High Speed Line Drivers Video Impedance Transformation

GENERAL DESCRIPTION

The HOS-100SH and HOS-100AH Bipolar Buffer Amplifiers are high-speed, voltage follower/buffers designed to provide high-current drive at frequencies from dc to over 125MHz, as well as providing ± 10 mA into 1k Ω loads (± 100 mA peak) at slew rates of 1500V/ μ s. Both units also exhibit excellent phase linearity (2°), and low distortion (<0.1%).

For commercial temperature ranges the HOS-100AH is specified for operation over the range of -25° C to $+85^{\circ}$ C (case). The HOS-100SH is specified for operation over the military range of -55° C to $+125^{\circ}$ C (case).

The HOS-100SH and HOS-100AH are intended to fulfill a wide range of buffer applications, such as video impedance transformation, high impedance input buffers for A/D converters and comparators, as well as high-speed line drivers and

Figure 1. Schematic Diagram HOS-100

HOS-100AH/HOS-100SH FUNCTIONAL BLOCK DIAGRAM

nuclear instrumentation amplifiers. Additionally, both amplifiers will continuously drive 50Ω coaxial cables or serve as yoke drives in high resolution CRT displays.

They are particularly well suited for current booster applications (Figure 3) within an op-amp loop where input impedance and bias current requirements are less stringent than in FET design.

Figure 2. Power Derating

Figure 3. Current Booster

SPECIFICATIONS

		HOS-100SH			н	OS-10		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARACTERISTICS ^{1,2}								
Input Bias Current	$T_C = 25^{\circ}C$		5	20		5	25	μA
Input Impedance	$V_{IN} = 1V \text{ rms}, f = 1 \text{kHz}$ $R_L = 1 \text{k}, T_C = 25^{\circ} \text{C}$	100	200	25	100	200		μΑ. kΩ
Voltage Gain	$V_{IN} = 1V \text{ rms}, f = 1 \text{ kHz}$ $R_L = 1 \text{ k}, T_C = 25^{\circ}\text{C}$	0.95	0.97	1.0	0.94	0.96	1.0	V/V
Output Offset Voltage	$R_S = 50\Omega, T_C = 25^{\circ}C$		5	10 25		10	25 35	mV mV
Output Offset Voltage T _C	$R_S = 50\Omega$		25	75		25	75	μV/°C
Output Impedance	$V_{IN} = 1V \text{ rms}, f = 1 \text{ kHz}$ $R_S = 500\Omega, R_L = 1 \text{ k}$		8	12		8	12	Ω
Output Voltage Swing	$R_{S} = 50\Omega, R_{L} = 1k$ $V_{S} = \pm 5V, R_{L} = 1k$	±12	±13 6		±12	±13 6		v v
Supply Current	$V_{IN} = 0V, T_C = 25^{\circ}C$ $V_S = \pm 15$ $V_T = \pm 5$		13	16		15	20	mA
Power Consumption	$V_S = \pm 3$ $V_{IN} = 0V, V_S = \pm 15V$ $T_C = 25^{\circ}C$		390	480		450	600	mW
AC ELECTRICAL CHARACTERISTICS ³								
Slew Rate	$V_{IN} = \pm 10V$	1000	1500)	1000	1400		V/μs
Bandwidth	$V_{IN} = 1V rms$	100	125		100	125		MHz
Rise Time	$\Delta V_{IN} = 0.5 V$		2	5	1	2	5	ns
Propagation Delay	$\Delta V_{IN} = 0.5 V$		1.5			1.5		ns
Phase Nonlinearity	BW = 1 to $20MHz$		2			2		Degrees
Harmonic Distortion			< 0.1			<0.1		%
MFBF		1 50	9X 10	⁷ hours				

NOTES

¹ Unless otherwise noted, these specifications apply for +15V applied to Pin 12, and -15V applied to Pin 10. ² Unless otherwise noted, specifications apply over a temperature range, -55°C \leq T_C \leq +125°C for the HOS-100SH, and -25°C \leq T_C \leq +85°C for the HOS-100AH. Typical values shown are for T_C = +25°C. ³ These specifications all measured with the following conditions: T_C = +25°C, V_S = ±15V, R_S = 50 Ω , R_L = 1k. Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+ - V-)
Maximum Power Dissipation
Input Voltage Equal to Supply Voltage
Maximum Continuous Output Current±100mA
Maximum Peak Output Current
Operating Temperature Range (Case)55°C to +125°C
Storage Temperature $\dots \dots -65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (Soldering, 10 sec) +300°C
Maximum Junction Temperature +175°C

ORDERING INFORMATION

Model	Temperature Range	Package Options*
HOS-100AH	-25°C to +85°C	H-12A
HOS-100SH	-55°C to +125°C	H-12A

*See Section 16 for package outline information.

Wide Bandwidth, High-Speed Buffer Amplifier

HOS-200

FEATURES

Wide Bandwidth/Good Drive Fast Rise Time Low Power ±5V Supplies

APPLICATIONS

Current Boosters High-Speed A/D Input Buffers Instrumentation Amplifiers Coaxial Cable Drivers High-Speed Line Drivers

HOS-200 FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The HOS-200AH and HOS-200SH Buffer Amplifiers are highspeed, voltage follower/buffers designed to provide up to 100mA of continuous current at frequencies from dc to 200MHz. AC performance is enchanced with slew rates exceeding 1500V/ μ s. Both units exhibit excellent phase linearity and low distortion, making them ideal for raster graphic and other video-speed applications.

These devices are designed to fit into a broad range of buffer applications, such as video impedance transformation; high-impedance input buffers for A/D converters and comparators; and high-speed line drivers for nuclear instrumentation amplifiers. The HOS-200 will drive 50Ω and 75Ω cables, and can serve as a yoke driver in high-resolution CRT displays.

The versatility of the HOS-200 makes it particularly well suited for use with the Analog Devices series of raster graphic video DACs, such as the monolithic AD9700 and the hybrid HDG Series. The HOS-200 follower/buffer can also economically enhance the output drive of monolithic op amps.

MIL-STD-1772 approval has been granted to the Analog Devices manufacturing facility that produces the parts, which are also available with MIL processing. The HOS-200AH operates from -25° C to $+85^{\circ}$ C; the HOS-200SH is specified for -55° C to $+125^{\circ}$ C.

HOS-200 Phase and Gain Response

SPECIFICATIONS (typical @ $+25^{\circ}$ C with $\pm V_s = \pm 5V$ unless otherwise specified)

Model	HOS-200AH	HOS-200SH
ABSOLUTE MAXIMUM RATINGS		
Peak Voltage Between Supply Terminals ($V_s + to V_s - $)	30V	*
Continuous Voltage Between Supply Terminals $(V_S + to V_S -)$	16V	*
Power Dissipation	See Derating Graph	*
Input Voltage	±Vs	*
Continuous Output Current	± 100mA	*
Peak Output Current	±250mA	*
Operating Temperature Range (Case)	- 25°C to + 85°C	− 55°C to + 125°C
Junction Temperature	+150°C	*
Storage Temperature Range	-65°C to +150°C	*
Lead Temperature (soldering, 10sec)	+ 300°C	*

DC ELECTRICAL CHARACTERISTICS

Parameter	Conditions	Min	Тур	Max	−55°C	+25°C	+125°C	Units
Input Bias Current	$V_{IN} = 0V; R_S = 10k\Omega$		8	25	30 (max)	20(max)	20(max)	μA
Input Impedance	$V_{IN} = 1V \text{ rms}; f = 1kHz;$							
	$R_L = 1k$	100	200			100(min)		kΩ
Voltage Gain	$V_{IN} = 1V; R_L = 1k$	0.975	0.985		0.975 (min)	0.975 (min)	0.975 (min)	V/V
	$V_{IN} = 1V; R_L = 100\Omega$	0.900	0.915			0.900 (min)		V/V
Offset Voltage	$R_s = 50\Omega$		12	25	18 (max)	15 (max)	15 (max)	mV
Offset Voltáge T _C ¹	$R_s = 50\Omega$		25		25(typ)	5(typ)	5(typ)	μV/°C
Output Impedance	$V_{IN} = 1V \text{ rms}; f = 1 \text{ kHz}$		8	12		12(max)		Ω
	$R_s = 500\Omega; R_L = 1k\Omega$							
Output Voltage Swing	$R_s = 500\Omega; R_L = 1k\Omega$	4.0	4.25		3.75 (min)	4.0(min)	4.0(min)	v
Output Current (Continuous)	$V_{OUT} = 0V$	100				100 (min)		mA
Supply Current	$V_{IN} = 0V; V_S = \pm 5V$		12	16	16 (max)	16(max)	20 (max)	mA
Power Consumption	$V_{IN} = 0V; V_S = \pm 5V$		120	160	160 (max)	160 (max)	200 (max)	mW
Power Supply Rejection								
Ratio (PSRR)	$\Delta V_{\rm S} = \pm 2.5 V$	40	45			40 (min)		dB

AC ELECTRICAL CHARACTERISTICS²

Parameter	Conditions	Min	Тур	Max	– 55°C	+25°C	+125°C	Units
Slew Rate	$V_{IN} = \pm 2.5 V$	1000	1500			1000 (min)		V/µs
Bandwidth (- 3dB)	$V_{IN} = 1V \text{ rm's}$		200			200		MHz
Rise Time	$\Delta V_{IN} = 0.5 V$		1.5			1.5		ns
Propagation Delay	$\Delta V_{IN} = 0.5 V$		1.5			1.5		ns
Phase Nonlinearity	BW = 1 to $20MHz$		2			2		degree
Harmonic Distortion			<0.1			<0.1		%
THERMAL RESISTANCE ³								
Junction to Air, θ_{IA} (Free Air)			90			90		°C/W
Junction to Case, θ_{JC}			40			40		°C/W
MTBF ⁴						>1.1×10 ⁷		hours

PACKAGE OPTION⁵

TO-8(H-12A)

NOTES

¹ Input offset voltage T_c is typically less than 5μ V/°C from +25°C to high temperature extreme. ² These specifications measured under following conditions: T_c = +25°C; ± V_s = ± 5V; R_s = 0Ω, R_I = 1kΩ.

³Recommended maximum junction temperature is + 150°C.

⁴MTBF calculated using MII Handbook 217, Ground; Fixed; Temperature (case) = 35°C.

⁵See Section 16 for package outline information.

Specifications subject to change without notice.

PIN DESIGNATIONS

PIN	FUNCTION
1	V+
2	GROUND
3	NC
4	NC
5	INPUT
6	NC
7	NC
8	GROUND
9	V
10	V-
11	OUTPUT
12	V+

HOS-200 Power Derating

ENHANCING HOS-200 PERFORMANCE

The HOS-200 is an excellent building block in high slew rate, pulse-oriented systems. Output loading in these types of systems is often highly capacitive because of coaxial cables and twisted pair lines; but the powerful drive capability of the HOS-200 makes it a good choice for inclusion in the system.

Its effectiveness can be extended further through the use of a small series resistance $(5\Omega-300\Omega)$ in the output of the unit. This has two effects: it shields the HOS-200 from the load capacitance, which might otherwise be outside the design limits of the amplifier; and also tailors the pulse response. The output response can also be enhanced with a small (100pF-300pF) capacitor connected between the input and output.

LAYOUT CONSIDERATIONS

Like any high-speed device, the HOS-200 amplifier will benefit from the use of good high-frequency design practices. The undesirable effects of stray capacitance and high frequency coupling can be minimized with close attention to circuit lavout.

A low-impedance ground plane under the HOS-200 can reduce the effects of distributed capacitance; and provide a greater degree of shielding for the device. Lead lengths in and out of the HOS-200 should be kept as short as practicable to minimize impedances and limit the effects of signal reflections.

Direct soldering of the unit into the circuit is recommended to avoid the inter-lead capacitance of sockets and the reduction in performance which can result. If socket mount *must* be used, individual pin sockets are preferable to device sockets.

The HOS-200 contains internal power supply decoupling capacitors, but further improvement in performance can often be achieved with external decoupling capacitors connected as closely as possible to the power supply pins of the amplifier. Typically, a combination of a 0.1μ F ceramic disk capacitor and a 100pF tantalum capacitor is connected to each supply pin.

Each power supply voltage has been provided with two pins on the HOS-200; +5V is connected to pins 1 and 12, and -5V is connected to pins 9 and 10. Each pair of pins is connected internally, but should also be connected externally to its mate and the appropriate power supply. Pins 2 and 8 are ground pins which are connected internally, but should also be connected together externally before the connection to the low-impedance ground recommended above.

HEAT SINKING

An efficient heat sink is required for the HOS-200SH if the user expects to obtain maximum output drive at temperatures up to $+125^{\circ}$ C. One possibility is the Thermalloy-2204A, but other appropriate devices are also available.

The case of the HOS-200 is electrically isolated from the circuit containing the amplifier. This means the case can be connected to system ground(s) for additional heat dissipation, and shielding. Pins 3, 4, 6, and 7 are designated as "no connection" and can also be connected to the low-impedance ground to help dissipate heat.

SUGGESTED APPLICATIONS

Figures 1 and 2 are possible application ideas using the HOS-200 amplifier. The circuits which are shown are not intended as the only possible applications for this device; they are simply intended to illustrate some possibilities offered by the unit.

Figure 2. Impedance Transformations for 50 Ω , 75 Ω , and 93 Ω Cables

2

PERFORMANCE GRAPHS

Figures 3 through 9 depict typical performance of the HOS-200 amplifier for a number of characteristics. As in the parameters shown in the SPECIFICATIONS section of the data sheet, the data shown in the graphs are typical performance at $+25^{\circ}$ C, unless noted otherwise.

0 992

Figure 9. Large-Signal Settling (±2.5V Square Wave Input)

Figure 4. Gain vs. Temperature

Figure 5. Output Voltage vs. Supply Voltage

Figure 7. Output Impedance vs. Frequency

Figure 8. Small-Signal Settling (±250mV Square Wave Input)

ORDERING INFORMATION

The model HOS-200AH operates over an industrial temperature range of -25° C to $+85^{\circ}$ C. The model HOS-200SH is designed for a military temperature range of -55° C to $+125^{\circ}$ C. The Computer Labs Division of Analog Devices, which produces the HOS-200 has been certified as meeting the standards established by MIL-STD-1772. Contact the division for details regarding parts with MIL processing.

Comparators Contents

Page

Selection Guide	- 2
Orientation	- 3
AD790 – Fast Single Supply Comparator	5 – 5
AD9685/9687 – High Speed Comparators	- 9
AD9686 – High Speed TTL Voltage Comparator	- 13
AD96685/96687 – Ultrafast Comparators	i – 17

Selection Guide Comparators

	Prop Delay		Interface		
Model	ns	Latch	Logic	Page	Notes
AD790	35	х	TTL	3 – 5	
AD9685	2.2	х	ECL	3 - 9	
AD9686	7	х	TTL	3 – 13	
AD9687	2.7	х	ECL	3 - 9	Dual
AD96685	2.5	х	ECL	3 - 17	
AD96687	2.5	х	ECL	3 – 17	Dual

Orientation Comparators

A voltage comparator compares two voltages and provides an output that is a function of their difference. For the products in this section, the output of an ideal comparator has two stable states representing the *sign* of the difference. Thus, the output will be a logic "1" if the voltage at the input labelled "+" is greater than the voltage at the input labelled "-," and logic "0" for the opposite case.

A comparator is used wherever some action depends on whether a voltage is – or becomes – greater or less than another voltage – usually a reference. Since it is in effect a 1-bit A/D converter, the comparator is the basic element of virtually all A/D converters, as well as a sign-magnitude adjunct. Because the voltage that is compared with a reference can be the linearly varying output of an integrator with constant input, a comparator can be used in analog-based event timing. The comparator is also an element of pulse-width modulators, peak detectors, delay generators, switch drivers, etc.

A comparator is essentially a fast, high-gain amplifier whose output is always at an upper or lower limit, except when switching. The simplest comparator would be an open-loop-connected, uncompensated, high-gain, high-slew-rate op amp with excellent offset & drift characteristics, fast recovery from overdrive and an overdrive-protected input. In addition, practical comparators have a small amount of hysteresis (internal or external) to help keep noise from causing the output to bounce around, and most have a *latch*, which makes it possible to freeze the output at the state it has at a given instant of time, in response to a logic signal. Since the comparator is producing a digital decision, its outputs are generally compatible with either TTL or ECL.

Aside from its op-amp related specifications, such as bias current, offset & drift and the various logic-related timing and interface specs, the key comparator spec is *propagation delay*: the time required for the output to reach the 50% point of a transition, after the net input has crossed the offset voltage – when driven by a square wave to a prescribed value of input overdrive, usually 5mV or 10mV.

The Selection Guide classifies Analog Devices comparators by propagation delay, presence or absence of a latch and interface logic compatibility. It also indicates the presence of *dual* comparators, each comprising two independent comparators on a single monolithic chip. Since pairs of comparators jointly have four possible states, they may be used for high-accuracy 2-bit ADCs and for *window* measurements, as well as for simple twoin-one space-saving.

3-4 COMPARATORS

٠

Fast Single Supply Comparator

AD790

FEATURES

35ns max Response Time Single +5V Supply Operation **CMOS or TTL Logic Capability** 250µV max Input Offset Voltage **1mV Input Voltage Resolution 15V max Differential Input Voltage** Latching Function Capability **Glitch Free Output Stage** 60mW Power Dissipation

APPLICATIONS

Oversampling A/D Converters Single Supply Line Receiver MOS Switch Drivers Pulse Width Modulator Peak Detector Single Supply Ground Crossing Detector **Time Delay Generator** Available in Plastic, Mini-DIP, Hermetic Cerdip Packages

PRODUCT DESCRIPTION

-05 The AD790 is a fast (35ns) precise voltage comparator. It has a number of features that make it exceptionally versatile and easy to use. The AD790 may operate from a single +5V supply or a dual $\pm 15V$ supply. In the single supply mode, the AD790's. inputs may be referenced to "ground," a feature not found in most other comparators. In the dual supply mode it has the unique advantage of handling a maximum differential voltage of 15V across its input terminals, easing interfacing of the input to large amplitude and dyanamic signals.

This device is fabricated using Analog Devices' complementary bipolar (CB) process - offering benefits such as fast response time (35ns), low input offset voltage (250µV) and high input voltage resolution (1mV). To preserve its speed, the AD790 incorporates a "low glitch" output stage which does not exhibit large current spikes normally found in TTL or CMOS output stages. Its controlled switching reduces power supply disturbances which would tend to feed back to the input causing undesired oscillations or hysteresis. The AD790 has a latching function which makes it ideal for applications requiring synchronous detection - wherein the latch is activated by forcing the latch pin low with either a CMOS or TTL gate.

The high speed, high-precision, low-power and glitch-free operation performances brought together in the AD790, make it the optimum choice for 12-bit high-speed applications.

The AD790 is available in five performance grades. The AD790J and the AD790K are rated over the commercial temperature range of 0 to + 70°C. The AD790A and AD790B are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD790S is rated over the military temperature range of -55° C to + 125°C and is available processed to MIL-STD-883B, Rev. C.

Extened reliability PLUS screening is available, specified over the commercial and industrial temperature range. PLUS screening includes a 168 hour burn-in, as well as other environmental and physical tests.

PRODUCT HIGHLIGHTS

- 1. The AD790 is a fast, high precision, easy to use voltage comparator.
- 2. True single supply operation plus dual supply capability allow usage in many design environments.
- 3. CMOS or TTL compatible output stage.
- 4. 60mW power dissipation is the lowest in its class.
- 5. Glitch-free output stage minimizes oscillation and hysteresis.

$\label{eq:specifications} SPECIFICATIONS (@+25^{\circ}C \text{ and } V_{s} = \pm 15V \text{ dc}, V_{LOGIC}, \text{ unless otherwise noted})$

		A	D790J/A/S			AD790K/B		
Model	Conditions	Min	Тур	Max	Min	Тур	Max	Units
RESPONSE TIME								
Propagation Delay	5mV Overdrive		30	35		30	35	ns
Latch Response Time			15	20		15	20	ns
Latch Setup Time			10	15		10	15	ns
OUTPUT CHARACTERISTICS								
Output HIGH Voltage	100µA Sink	4.7	4.8	1	4.7	4.8		v
	$T_{min} - T_{max}$	4.6/4.6/ 4.6	4.8		4.6	4.8		v
Output Low Voltage	8mA Sink		0.44	0.5	,	0.44	0.5	v
	$T_{min} - T_{max}$		0.44	0.5/0.5/0.5		0.44	0,5	v
INPUT CHARACTERTISTICS								
Input Offset Voltage ¹	*		200	1000		50	500	μV
	$T_{min} - T_{max}^{1}$			1.5			0.75	mV
Hysteresis ^{2,3}	$T_{min} - T_{max}$	300	400	600	300	400	500	μV
Voltage Resolution	$T_{min} - T_{max}$		0.8	1.2		0.8	1.0	mV
Input Bias Current	Either Input		2	5		1.3	3	μΑ
-	$T_{min} - T_{max}$			6/6/8			4	μA
Input Offset Current			0.05	0.25		0.01	0.15	μA
	$T_{min} - T_{max}$		att the	0.3/0.3/0.4			0.2	μA
PSRR		80	90		88	100		dB
	$T_{min} - T_{max}$	76/76/76	88		85	96		dB
INPUT VOLTAGE RANGE		a H Ba	APR RO					
Differential Input Voltage	$\pm V_{s} < = \pm 15V$	the Marth Mark	1 an	±Vs			±Vs	v
Common-Mode Input		NV.	194FA	$\nabla s - 2$	-Vs		$+V_{s}-2$	V
CMRR	$-10 < V_{CM} < +10$	80	95	ц. т. 3 . —	90	100		dB
	T _{min} -T _{max}	76/76/76	and the second		88			dB
LATCH CHAPACTERISTICS ²	E to have a	A HANN A	a) ~					
LATCH CHARACTERISTICS	T		教物物	0.8			0.8	v
HIGH Input Level	T -T	16	A A A A A A A A A A A A A A A A A A A	0.0	16		0.0	v
Latch Input Current	Mann - march	setter H	*	5	1.0	2	5	
Laten input Current	TTT	the second second	2	5 6/6/8		2	6	μΑ
	* min The maximum	A Real I						
SUPPLY CHARACTERISTICS		offection .		•				
Differential Supply Voltage 2,*	$V_{LOGIC} = 5V$	4.5		36	4.5		36	v
Logic Supply	T _{min} to T _{max}	4		6	4		6	v
Quiescent Current			•					
$+v_{s}$	$+ v_{s} = + 15V$		8	10		8	10	mA
- v _s	$-v_s = -15V$		4	5		4	>	mA
VLOGIC	$V_{LOGIC} = +5V$		2	3		2	5	mA
Power Dissipation	± 15V Operation			240			2 4 0	mW

NOTES ¹Defined as the average of the low to high and high to low transition input voltages.

-

²Guaranteed over full temperature range although not 100% tested at temperature for J/A grades. 100% tested on all other grades.

³Defined as half the magnitude between low to high and high to low transition input voltages.

 4 + V_S must be no less than 0.5V below V_{LOGIC} in any supply operating conditions.

Specifications subject to change without notice.

Specifications shown in **boldface** are tested on all production units at final test. All min and max specifications are guaranteed although only those shown in **boldface** are tested.

SPECIFICATIONS (@ + 25°C and Single + 5V Supply, unless otherwise noted)¹

		l I	AD790J/A/	/ S		AD790K/B	6	
Model	Conditions	Min	Тур	Max	Min	Тур	Max	Units
RESPONSE TIME								
Propagation Delay	5mV Overdrive		35	40		35	40	ns
Latch Response Time			20	25		20	25	ns
Latch Setup Time			15	20		15	20	ns
OUTPUT CHARACTERISTICS								
Output HIGH Voltage	100µA Sink	4.7	4.8		4.7	4.8		v
	T _{min} -T _{max}	4.6/4.6/4.6	4.8		4.6	4.8		v
Output LOW Voltage	8mA Sink		0.44	0.5		0.44	0.5	v
	$T_{min} - T_{max}$		0.44	0.5/0.5/0.5		0.44	0.5	v
INPUT CHARACTERTISTICS								
Input Offset Voltage ²			200	1000		50	250	uV
	T _{min} -T _{max}			1.5/1.5/1.5			0.75	mV
Hysteresis ^{3,4}	T _{min} -T _{max}	300	450	700	300	450	600	μV
Voltage Resolution	$T_{min} - T_{max}$		0.9	Anna Ha		0.9	1.2	mV
Input Bias Current	Either Input	-8	2	5	ļ	1.3	3	μA
	$T_{min} - T_{max}$	an and the second	A. S. Barrat	6/6/8			4	μA
Input Offset Current			0.05	0.25		0.01	0.15	μA
	T _{min} -T _{max}	A LAND BY THE	S State	0.3/0.3/0.4			0.2	μA
PSRR	4.5 <vs<5.5< td=""><td>80</td><td>90</td><td>AL.</td><td>86</td><td>100</td><td></td><td>dB</td></vs<5.5<>	80	90	AL.	86	100		dB
	T _{min} -T _{max}	76/76/ 76	88		82	96		dB
INPUT VOLTAGE RANGE ⁴	and the second second	5 . S . S	r 199	h.				
Differential Input Voltage	STAR ALLENT AND AND AND	Band a	Ser a	V _s			+ V _s	v
Common-Mode Input		30		$+V_{s}-2$	0		$+V_{s}-2$	v
LATCH CHARACTERISTICS ⁴	The second second second	and a st	int ills	in the second				
LOW Input Level	T _{min} -T _{max}		1 -	0.8			0.8	v
HIGH Input Level	T _{min} -T _{max}	1.6			1.6			v
Latch Input Current		·	2	5		2	5	μA
	$T_{min} - T_{max}$			6/6/8			6	μA
SUPPLY CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·						
Single Supply Range		3.5		7	3.5		7	v
Quiescent Current	$+V_{S} = +5V$			12			12	mA
Power Dissipation	$+V_{S} = +5V Operation$			60			60	mW
PACKAGE OPTIONS ⁵								
Plastic (N-8)		AI	D790JN		L A	D790KN		
Cerdip (Q-8)		AI	D790AQ, A	AD790SQ	l I	D790BQ		

NOTES

¹Pin 1 tied to Pin 8 = +5V, and Pin 4 tied to Pin 6 = 0V.

²Defined as the average of the low to high and high to low transition input voltages.

³Defined as half the magnitude between low to high and high to low transition input voltages.

⁶Guarantee do ver full temperature range although not 100% tested at temperature for J/A grades. 100% tested on all other grades. ⁵See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in **boldface** are tested on all production units at final test. All min and max specifications are guaranteed although only those shown in **boldface** are tested.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V$
Internal Power Dissipation
Differential Input Voltage ² $\pm 15V$
Output Current
Storage Temperature Range N, Q65°C to +125°C
Operating Temperature Range
$AD790J/K$ 0 to $+70^{\circ}C$
AD790A/B
AD790S
Lead Temperature Range (Soldering 60sec) + 300°C

NOTES ¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ²For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.

High-Speed Comparators

AD9685/AD9687

AD9685/AD9687 FUNCTIONAL BLOCK DIAGRAMS

2.7ns Propagation Delay 0.5ns Latch Setup Time 90dB CMRR + 5V, - 5.2V Supply Voltages

FEATURES

APPLICATIONS High-Speed Triggers High-Speed Line Receivers Peak Detectors Threshold Detectors

JOIPOIS ARE OPEN EMITTERS, REQUIRING EXTERNAL DOWN RESISTORS THESE RESISTORS MAY BE IN THE 3E OF 500–200 Ω CONNECTED TO –2 0V, OR 200 Ω –2000 NECTED TO – 5 2V

AD9685

THE OUTPUTS ARE OPEN EMITTERS, REQUIRING EXTERNAL PULL-DOWN RESISTORS THESE RESISTORS MAY BE IN THE RANGE OF 50.0–200 Ω CONNECTED TO -2 0V, OR 200 Ω –2000 Ω CONNECTED TO -5 2V

AD9687

GENERAL DESCRIPTION

The AD9685 and the AD9687 are high-speed voltage comparators. The AD9685 and the AD9687 are manufactured in a high performance bipolar process which allows improved speed and dc accuracy. The AD9685 is a single comparator with a 2.7ns propagation delay, and the AD9687 is a dual comparator of equal performance.

Both devices employ a high precision differential input stage with a common-mode range of ± 2.5 V. The AD9685 and the AD9687 provide complementary digital outputs which are fully ECL compatible. The output stage is capable of driving 50 Ω terminated transmission lines given the 30mA output drive capacity. In addition to this, a latch enable input is provided, allowing operation in either a sample-hold mode or a track-hold mode.

The AD9685 and the AD9687 are both available as an industrial grade device, -25° C to $+85^{\circ}$ C, and as an extended temperature range device, -55° C to $+125^{\circ}$ C. The AD9685 is available in a 10-pin TO-100 metal can, or a 16-pin ceramic package. The AD9687 is available in a 16-pin ceramic package.

Device	Туре	Temperature Range	Description	Package Options*
AD9685BD	Single	-25° C to $+85^{\circ}$ C	16-Pin DIP, Industrial	D-16
AD9685BH	Single	-25° C to $+85^{\circ}$ C	10-Pin Can, Industrial	H-10A
AD9685TD	Single	-55°C to +125°C	16-Pin DIP, Extended Temperature	D-16
AD9685TH	Single	- 55°C to + 125°C	10-Pin Can, Extended Temperature	H-10A
AD9687BD	Dual	- 25°C to + 85°C	16-Pin DIP, Industrial	D-16
AD9687TD	Dual	$-55^{\circ}C$ to $+125^{\circ}C$	16-Pin DIP, Extended Temperature	D-16

ORDERING INFORMATION

*See Section 16 for package outline information.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS¹

Positive Supply Voltage $(+V_S)$. +6V
Negative Supply Voltage (-Vs)	۱.										6V
Input Voltage											. ±5V
Differential Input Voltage											. 5.5V
Latch Enable Voltage									_	V	's to 0V
Output Current											30mA
Power Dissipation AD9685				•	•						500mW
AD9687		•		•		•	•	•			600mW

 Operating Temperature Range²

 AD9685/87/BD/BH

 AD9685/87/DD/TH

 Storage Temperature Range

 Duction Temperature

 How Construction

 How Construction

 Operating Temperature

 AD9685/87/TD/TH

 AD9685/87/

ELECTRICAL CHARACTERISTICS (Positive Supply Voltage = +5.0V; Negative Supply Voltage = -5.2V, unless otherwise stated)

		Industrial Temp. Range -25°C to +85°C				Military Temp. Range - 55°C to + 125°C								
		AD	AD9685BD/BH AD9687BI				D	AD	9685TD	/TH	A	D		
Parameter	Temp	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT CHARACTERISTICS														
Input Offset Voltage ³	+ 25°C		1	5		1.	5		1	5		1	5	mV
	Full			7	1		7			7			7	mV
Input Offset Drift	Full		20		1	20			20			20		μV/℃
Input Bias Current	+ 25℃	1	3	15		3	15	1	3	15		3	15	μA
	Full			20			20	1		20			20	μA
Input Offset Current	+ 25°C		0.5	3	1	0.5	3	1	0.5	3		0.5	3	μA
-	Full			5			5			5			5	u.A
Input Resistance	+25℃		200		1	200]	200			200		kΩ
Input Capacitance	+25℃		3			3		1	3			3		pF
Input Voltage Range	Full	-2.5		+2.5	-2.5		+ 2.5	-2.5		+2.5	-2.5		+2.5	l v
Common-Mode Rejection Ratio	Full	75	90		75	90		80	90		80	90		dB
ENABLE INPUT														
Logic "1" Voltage	Full	-1.1			-1.1			-1.1			-1.1			v
Logic "0" Voltage	Full			-1.5			-1.5			-1.5			-1.5	l v
Logic "1" Current	Full			60	1		60			60			60	μA
Logic "0" Current	Full			5			5			5	1		5	μA
DIGITAL OUTPUTS ⁴														
Logic "1" Voltage	Full	-1.1			-1.1			-1.1			-1.1			l v
Logic "0" Voltage	Full			-1.5			-1.5			- 1.5			-1.5	v
SWITCHING PERFORMANCE ⁴														
Propagation Delays ⁵														
Input to Output HIGH	+25°C		2.7	3.0		2.7	4.0		2.7	3.0		2.7	4.0	ns
Input to Output LOW	+25℃		2.7	3.0		2.7	4.0		2.7	3.0		2.7	4.0	ns
Latch Enable to Output HIGH	+25℃	1	2.7	3.0		2.7	4.0		2.7	3.0		2.7	4.0	ns
Latch Enable to Output LOW	+25℃		2.7	3.0		2.7	4.0		2.7	3.0		2.7	4.0	ns
Latch Enable					1									
Minimum Pulse Width	+25℃		2.0	3.0		2.0	3.0		2.0	3.0		2.0	3.0	ns
Minimum Setup Time	+25℃		0.5	1.0		0.5	1.0		0.5	1.0		0.5	1.0	ns
Minimum Hold Time	+ 25°C		0.5	1.0		0.5	1.0		0.5	1.0		0.5	1.0	ns
POWER SUPPLY ⁶					Γ									
Positive Supply Current (+5.0V)	Full	1	16	23	1	31	42		16	23		31	42	mA
Negative Supply Current $(-5.2V)$	Full		30	34		67	75		30	34		67	75	mA
Power Supply Rejection Ratio ⁷	Full		60	,		60			60			60		dB

NOTES

¹Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Typical thermal impedances . . .

AD9685 Metal Can	$\theta_{1a} = 172^{\circ}C/W; \theta_{1c} = 52^{\circ}C/W$
AD9685 Ceramic	$\theta_{1a} = 115^{\circ}C/W; \theta_{1c} = 57^{\circ}C/W$
AD9687 Ceramic	$\theta_{10} = 102^{\circ}C/W; \theta_{10} = 45^{\circ}C/W$

 $^{3}R_{s} = 100\Omega$.

⁴Outputs terminated through 50 Ω to -2.0V.

⁵Propagation delays measured with 100mV pulse; 5mV overdrive.

 6 Supply voltages should remain stable within $\pm 5\%$ for normal operation. 7 Measured at $\pm 5\%$ of + V_S and - V_S.

Specifications subject to change without notice.

FUNCTIONAL DESCRIPTION

PIN NAME	DESCRIPTION
+V _S	- Positive supply terminal, nominally +5.0V.
NONINVERTING INPUT	 Noninverting analog input of the differential input stage. The NONINVERTING INPUT must be driven in conjunction with the INVERTING INPUT.
INVERTING INPUT	 Inverting analog input of the differential input stage. The INVERTING INPUT must be driven in conjunction with the NONINVERTING INPUT.
LATCH ENABLE	- In the "compare" mode (logic HIGH), the output will track changes at the input of the comparator. In the "latch" mode (logic LOW), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. <u>LATCH ENABLE</u> must be driven in conjunction with LATCH ENABLE for the AD9687.
LATCH ENABLE	- In the "compare" mode (logic LOW), the output will track changes at the input of the comparator. In the "latch" mode (logic HIGH), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. LATCH ENABLE must be drive in conjunction with LATCH ENABLE for the AD9687.
$-V_{S}$	- Negative supply terminal, nominally -5.2V.
Q	 One of two complementary outputs, Q will be at logic HIGH, if the analog voltage at the NONINVERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD9687 only) for additional information.
Q	- One of two complementary outputs. \overline{Q} will be at logic LOW, if the analog voltage at the NONINVERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD9687 only) for additional information.
GROUND 1	 One of two grounds, but primarily associated with the digital ground. Both grounds should be connected together near the comparator.
GROUND 2	- One of two grounds, but primarily associated with the analog ground. Both grounds should be connected together near the comparator.

3

AD9685BD

Pin Configuration

AD9687BD

SYSTEM TIMING DIAGRAM

ts

t_H

t_{PD}

Vos

VOD

- Minimum Setup Time
- Minimum Hold Time
- Input-to-Output Delay
- LATCH ENABLE to Output Delay
- $t_{PD}(E)$ - Minimum LATCH ENABLE Pulse Width $t_{PW}(E)$
 - Input Offset Voltage
 - Overdrive Voltage

DIE LAYOUT AND MECHANICAL INFORMATION

 4×4 mils 10,000Å, Aluminum None $-V_s$ 10,000Å, Nitride **Gold Eutectic** 1.25 mil, Aluminum, Ultrasonic Bonding

Passivation

Die Attach

Bond Wire

or 1 mil, Gold, Gold Ball Bonding

High-Speed TTL Voltage Comparator

AD9686

FEATURES

7ns Propagation Delay Complementary TTL Outputs 85dB CMRR +5V, -6V Supply Voltages

APPLICATIONS High-Speed Triggers High-Speed Line Receivers Peak Detectors Threshold Detectors

GENERAL DESCRIPTION

The AD9686 is a high-speed voltage comparator with complementary TTL outputs. The AD9686 is manufactured in a high-performance bipolar process which provides an excellent match between high-speed ac switching and dc accuracy. The AD9686 operates with a propagation delay of only 7ns.

The AD9686 incorporates a Latch Enable control line providing operation in either a sample-hold mode or a track-hold mode. The Latch Enable setup times are less than 2ns which allows very high-speed voltage sampling.

The precision differential input stage has less than 2mV of offset voltage and requires an input bias current of only 4μ A. This combined with the 85dB common-mode rejection ratio, makes the AD9686 especially well suited for high-speed analog signal processing.

The AD9686 is offered as both an industrial temperature range device, -25° C to $+85^{\circ}$ C, and as an extended temperature range device, -55° C to $+125^{\circ}$ C. Both versions are available packaged in a TO-100 metal can and in a ceramic DIP. The extended temperature range device is also available in a ceramic LCC package.

ORDERING INFORMATION

Device	Temperature Range	Description	Package Options*
AD9686BH	-25°C to +85°C	10-Pin Can, Industrial	H-10A
AD9686BQ	- 25°C to + 85°C	16-Pin DIP, Industrial	Q-16
AD9686TE	- 55°C to + 125°C	20-Pin LCC, Extended Temperature	E-20A
AD9686TH	- 55°C to + 125°C	10-Pin Can, Extended Temperature	H-10A
AD9686TQ	- 55°C to + 125°C	16-Pin DIP, Extended Temperature	Q-16

*See Section 16 for package outline information.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS¹

Positive Supply Voltag	$ge(+V_S)$														+7V
Negative Supply Volta	age $(-V_S)$	•													- 7V
Input Voltage Range ²							•		•	•		•		• •	±5V
Differential Input Vol	tage		•		•			•	•	•	•				6.0V
Latch Enable Voltage			•			•							0V	' to	$+V_s$
Output Current	Sourcing		•		•	•	•				•	•		•	4mA
	Sinking	•	•	•	•	•	•	•	•	•	•	•	•	•	14mA

Power Dissipation	00mW
Operating Temperature Range ³	
AD9686BH/BQ	+ 85°C
AD9686TE/TH/TQ	-125℃
Storage Temperature Range65°C to +	-150°C
Junction Temperature +	· 175°C
Lead Soldering Temperature (10sec) +	· 300°C

ELECTRICAL CHARACTERISTICS (Supply Voltages = - 6.0V and + 5.0V, unless otherwise stated)

	Mil⁴ Sub		1 -2 AD	Industria 5°C to + 9686BH	l 85°C /BO	- 55 AD96	Military °C to +1 586TE/T	25°C H/TO	
Parameter	Group	Temp	Min	Тур	Max	Min	Тур	Max	Units
INPUT CHARACTERISTICS									
Input Offset Voltage ⁵	1	+25°C		1.0	2.0		1.0	2.0	mV
	2,3	Full			3.0			3.0	mV
Input Offset Drift		Full		10			10		μV/°C
Input Bias Current	1	+25℃		4	10		4	10	μA
	2,3	Full			13		· ·	13	μA
Input Offset Current	1	+25°C		0.4	1.0		0.4	1.0	μA
The Device	2,3	Full		100	1.5		100	1.5	μΑ
Input Resistance		+25°C		100			100		K11
Input Voltage Pange	1 2 2	+25°C	2.2	5	1 4 5		5	145	pr V
Common-Mode Rejection Ratio	1, 2, 5	Full	5.5	85	T 4.J	- 5.5	85	+ 4 .J	dB
		1 un							
ENABLE INPUT	1 2 2	E-11			2.0			2.0	N7
Logic "1" Voltage	1,2,3	Full			2.0			2.0	V
Logic "0" Voltage	1,2,3	Full	0.8		100	0.8		100	V
Logic "1" Current	1,2,3	Full			100			100	μΑ
Logic o Current	1,2,5	rui			100			100	μΛ
DIGITAL OUTPUTS						· ·			
Logic "1" Voltage (Source 1mA)	1, 2, 3	Full	2.4	3.5		2.4	3.5		V
Logic "0" Voltage (Sink 10mA)	1, 2, 3	Full		0.3	0.4		0.3	0.4	V
SWITCHINGPERFORMANCE									
Propagation Delays									
Input to Output HIGH		+25℃		7			7		ns
Input to Output LOW		+25℃		7			7		ns
Latch Enable to Output HIGH		+25°C		7			7		ns
Latch Enable to Output LOW		∞+25°C		7			7		ns
Delta Delay Between Outputs		+25℃		2			2		ns
Latch Enable									
Minimum Pulse Width	12	+25℃		2	3		2	3	ns
Minimum Setup Time	12	+25°C		1	2		1	2	ns
Minimum Hold Time	12	+25℃		1	2		1	2	ns
POWER SUPPLY ⁶									
Positive Supply Current (+5.0V)	1,2,3	Full		30	35		30	35	mA
Negative Supply Current $(-6.0V)$	1,2,3	Full		26	32		26	32	mA
Power Supply Rejection Ratio ⁷		Full		65			65		dB

NOTES

¹Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Under no circumstances should the input voltages exceed the supply voltages.

³Typical thermal impedance . . .

AD9686 Metal Can	$\theta_{TA} = 172^{\circ}C/W; \theta_{TC} = 52^{\circ}C/W$
AD9686 Ceramic	$\theta_{IA} = 115^{\circ}C/W; \theta_{IC} = 57^{\circ}C/W$
AD9686 LCC	$\theta_{IA} = 102^{\circ}C/W; \theta_{IC} = 45^{\circ}C/W$

⁴Military subgroups apply to military qualified devices only.

 ${}^{5}R_{S} = 100\Omega$.

 6 Supply voltage should remain stable within $\pm5\%$ for normal operation. 7 Measured at $\pm5\%$ of $+\,V_S$ and $-\,V_S.$

Specifications subject to change without notice.

EXPLANATION OF GROUP A MILITARY SUBGROUPS

Subgroup	1-Static tests at +25°C.	Subgroup	5-Dynamic tests at max rated oper. temp
Subgroup	2-Static tests at max rated oper. temp.	Subgroup	6-Dynamic tests at min rated oper. temp
Subgroup	3-Static tests at min rated oper. temp.	Subgroup	$7 -$ Functional tests at $+ 25^{\circ}$ C.
Subgroup	4-Dynamic tests at +25°C.	Subgroup	8-Functional tests at max and min rated

- abgroup 5-Dynamic tests at max rated oper. temp. Subgroup 9-Switching tests at +25°C.
- ubgroup 6-Dynamic tests at min rated oper. temp.

oper, temp.

- Subgroup 10-Switching tests at max rated oper. temp. Subgroup 11 - Switching tests at min rated oper. temp.

3

Subgroup 12-Periodically sample tested.

FUNCTIONAL DESCRIPTION

PIN NAME DESCRIPTION $+V_{s}$ Positive supply terminal, nominally + 5.0V. NONINVERTING INPUT Noninverting analog input of the differential input stage. The NONINVERTING INPUT must be driven in conjunction with the INVERTING INPUT. INVERTING INPUT Inverting analog input of the differential input stage. The INVERTING INPUT must be driven in conjunction with the NONINVERTING INPUT. $-V_s$ Negative supply terminal, nominally -6.0V. LATCH ENABLE In the "compare" mode (logic LOW), the output will track changes at the input of the comparator. In the "latch" mode (logic HIGH), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. GROUND Analog and digital ground. **O OUTPUT** One of two complementary outputs. O will be at logic HIGH if the analog voltage at the NON-INVERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE for additional information. **O**OUTPUT One of two complementary outputs. \overline{Q} will be at logic LOW if the analog voltage at the NONIN-VERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE for additional information. NC "NO CONNECT" pins are not internally connected.

PINOUT CONFIGURATIONS

SYSTEM TIMING DIAGRAM

- Minimum Setup Time te
- tн Minimum Hold Time
- Input to Output Delay tpD
- $t_{PD}(E)$ LATCH ENABLE to Output Delay _
- $t_{PW}(E)$ -Minimum LATCH ENABLE Pulse Width
- Input Offset Voltage Vos -
- VOD _ **Overdrive Voltage**
- Δt_{PD} Delta Delay Between Complementary Outputs

DIE LAYOUT AND MECHANICAL INFORMATION

Die Dimensions		$59 \times 50 \times 18$ (max) mils
Pad Dimensions		$\ldots \ldots 4 \times 4$ mils
Metalization		Aluminum
Backing		None
Substrate Potential		$\ldots \ldots \ldots \ldots -V_S$
Passivation		Oxynitride
Die Attach		Gold Eutectic
Bond Wire 1.25	5 mil, Aluminu	m; Ultrasonic Bonding
	or 1mil, (Gold; Gold Ball Bonding

Ultrafast Comparators

AD96685/AD96687

AD96685/AD96687 FUNCTIONAL BLOCK DIAGRAMS

FEATURES 2.5ns Propagation Delay 0.5ns Latch Setup Time 90dB CMRR +5V, -5.2V Supply Voltages

APPLICATIONS High-Speed Triggers High-Speed Line Receivers Peak Detectors Threshold Detectors

GENERAL DESCRIPTION

The AD96685 and the AD96687 are ultrafast voltage comparators. The AD96685 and the AD96687 are manufactured in a highperformance bipolar process which allows improved speed and dc accuracy. The AD96685 is a single comparator with a 2.5ns propagation delay, 50ps dispersion, and the AD96687 is an equally fast dual comparator.

Both devices employ a high-precision differential input stage with a common-mode range from -2.5V to +5.0V. The AD96685 and the AD96687 provide complementary digital outputs which are fully ECL compatible. The output stage is capable of driving 50Ω terminated transmission lines given the 30mA output drive capacity. In addition to this, a latch enable input is provided, allowing operation in either a sample-hold mode or a track-hold mode.

The AD96685 and the AD96687 are both available as an industrial temperature range device, -25° C to $+85^{\circ}$ C, and as an extended temperature range device, -55° C to $+125^{\circ}$ C. The AD96685 is available in a 10-pin TO-100 metal can, and a 16-pin ceramic package. The AD96687 is available in a 16-pin ceramic package. Both comparators are also available in an extended temperature range LCC package.

AD96687

Device	Туре	Temperature Range	Description	Package Options*
AD96685BH	Single	-25°C to +85°C	10-Pin Can, Industrial	H-10A
AD96685BQ	Single	-25° C to $+85^{\circ}$ C	16-Pin Cerdip, Industrial	Q-16
AD96685TE	Single	- 55°C to + 125°C	20-Pin LCC, Extended Temperature	E-20A
AD96685TH	Single	- 55°C to + 125°C	10-Pin Can, Extended Temperature	H-10A
AD96685TQ	Single	- 55°C to + 125°C	16-Pin Cerdip, Extended Temperature	Q-16
AD96687BQ	Dual	- 25°C to + 85°C	16-Pin Cerdip, Industrial	Q-16
AD96687TE	Dual	- 55°C to + 125°C	20-Pin LCC, Extended Temperature	E-20A
AD96687TQ	Dual	- 55°C to + 125°C	16-Pin Cerdip, Extended Temperature	Q-16

ORDERING INFORMATION

*See Section 16 for package outline information.
SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS¹

Positive Supply Voltage (+Vs)								. +6.5V
Negative Supply Voltage $(-V_S)$.	•							6.5V
Input Voltage Range ²	•							$ \pm 5V$
Differential Input Voltage	•							5.5V
Latch Enable Voltage					•		_	V _S to 0V
Output Current								. 30mA
Power Dissipation AD96685 .	•		•		•			500mW
AD96687	•					÷		600mW

Operating Temperature Range³ AD96685/87/TE/TH/TQ -55°C to +125°C Lead Soldering Temperature (10sec) + 300°C

ELECTRICAL CHARACTERISTICS (Positive Supply Voltage = +5.0V; Negative Supply Voltage = -5.2V, unless otherwise stated)

	14.14		Industrial Temp. Range -25°C to +85°C					Military Temp. Range -55°C to +125°C							
	Sub		AD	96685BH	I/BQ	A	D966871	BQ	AD96	685TE/	ГН/ТQ	AD	96687TE	E/TQ	
Parameter	Group	Temp	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
INPUT CHARACTERISTICS															
Input Offset Voltage ⁵	1	+ 25°C		1	2		1	2		1	2		1	2	mV
	2,3	Full	í		3			3			3			3	mV
Input Offset Drift		Full		20			20			20			20		μV/°C
Input Bias Current	1	+ 25°C		7	10		7	10		7	10		7	10	μA
	2,3	Full			13			13			13			13	μA
Input Offset Current	1	+ 25°C		0.1	1.0		0.1	1.0		0.1	1.0		0.1	1.0	μA
	2,3	Full			1.2			1.2			1.2			1.2	μΑ
Input Resistance		+ 25°C		200			200	1		200			200		kΩ
Input Capacitance		+ 25°C		2			2			2			2		pF
Input Voltage Range	1, 2, 3	Full	- 2.5		+ 5.0	- 2.5		+ 5.0	-2.5	•••	+ 5.0	- 2.5		+5.0	V
Common-Mode Rejection Ratio	1, 2, 3	Full	80	90		80	90		80	90		80	90		dB
ENABLE INPUT														1	
Logic "1" Voltage	1, 2, 3	Full	- 1.1			-1.1			-1.1		•	-1.1			v
Logic "0" Voltage	1, 2, 3	Full			- 1.5			-1.5			-1.5			-1.5	v
Logic "1" Current	1,2,3	Full			40			40			40			40	μA
Logic "0" Current	1, 2, 3	Full			5			5			5			5	μA
DIGITAL OUTPUTS7															
Logic "1" Voltage	1,2,3	Full	-11			-1.1			- 1.1			- 1.1			v
Logic "0" Voltage	1, 2, 3	Full			- 1.5			-1.5			-1.5			-1.5	v
SWITCHING PERFORMANCE ⁷															
Propagation Delays ⁸			1												
Input to Output HIGH	9	+ 25°C		2.5	3.5		2.5	3.5		2.5	3.5		2.5	3.5	ns
Input to Output LOW	9	+ 25°C		2.5	3.5		2.5	3.5		2.5	3.5		2.5	3.5	ns
Latch Enable to Output HIGH	9	+ 25°C		2.5	3.5		2.5	3.5		2.5	3.5		2.5	3.5	ns
Latch Enable to Output LOW	9	+ 25°C		2.5	3.5		2.5	3.5		2.5	3.5		2.5	3.5	ns
Dispersion ⁹		+ 25°C		50			50			50			50		ps
Latch Enable															
Minimum Pulse Width	12	+ 25°C	1	2.0	3.0		2.0	3.0		2.0	3.0		2.0	3.0	ns
Minimum Setup Time	12	+ 25°C		0.5	1.0		0.5	1.0		0.5	1.0		0.5	1.0	ns
Minimum Hold Time	12	+ 25°C		0.5	1.0		0.5	1.0		0.5	1.0		0.5	1.0	ns
POWER SUPPLY ¹⁰															
Positive Supply Current (+5.0V)	1,2,3	Full		8	9		15	18		8	9		15	18	mA
Negative Supply Current (-5.2V)	1,2,3	Full	l	15	18		31	36		15	18		31	36	mA
Power Supply Rejection Ratio ¹¹	1,2,3	Full	60	70		60	70		60	70		60	70		dB
-															

NOTES

Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Under no circumstances should the input voltages exceed the supply voltages.

³Typical thermal impedances . . .

 $\theta_{\mu} = 172^{\circ}C/W, \theta_{\mu} = 52^{\circ}C/W$ AD96685 Metal Can AD96685 Ceramic

 $\theta_{1a} = 115^{\circ}C/W; \theta_{1c} = 57^{\circ}C/W$

AD96685 LCC AD96687 Ceramic AD96687 LCC

 $\theta_{ja} = 172^{\circ}C/W; \theta_{jc} = 65^{\circ}C/W$ $\theta_{ja} = 115^{\circ}C/W; \theta_{jc} = 57^{\circ}C/W$ $\theta_{1a} = 82^{\circ}C/W; \theta_{1c} = 31^{\circ}C/W$

⁴Military subgroups apply to military qualified components only.

 ${}^{5}R_{s} = 100\Omega$.

⁶Input Voltage Range can be extended to -3.3V if $-V_S = -6.0V$.

⁷Outputs terminated through 50 Ω to -2.0V.

⁸Propagation delays measured with 100mV pulse (10mV overdrive), to 50% transition point of the output.

⁹Change in propagation Delay from 100mV to 1V input overdrive.

 10 Supply voltages should remain stable within $\pm 5\%$ for normal operation.

¹¹Measured at $\pm 5\%$ of $+V_S$ and $-V_S$.

Specifications subject to change without notice.

EXPLANATION OF GROUP A MILITARY SUBGROUPS

Subgroup 1-Static tests at +25°C.

Subgroup 4-Dynamic tests at +25°C.

Subgroup 2-Static tests at max rated oper. temp. Subgroup 6-Dynamic tests at min rated oper. temp. Subgroup 3-Static tests at min rated oper. temp. Subgroup 7-Functional tests at +25°C.

- Subgroup 8-Functional tests at max and min rated oper. temp.
- Subgroup 11 Switching tests at min rated oper. temp. Subgroup 12-Periodically sample tested.

Subgroup 5-Dynamic tests at max rated oper. temp. Subgroup 9-Switching tests at +25°C. Subgroup 10-Switching tests at max rated oper. temp.

FUNCTIONAL DESCRIPTION

PIN NAME	DESCRIPTION
$+V_{S}$	- Positive supply terminal, nominally +5.0V.
NONINVERTING INPUT	 Noninverting analog input of the differential input stage. The NONINVERTING INPUT must be driven in conjunction with the INVERTING INPUT.
INVERTING INPUT	 Inverting analog input of the differential input stage. The INVERTING INPUT must be driven in conjunction with the NONINVERTING INPUT.
LATCH ENABLE	- In the "compare" mode (logic HIGH), the output will track changes at the input of the comparator. In the "latch" mode (logic LOW), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. <u>LATCH ENABLE</u> must be driven in conjunction with LATCH ENABLE for the AD96687.
LATCH ENABLE	- In the "compare" mode (logic LOW), the output will track changes at the input of the comparator. In the "latch" mode (logic HIGH), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. LATCH ENABLE must be driven in conjunction with LATCH ENABLE for the AD96687.
$-V_{S}$	- Negative supply terminal, nominally -5.2V.
Q	- One of two complementary outputs. Q will be at logic HIGH if the analog voltage at the NON- INVERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD96687 only) for additional information.
\overline{Q}	- One of two complementary outputs. \overline{Q} will be at logic LOW if the analog voltage at the NONIN- VERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD96687 only) for additional information.
GROUND 1	- One of two grounds, but primarily associated with the digital ground. Both grounds should be connected together near the comparator.
GROUND 2	- One of two grounds, but primarily associated with the analog ground. Both grounds should be connected together near the comparator.

PIN DESIGNATIONS

SYSTEM TIMING DIAGRAM

GROUND

ä: ä: ä: ä: a

LATCH ENABLE

LATCH ENABLE

APPLICATIONS INFORMATION

The AD96685/87 comparators are very high-speed devices. Consequently, high-speed design techniques must be employed to achieve the best performance. The most critical aspect of any AD96685/87 design is the use of a low impedance ground plane.

Another area of particular importance is power supply decoupling. Normally, both power supply connections should be separately decoupled to ground through 0.1μ F ceramic and 0.001μ F mica capacitors. The basic design of comparator circuits makes the negative supply somewhat more sensitive to variations. As a result more attention should be placed on insuring a "clean" negative supply.

The LATCH ENABLE input is active LOW (latched). If the latching function is not used, the LATCH ENABLE input should be grounded (ground is an ECL logic HIGH). The LATCH ENABLE input of the AD96687 should be tied to -2.0V or left "floating", to disable the latching function. An alternate use of the LATCH ENABLE input is as a hysteresis control input. By varying the voltage at the LATCH ENABLE input for the AD96685 and the differential voltage between both latch inputs for the AD96687, small variations in the hysteresis can be achieved.

Occasionally, one of the two comparator stages within the AD96687 will not be used. The inputs of the unused comparator should not be allowed to "float". The high internal gain may cause the output to oscillate (possibly affecting the other comparator which is being used) unless the output is forced into a fixed state. This is easily accomplished by insuring that the two inputs are at least one diode drop apart, while also grounding the LATCH ENABLE input.

The best performance will be achieved with the use of proper ECL terminations. The open-emitter outputs of the AD96685/87 are designed to be terminated through 50Ω resistors to -2.0V, or any other equivalent ECL termination. If high-speed ECL signals must be routed more than a few centimeters, MicroStrip or StripLine techniques may be required to insure proper transition times and prevent output ringing.

The AD96685/87 have been specifically designed to reduce propagation delay dispersion over an input overdrive range of 100mV to 1V. Propagation delay dispersion is the change in propagation delay which results from a change in the degree of overdrive (how far the switching point is exceeded by the input). The overall result is a higher degree of timing accuracy since the AD96685/87 is far less sensitive to input variations than most comparator designs.

Typical Applications

HIGH-SPEED SAMPLING CIRCUIT

HIGH-SPEED WINDOW COMPARATOR

Instrumentation Amplifiers Contents

Page

Selection Guide
Orientation
AD365 – Programmable Gain & Track/Hold DAS Amplifier
AD521 - Integrated Circuit Precision Instrumentation Amplifier
AD522 – High Accuracy, Data Acquisition Instrumentation Amplifier
AD524 – Precision Instrumentation Amplifier
AD526 – Software Programmable Gain Amplifier
AD624 – Precision Instrumentation Amplifier
AD625 – Programmable Gain Instrumentation Amplifier

4-2 INSTRUMENTATION AMPLIFIERS

Selection Guide Instrumentation Amplifiers

Model	Offset Voltage μV	Offset Drift µV/°C	Bias Current nA	GBWP MHz	Gain Ranges	Page	Notes
AD365	200	2	50	20	1, 10, 100, 500	4 - 7	Digitally programmable, w/T/H
AD521	1000	2	40	40	0.1 - 10000	4 – 15	Resistor programmable
AD522	100	2	25	0.3	1-1000	4 – 21	Resistor programmable
AD524	50	0.5	15	25	1, 10, 100, 1000	4 – 25	Pin programmable
AD526	250	-	0.15	6	1, 2, 4, 8, 16	4 - 37	Digitally programmable, μP interface, single-ended
AD624	25	0.25	15	25	1,100,200,500,1000	4 - 49	Pin programmable
AD625	25	0.25	15	25	1-10000	4 - 61	Resistor programmable, low cost

Orientation Instrumentation Amplifiers

An instrumentation amplifier is a committed "gain block" that measures the difference between the voltages existing at its two input terminals, amplifies it by a precisely set gain – usually from 1V/V to 1000V/V or more – causes the result to appear between a pair of terminals in the output circuit. Referring to Figure 1,

$$\mathbf{V}_{\mathbf{S}} - \mathbf{V}_{\mathbf{R}} = \mathbf{G} \left(\mathbf{V}^+ - \mathbf{V}^- \right)$$

An ideal differential instrumentation amplifier responds only to the *difference* between the input voltages. If the input voltages are equal $(V^+ = V^- = V_{CM})$, the *common-mode voltage*), the output of the ideal instrumentation amplifier will be zero.

Rf1, R12, R9 ARE EXTERNAL GAIN-SETTING RESISTORS

An amplifier circuit which is optimized for performance as an instrumentation amplifier gain block has high input impedance, low offset and drift, low nonlinearity, stable gain and low effective output impedance. It is commonly used for applications which capitalize on these advantages. Examples include: transducer amplification – for thermocouples, strain-gage bridges, current shunts and biological probes; preamplification of small differential signals superimposed on high common-mode voltages, signal conditioning and (moderate) isolation for data acquisition; and signal translation for differential and single-ended signals wherever the common "ground" is noisy or of questionable integrity.

Single-ended software-programmable gain amplifiers, such as the AD526, with fixed binary gains of 1, 2, 4, 8, etc., are often listed with instrumentation amplifiers. They are used in systems having a "clean" signal ground to provide appropriate amounts of digitally controlled gain to normalize the level of the output signal to correspond to a large fraction of the input range of an A/D converter; they can thus be used as components of a floatingpoint A/D conversion system to preserve accuracy over a wide dynamic range. See also "Data-Acquisition Subsystems" in the *Data Conversion Products Databook*.

Instrumentation amplifiers are usually chosen in preference to user-assembled op-amp circuitry because they offer optimized, specified performance in low-cost, easy-to-use, compact packages. If the application calls for high common-mode voltages (typically, voltages in excess of the amplifier supply voltage), or if isolation impedances must be very high (e.g., $10^{10}\Omega$, with galvanic isolation, as in medical and industrial applications), the designer should consider an *usolation amplifier*.

NOTES

- ¹Application Note: "A User's Guide to IC Instrumentation Amplifiers," by J. Riskin, available upon request.
- ²Transducer Interfacing Handbook, D.H. Sheingold, ed., 1980. \$14.50, Analog Devices, Inc., P.O. Box 796, Norwood, MA 02062

SPECIFYING INSTRUMENTATION AMPLIFIERS

The instrumentation amplifier chosen for a given application will be the lowest cost device that satisfies the performance and environmental requirements. In addition to the products listed here, which are recommended for new designs, a number of older products are still available; data sheets are available upon request. It is essential that the designer have a firm understanding of the specifications of instrumentation amplifiers and of the contributions of the various sources of error to the total error. The data sheets provide much useful application data on these devices, as well as examples of basic error analyses.

Definitions of the key specifications follow a brief discussion of instrumentation-amplifier architectures. For more complete information on the fundamentals and applications of instrumentation amplifiers, a number of publications are available from Analog Devices.^{1,2}

INSTRUMENTATION AMPLIFIER ARCHITECTURE

Basic Analog Devices instrumentation amplifiers have two highimpedance input terminals, a set of terminals for gain programming, an "output" terminal and a pair of feedback terminals, labeled *sense* and *reference*, as well as terminals for power supply and offset trim. Gain is programmable in three ways:

- The gain of basic amplifiers, such as the AD521, AD522 and AD625, is established by connecting resistors externally. Such circuits are generally used for dedicated fixed-gain applications.
- Pin-programmable amplifiers, such as the AD524 and AD624, have a set of internal resistors; a limited set of fixed gains in the range of 1 to 1,000 are chosen by appropriately interconnecting the resistors via external pins. The connections can be fixed or switched via DIP switches or reed relays (if CMOS switches are used, the *on* resistance of the switches must be considered in series with the internal gain resistors).
- Digitally (or "software-") programmable amplifiers are completely self-contained, with gains set by a 2-, 3- or 4-bit digital control word. These devices include the AD365 (with gains of 1, 10, 100, 500) and the AD526 (with binary gains of 1-16, cascadable to 256).

Except for the AD521, the differential input amplifiers use variations of the well known three-op-amp configuration, consisting of a differential input-output gain stage and a subtractor stage. Gain (\ll 1V/V) is set by the choice of a single gain-setting resistor, R_G. When the *sense* (V_S) feedback terminal is connected to the output terminal, and the *reference* terminal (V_R) is connected to power common, the output voltage appears between the output terminal and power common.

The V_S and V_R terminals may be used for remote sensing – to establish precise outputs in the presence of line drops; they may be used with an inside-the-loop booster follower to obtain power amplification without loss of accuracy; and they may be used to establish an output current that is precisely proportional to the difference signal. A voltage applied to the V_R terminal will bias the output by a predetermined amount. It is important always to maintain very low impedance (in relation to the specified V_S and V_R input impedances) when driving the V_S and V_R inputs, in order not to introduce common-mode, gain, and/or offset errors. In devices using the 3-amplifier configuration, the V_R terminal is sometimes used for "tweaking" common-mode rejection.

SPECIFICATIONS

Specification tables are generally headed by the legend: "specifications are typical at $V_S = \pm 15V$, $R_L = 2k\Omega$, and $T_A = +25^{\circ}C$, unless otherwise specified." This tells the user that these are the normal operating conditions under which the device is tested. Deviations from these conditions might degrade (or improve) performance. When deviations from the "normal" conditions are likely (such as a change in temperature), the significant effects are usually indicated within the specs. "Typical" means that the manufacturer's characterization process has shown this number to be in the middle of a distribution.

Specifications not discussed in detail are self-explanatory and require only a basic knowledge of electronic measurements. Such specs are not uniquely applicable to instrumentation amps.

GAIN: These specifications refer to the linear transfer function of the device; for example, the AD524 gain equation is:

$$G = 1 + \frac{40,000}{R_G} V/V$$

The value of R_G for a given gain value is:

$$\mathbf{R}_{\mathrm{G}} = \frac{40,000}{\mathrm{G}-1} \, \Omega$$

For example, if G is to be 200V/V,

$$R_G = 201$$
 ohms.

Gain Range: Specified at 1 to 1,000, for example, resistorprogrammable devices may work at higher gains (1V/V) is minimum, except for the AD521), but the manufacturer does not specify performance outside the range. In practice, noise and drift may make higher gains impractical for a given device.

Equation Error (or "Gain Accuracy"): The number given by this specification describes deviation from the gain equation when R_G is at its nominal value. The user can trim the gain or compensate for gain error elsewhere in the overall system. Systems using microprocessors (or computers, or other digital "intelligence") can be made self-calibrating, to take into account the lumped gain errors of all the stages in the analog portion of the system, from transducer to A/D converter.

Nonlinearity (or Gain Nonlinearity): Nonlinearity is defined as the deviation from a straight line on the plot of output vs. input. The magnitude of linearity error is the maximum deviation from a "best-straight line," with the output swinging through its fullscale range. Nonlinearity is usually specified in percent of full-scale output range.

¹There is a good explanation of the specification of offset in the Application Note: "A User's Guide to IC Instrumentation Amplifiers," by J. Riskin, available upon request. Gain vs. Temperature: These numbers give the deviations from the gain equation as a function of temperature.

SETTLING TIME is defined as that length of time required for the output voltage to approach and remain within a certain (\pm) tolerance of its final value. It is usually specified for a fast step that will drive the output through its full-scale range, and it includes slewing time. Since several factors contribute to the overall settling time, fast settling to 0.1% does not necessarily mean proportionally fast settling to 0.01%, nor is settling time necessarily proportional to gain. Principal contributing factors include slew-rate limiting, underdamping (ringing) and thermal gradients (long tails).

GAIN-BANDWIDTH PRODUCT (GBWP) – the product of the highest gain and its corresponding bandwidth – is a rough figure of merit for bandwidth as an aid to the preliminary screening process. However, since gain and bandwidth are not necessarily in exact inverse proportion, it can be a misleading specification, especially at the lower gains, if interpreted literally.

VOLTAGE OFFSET: Voltage offset and common-mode rejection (see below) specifications are often considered the key figures of merit for instrumentation amplifiers. While initial offset can be adjusted to zero, shifts in offset voltage with time and temperature introduce errors. Systems that involve "intelligent" processors can correct for offset errors in the whole measurement chain, but such applications are still relatively infrequent; in most applications, the instrumentation amplifier's contribution to system offset error must be defined.

Voltage offset and offset drift in instrumentation amplifiers are functions of gain.¹ The offset, measured at the output, is equal to a constant plus a term proportional to gain. For an amplifier with specified performance over a gain range from 1 to 1,000, the constant is essentially the offset at unity gain, and the proportionality term (or slope) is equal to the change in output offset between G = 1 and G = 1,000, divided by 999. To refer offset to the input (RTI), divide the total output offset by the gain. Since offset at a gain of 1,000 is dominated by the proportional term, the slope is often called the "RTI offset, G = 1,000." At any value of gain, the offset is equal to the unity-gain offset plus the product of the gain and the "RTI offset."

The same considerations apply to the offset drift. For example, the maximum RTI drift of the AD624C is specified at $0.25\mu V/^{\circ}C$. Thus, the output drift is $(0.25\mu V/^{\circ}C \times G) + 10\mu V/^{\circ}C$ at any gain, G, in the range.

Voltage offset as a function of power supply level is also specified RTI at one or more gain settings.

INPUT BIAS AND OFFSET CURRENTS: Input bias currents are those currents needed to bias the input transistors of a dc amplifier or to supply the junction leakage of FETs. FET-input devices have lower bias currents than those using bipolar transistors, but FET leakage currents increase dramatically with temperature, approximately doubling every 11°C. Since bias currents can be considered as a source of voltage offset (when multiplied by source resistance), the change in bias currents is of more concern than the magnitude of the bias currents. Input offset current is the difference between the two input bias currents.

Important Note

Although instrumentation amplifiers have differential inputs, there *must* be a return path for the bias currents. If it is not provided, those currents will charge stray capacitances, causing the output to drift uncontrollably or to saturate. Therefore, when amplifying outputs of "floating" sources, such as transformers and thermocouples, as well as ac-coupled sources, there must still be a path from each input to common, or to the *guard* terminal. If a dc return path is impracticable, an *isolator* must be used. COMMON-MODE REJECTION (CMR) is a measure of the change in output voltage when both inputs are changed by equal amounts. CMR is usually specified for a full-range common-mode voltage change (CMV) at a given frequency, and a specified imbalance of source impedance (e.g. $1k\Omega$ source unbalance, at 60Hz). CMR is a logarithmic expression of the *common-mode* rejection ratio (CMRR): CMR = 20 log₁₀ (CMRR). The common-mode rejection ratio is defined as the ratio of the signal gain, G, to the ratio of common-mode signal appearing at the output to the input CMV.

In most instrumentation amplifiers, the CMR increases with gain because the front-end configuration does not amplify common-mode signals, and the amount of common-mode signal appearing at the output stays relatively constant as the signal gain (G) increases.

However, at higher gains, amplifier bandwidth decreases. Since differences in phase shift through the differential input stage will show up as common-mode errors, CMR becomes more frequency-dependent at high gains.

Programmable Gain & T/H DAS Amplifier

AD365

FEATURES

Software Programmable Gain (1, 10, 100, 500) Low Input Noise (0.2μV p-p) Low Gain Error (0.05% max) Low Nonlinearity (0.005% max) Low Gain Drift (10ppm/°C max) Low Offset Drift (2μV/°C RTI max) Fast Settling (15μs @ Gain 100) Small 16-Pin Metal DIP

APPLICATIONS

Digitally Controlled Gain Amplifier Auto-Gain Ranging Amplifier Wide Dynamic Range Measurement System Gain Selection/Channel Amplifier Transducer/Bridge Amplifier Test Equipment

HIGHLIGHTS

The AD365 is a two stage data acquisition system (DAS) front end consisting of a digitally selectable gain amplifier followed by an independent track/hold amplifier. The programmable gain amplifier features differential inputs for excellent common-mode rejection, high open loop gain for superior linearity, and fast settling for use in multiplexed high speed systems. The track/hold amplifier features high open loop gain for 12-bit compatible linearity, internal hold capacitor for high reliability, and fast acquisition time for use with multichannel systems. Both amplifiers are capable of being used separately and are specified as independent function blocks.

GENERAL DESCRIPTION

The AD365 is comprised of the AD625 monolithic precision instrumentation amplifier to provide a precision differential input, the AD7502 monolithic CMOS multiplexer to handle gain switching, a precision thin-film resistor network, and the AD585 monolithic track and hold amplifier with internal hold capacitor.

AD365 FUNCTIONAL BLOCK DIAGRAM

The input stage provides high common-mode rejection, low noise, fast settling at all gains, and low drift over temperature. The gains of 1, 10, 100, and 500 are digitally selected with the two gain control lines which are 5V CMOS compatible.

The track and hold amplifier section is ideally suited for high speed 12-bit applications where fast settling, low noise, and low sample-to-hold offset are critical. The T/H mode is controlled with a single input line which can be tied to the status output line of the accompanying A/D converter.

SPECIFICATIONS (typical @ $V_s = \pm 15V$, $R_L = 2k\Omega$ and $T_A = +25^{\circ}C$ unless otherwise specified)

AD365AM	Min	Тур	Max	Units
PGA GAIN			•	
Inaccuracy ¹	1			
@ G = 1, 10, 100		0.02	0.05	%
@ G = 500		0.04	0.1	%
Nonlinearity				
@ G = 1, 10, 100			0.005	%
@ G = 500			0.01	%
Drift				
@G=1		1	5	ppm/°C
@ G = 10, 100, 500		3	10	ppm/°C
PGA OFFSET (May be Nulled at Input and Output)				
Input Offset Voltage (RTI)		25	200	μV
vs. Temperature		0.1	2	μV/°C
vs. Common-Mode Voltage		0.5	3.2	μV/V
vs. Supply Voltage		1	10	μV/V
Output Offset Voltage (RTO)		1	5	mV
vs. Temperature		30	150	μV/°C
vs. Common-Mode Voltage		60	316	μV/V
vs. Supply Voltage		60	316	μV/V
PGA INPUT				
Common- Mode and Differential Impedance		10 ⁹ 5		ΩlpF
Differential Input Voltage, Linear	10	12		V
Common-Mode Voltage, Linear		$12 - V_{DIFF} \times G/2$		v
Input Stage Noise 0.1 to 10Hz		0.2		μV p-p
Input Stage Noise Density @ 1kHz		4		nV/VHz
Bias Current		5	50	nA
vs. Temperature		50		pA/°C
Offset Current		2	20	nA
vs. Temperature		20		pA/°C
Noise Current (0.1 to 10Hz)		60		рАр-р
PGA OUTPUT				
Voltage 2k \Load	10	12		v
Output Impedance		0.2		Ω
Short Circuit Current		25		mA
Capacitive Load		500		pF
Output Stage Noise 0.1 to 10Hz		10		μVp-p
Output Stage Noise Density @ 1kHz		75		nV/\sqrt{Hz}
Guard Voltage		$(V_{+IN} + V_{-IN})/2$		v
Guard Offset		- 550		mV
PGA DYNAMIC RESPONSE				
Small Signal – 3dB				
G=1		800		kHz
G = 10		400		kHz
G = 100		150		kHz
G = 500		40		kHz
Full Power Bandwidth $G = 1 @ V_0 = 20V p-p$		60		kHz
Slew Rate		4		V/µs
Settling Time to 0.01% @ V _O = 20V p-p				
G = 1, 10		8	10	μs
G = 100		12	15	μs
G = 500		40	50	μs
Gain Switching Time		1.5		μs
Overdrive Recovery Time $V_{IN} = 15V @ G = 1$		7		μs
PGA DIGITAL INPUTS				
Logic Low	0		0.8	v
Logic High	3.0		+Vs	v
Current, I _{INH} or I _{INL}		0.01	1	μA

AD365AM	Min	Тур	Max	Units
TRACK AND HOLD AMPLIFIER SECTION				·
TRANSFER CHARACTERISTICS				
Open Loop Gain $V_{\Omega} = 10V, R_{I} = 2k$	100k	200k		V/V
Nonlinearity ($\alpha G = +1$			0.005	% FSR
Output Voltage $\mathbf{R}_1 = 2\mathbf{k}\Omega$	10	12		v
Capacitive Load		100		pF
Short Circuit Current		25		mA
TRACK MODE DYNAMICS				
Acquisition Time to 0.01% 10V Step		2	3	μs
20V Step		4	5	μs
Small Signal Bandwidth – 3dB		2		MHz
Full Power Bandwidth (20V p-p)		120		KHZ
Slew Rate	L	10		V/μs
TRACK/HOLD SWITCHING				
Aperture Time		35		ns
Aperture Uncertainty		0.5		ns
Switching Transient		40		mv
Settling Time to 2mV		0.5		μs
HOLD MODE				
Droop Rate ($u + 25^{\circ}$ C		0.3	1	V/sec
from $T_{AMBHEN \Gamma}$ to T_{MAX}		Doubles/10°C		V/sec
Feedthrough	1	25	2	$\mu V/V$
Pedestal, Offset ($u + 25^{\circ}C$		2	3	mV
Over Temperature		3		mv
T/H ANALOG INPUT				
Bias Current		0.1	2	nA
Over Temperature		0.2	5	nA
Offset Voltage			2	mv mV
Over Temperature		25	5	mv V/V
vs. Common Mode		100	316	$\mu V/V$
Input Impedance		10^{12}	510	OllnE
Noise Density (1/1kHz		50		nV/\sqrt{Hz}
Noise 0.1Hz to 10Hz		10		μV p-p
T/H DIGITAL INPUT CHARACTERISTICS				
Logic Low (Hold Mode)	0		0.8	v
Logic High (Track Mode)	2.0		+ Vs	v
Input Current		10	50	μA
AD365 POWER REQUIREMENTS				
Positive Supply Range	+ 11		+ 17	v
Negative Supply Range	- 11		- 17	v
Quiescent Current		12	16	mA
Power Dissipation		360	550	mW
Warm-Up Time to Specification		5		Minutes
Ambient Operating Temperature	- 25		+ 85	°C
Package Thermal Resistance (θ_{ja})		60		°C/W
AD365 ABSOLUTE MAXIMUM RATINGS				
Positive Supply $+V_S$	-0.3		+17	V dc
Negative Supply – V _S	+0.3		- 17	V dc
Analog Input Voltage	$-V_s$		$+V_{s}$	V
Analog Input Current	- 10		+ 10	mA
Digital Input Voltage	-0.3		$+V_{S}$	V
T/H Differential V _{IN}			± 30	
Storage Temperature	-65		+ 150	
Lead Soldering, 10 Sec		Indofinite	300	τC.
Short Circuit Duration		indefinite		
PACKAGE OPTION ²				
DH-16B				

NOTE 1 Gam = 10, 100 and 500 are trimmed and tested ratiometric to G = 1. 2 See Section 16 for package outline information.

Specifications subject to change without notice.

4

TYPICAL CHARACTERISTICS (@ +25°unless otherwise noted)

Current vs. Temperature

Figure 8. PGA PSRR vs. Frequency

Figure 11. PGA Large Signal Pulse Response and Settling *Time, G = 100*

Figure 6. PGA Gain vs. Frequency

Figure 9. PGA Settling Time to 0.01%

Figure 12. Sample-to-Hold Settling Time

Theory of Operation

The AD365 PGA section uses the AD625 monolithic instrumentation amplifier based on a modification of the classic three-op-amp approach. Monolithic construction and laser-wafer-trimming allow the tight matching and tracking of circuit components. This insures the high level of performance inherent in this circuit architecture.

A preamp stage (Q1-Q4) provides additional gain to A1 and A2. Feedback from the outputs of A1 and A2 forces the collector currents of Q1-Q4 to be constant, thereby, impressing the input voltage across R_G . This creates a differential voltage at the outputs of A1 and A2 which is given by the gain ($2R_F/R_G + 1$) times the differential portion of the input voltage. The unity gain subtractor, A3, removes any common-mode signal from the output voltage yielding a single ended output, V_{OUT} , referred to the potential at the reference pin.

Digital gain control is provided using the D0 and D1 inputs (pins 14 and 15) which are decoded internally in the gain switching AD7502 as shown in Figure 15 below. The switch selects the resistance R_G from the laser trimmed resistor network according to the following gain select table.

D1	D0	PGA GAIN
0	0	1
0	1	10
1	0	100
1	1	500

Figure 13. Simplified Circuit of the PGA

INPUT PROTECTION

Differential input amplifiers frequently encounter input voltages outside of their linear range of operation. There are two considerations when applying input protection for the PGA; 1) that continuous input current must be limited to less than 10mA and 2) that input voltages must not exceed either supply by more than one diode drop (approximately $0.6V @ 25^{\circ}C$).

Under differential overload conditions there is $(R_G + 300)\Omega$ in series with two diode drops (approximately 1.2V) between the plus and minus inputs, in either direction. With no external protection and R_G very small (i.e., $80\Omega @ G = 500$), the maximum overload voltage the PGA can withstand, continuously, is approximately \pm 5V. Figure 14 shows the external components

Figure 14. Input Protection Circuit for PGA

necessary to protect the PGA under all overload conditions at any gain. The diodes to the supplies are only necessary if input voltages outside of the range of the supplies are encountered.

REFERENCE TERMINAL

The reference terminal may be used to offset the output by up to $\pm 2V$. This is useful when the load is "floating" or does not share a ground with the rest of the system. It also provides a direct means of injecting a precise offset. It must be remembered, however, that the total output swing, to be shared between signal and reference offset, should be ± 10 volts (from ground).

The PGA section reference terminal must be presented with nearly zero impedance. Any significant resistance, including those caused by PC layouts or other connection techniques, will increase the gain of the noninverting signal path, thereby, upsetting the common-mode rejection of the In-Amp. Inadvertent thermocouple connections created in the sense and reference lines should also be avoided as they will directly affect the output offset voltage and output offset voltage drift.

In the AD625, a reference source resistance will unbalance the CMR trim by the ratio of $10k\Omega/R_{REF}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to $80dB (10k\Omega/1\Omega = 80dB)$. An operational amplifier may be used to provide the low impedance reference point as shown in Figure 15. The input offset voltage characteristics of that amplifier will add directly to the output offset voltage performance of the in-strumentation amplifier.

Figure 15. Software Controllable Offset

The circuit of Figure 15 also shows a CMOS DAC operating in the bipolar mode and connnected to the reference terminal to provide software controllable offset adjustments. The total offset range is equal to $\pm (V_{REF}/2 \times R_5/R_4)$. To be symmetrical about 0V, R_3 must be equal to $2 \times R_4$.

The offset per bit is equal to the total offset range divided by 2^{N} , where N = number of bits of the DAC. The range of offset for Figure 15 is ± 120 mV, and the offset is incremented in steps of 0.9375mV/LSB.

INPUT AND OUTPUT OFFSET VOLTAGE

Offset voltage specifications are often considered a figure of merit for instrumentation amplifiers. While initial offset may be adjusted to zero, shifts in offset voltage due to temperature variations will cause errors. Intelligent systems can often correct for this factor with an auto-zero cycle, but this requires extra circuitry.

Offset voltage and offset voltage drift each have two components: input and output. Input offset is that component of offset that is generated at the input stage. Measured at the output it is directly proportional to gain, i.e., input offset as measured at the output at G = 100 is 100 times greater than that measured at G = 1. Output offset is generated at the output and is constant for all gains. Input errors dominate at high gains and output errors dominate at low gains.

By separating these errors, one can evaluate the total error independent of the gain. For a given gain, both errors can be combined to give a total error referred to the input (RTI) or output (RTO) by the following formula:

Total Error RTI = input error + (output error/gain)

Total Error RTO = $(Gain \times input error) + output error$

The AD365 provides for input offset voltage adjustment (see Figure 16). This simplifies nulling in very high precision applications and minimizes offset voltage effects in switched gain applications. In such applications the input offset is adjusted first at the highest programmed gain, then the output offset is adjusted at G = 1. If only a single null is desired, the input offset null should be used. The most additional drift when using only the input offset null is $0.9\mu V/^{\circ}C$, RTO.

Output offset adjustment is normally provided by the A/D converter offset adjustment which will compensate for the output offset of the PGA, offset of the T/H amplifier, and offset of the A/D.

Figure 16. Input Voltage Offset Adjustment

COMMON-MODE REJECTION

In an instrumentation amplifier, degradation of common-mode rejection is caused by a differential phase shift due to differences in distributed stray capacitances. In many applications shielded

Figure 17. Common-Mode Shield Driver

GROUNDING

In order to isolate low level analog signals from a noisy digital environment, many data-acquisition components have two or more ground pins. These grounds must eventually be tied together at one point. It would be convenient to use a single ground line, however, current through ground wires and pc runs of the circuit card can cause hundreds of millivolts of error. Therefore, separate ground returns should be provided to minimize the current flow from the sensitive points to the system ground (see Figure 18). Since the AD365 output voltage is developed with respect to the potential on the reference terminal, it can solve many grounding problems.

Figure 18. Basic Grounding Practice

GROUND RETURNS FOR BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of a dc amplifier. There must be a direct return path for these currents, otherwise they will charge external capacitances, causing the output to drift uncontrollably or saturate. Therefore, when amplifying "floating" input sources such as transformers, or ac-coupled sources, there must be a dc path from each input to ground as shown in Figure 19.

Figure 19a. Ground Returns for Bias Currents with Transformer Coupled Inputs

Figure 19b. Ground Returns for Bias Currents with ac Coupled Inputs

4

AUTO-ZERO CIRCUITS

In many applications it is necessary to maintain high accuracy. At room temperature, offset effects can be nulled by the use of offset trimpots. Over the operating temperature range, however, offset nulling becomes a problem. For these applications the auto-zero circuit of Figure 20 provides a hardware solution.

Figure 20. Auto-Zero Circuit

OTHER CONSIDERATIONS

One of the more overlooked problems in designing ultra-low-drift dc amplifiers is thermocouple induced offset. In a circuit comprised of two dissimilar conductors (i.e., copper, kovar), a current flows when the two junctions are at different temperatures. When this circuit is broken, a voltage known as the "Seebeck" or thermocouple emf can be measured. Standard IC lead material (kovar) and copper form a thermocouple with a high thermoelectric potential (about $35\mu V^{\circ}C$). This means that care must be taken to insure that all connections (especially those in the input circuit of the AD365) remain isothermal. This includes the input leads (1, 2). In addition, the user should also avoid air currents over the circuitry since slowly fluctuating thermocouple voltages will appear as "flicker" noise.

The base emitter junction of an input transistor can rectify outof-band signals (i.e., RF interference). When amplifying small signals, these rectified voltages act as small dc offset errors. In the case of a resistive transducer, a capacitor across the input working against the internal resistance of the transducer may suffice to provide an RC filter. These capacitances may also be incorporated as part of the external input protection circuit (see section on input protection). As a general practice every effort should be made to match the extraneous capacitance at pins 1 and 2, to preserve high ac CMR.

THEORY OF OPERATION – T/H SECTION

In sampled data systems there are a number of limiting factors in digitizing high frequency signals accurately. Figure 21 shows pictorially the track-and-hold errors that are the limiting factors. In the following discussions of error sources the errors will be divided into the following groups: 1. Track-to-Hold Transition, 2. Hold Mode and 3. Hold-to-Track Transition.

Figure 21. Pictorial Showing Various T/H Characteristics

TRACK-TO-HOLD TRANSITION

The aperture delay time is the time required for the track-and-hold amplifier to switch from track to hold. Since this is effectively a constant, it may be tuned out. If however, the aperture delay time is not accounted for then errors of the magnitude as shown in Figure 22 will result.

Figure 22. Aperture Delay Error vs. Frequency

To eliminate the aperture delay as an error source the track-to-hold command may be advanced with respect to the input signal.

Once the aperture delay time has been eliminated as an error source then T/H trigger uncertainty/jitter and internal aperture jitter which are the variations in aperture delay time from sampleto-sample remain. The aperture jitter is a true error source and must be considered. The aperture jitter is a result of noise within the switching network which modulates the phase of the hold command and is manifested in the variations in the value of the analog input that has been held. The aperture error which results from this jitter is directly related to the dV/dt of the analog input.

The error due to aperture jitter is easily calculated as shown below. The error calculation takes into account the desired accuracy corresponding to the resolution of the N-bit A/D converter.

$$F_{max} = \frac{2^{-(N+1)}}{\pi \text{ (Aperture Jitter)}}$$

For an application with a 12-bit A/D converter with a 10V full scale to a 1/2LSB error maximum:

$$F_{\text{max}} = \frac{2^{-(12+1)}}{\pi (0.5 \times 10^{-9})} = 77.7 \text{kHz}$$

Track-to-hold offset is caused by the transfer of charge to the holding capacitor via the gate capacitance of the switch when switching into hold. Since the gate capacitance couples the switch-control voltage applied to the gate on to the hold capacitor, the resulting track-to-hold offset is a function of the logic level applied to the gate and the change in the gate capacitance over temperature.

HOLD MODE

In the hold mode there are two important specifications that must be considered; feedthrough and the droop rate. Feedthrough errors appear as an attenuated version of the input at the output while in the hold mode. Hold-Mode feedthrough varies with frequency, increasing at higher frequencies. Feedthrough is an important specification when a track and hold follows an analog multiplexer that switches among many different channels.

Hold-mode droop rate is the change in output voltage per unit of time while in the hold mode. Hold mode droop originates as leakage from the hold capacitor, of which the major leakage current contributors are switch leakage current and bias current. The rate of voltage change on the capacitor dV/dt is the ratio of the total leakage current I_L to the hold capacitance C_H .

Droop Rate =
$$\frac{dV_{OUT}}{dt}$$
 (Volts/Sec) = $\frac{I_L(pA)}{C_H(pF)}$

For the AD365 in particular;

Droop Rate =
$$\frac{100 \text{pA}}{100 \text{pF}}$$
 = 1V/sec maximum

Additionally the leakage current doubles for every 10° C increase in temperature above 25° C; therefore, the hold-mode droop rate characteristic will also double in the same fashion.

Since a track and hold is used typically in combination with an A/D converter, then the total droop in the output voltage has to be less than 1/2LSB during the period of a conversion. The maximum allowable signal change on the input of an A/D converter is:

$$\Delta V \max = \frac{\text{Full Scale Voltage}}{2^{(N+1)}}$$

Once the maximum ΔV is determined then the conversion time of the A/D converter (t_{CONV}) is required to calculate the maximum allowable dV/dt.

$$\frac{dV \max}{dt} = \frac{\Delta V \max}{t_{CONV}}$$

The maximum $\frac{dV \max}{dt}$ as shown by the previous equation is

the limit not only at 25°C but at the maximum expected operating temperature range. Therefore, over the operating temperature range the following criteria must be met ($T_{OPERATION} - 25^{\circ}C$) = ΔT .

$$\frac{\mathrm{dV}\ 25^\circ \mathrm{C}}{\mathrm{dt}} \times 2^{\frac{(\Delta T^\circ \mathrm{C})}{10^\circ \mathrm{C}}} \leq \frac{\mathrm{dV}\ \mathrm{max}}{\mathrm{dt}}$$

HOLD-TO-TRACK TRANSITION

The Nyquist theorem states that a band-limited signal which is sampled at a rate at least twice the maximum signal frequency can be reconstructed without loss of information. This means that a sampled data system must sample, convert and acquire the next point at a rate at least twice the signal frequency. Thus the maximum input frequency is equal to

$$f_{MAX} = \frac{1}{2(T_{ACQ} + T_{CONV} + T_{AP})}$$

Where T_{ACQ} is the acquisition time of the sample-to-hold amplifier, T_{AP} is the maximum aperture time (small enough to be ignored) and T_{CONV} is the conversion time of the A/D converter.

DATA ACQUISITION SYSTEMS

The fast acquisition time of the AD365 when used with a high speed A/D converter allows accurate digitization of high frequency signals and high throughput rates in multichannel data acquisition systems. The AD365 can be used with a number of different A/D converters to achieve high throughput rates. Figures 23 and 24 show the use of an AD365 with the AD578 and AD574A.

Figure 23. A/D Conversion System, 117.6kHz Throughput 58.8kHz Max Signal Input

Figure 24. 12-Bit A/D Conversion System, 26.3kHz Throughput Rate, 13.1kHz Max Signal Input

Integrated Circuit Precision Instrumentation Amplifier

AD521

FEATURES

Programmable Gains from 0.1 to 1000 Differential Inputs High CMRR: 110dB min Low Drift: $2\mu V/^{\circ}$ C max (L) Complete Input Protection, Power ON and Power OFF Functionally Complete with the Addition of Two Resistors Internally Complete with the Addition of Two Resistors Internally Compensated Gain Bandwidth Product: 40MHz Output Current Limited: 25mA Very Low Noise: $0.5\mu V$ p.p., 0.1Hz to 10Hz, RTI @ G = 1000 Chips are Available

AD521 PIN CONFIGURATION

PRODUCT DESCRIPTION

The AD521 is a second generation, low cost, monolithic IC instrumentation amplifier developed by Analog Devices. As a true instrumentation amplifier, the AD521 is a gain block with differential inputs and an accurately programmable input/ output gain relationship.

The AD521 IC instrumentation amplifier should not be confused with an operational amplifier, although several manufacturers (including Analog Devices) offer op amps which can be used as building blocks in variable gain instrumentation amplifier circuits. Op amps are general-purpose components which, when used with precision-matched external resistors, can perform the instrumentation amplifier function.

An instrumentation amplifier is a precision differential voltage gain device optimized for operation in a real world environment, and is intended to be used wherever acquisition of a useful signal is difficult. It is characterized by high input impedance, balanced differential inputs, low bias currents and high CMR.

As a complete instrumentation amplifier, the AD521 requires only two resistors to set its gain to any value between 0.1 and 1000. The ratio matching of these resistors does not affect the high CMRR (up to 120dB) or the high input impedance (3 × $10^9\Omega$) of the AD521. Furthermore, unlike most operational amplifier-based instrumentation amplifiers, the inputs are protected against overvoltages up to ±15 volts beyond the supplies.

The AD521 IC instrumentation amplifier is available in four different versions of accuracy and operating temperature range. The economical "J" grade, the low drift "K" grade, and the lower drift, higher linearity "L" grade are specified from 0 to +70°C. The "S" grade guarantees performance to specification over the extended temperature range: -55° C to +125°C.

PRODUCT HIGHLIGHTS

- 1. The AD521 is a true instrumentation amplifier in integrated circuit form, offering the user performance comparable to many modular instrumentation amplifiers at a fraction of the cost.
- 2. The AD521 has low guaranteed input offset voltage drift $(2\mu V)^{\circ}C$ for L grade) and low noise for precision, high gain applications.
- 3. The AD521 is functionally complete with the addition of two resistors. Gain can be preset from 0.1 to more than 1000.
- 4. The AD521 is fully protected for input levels up to 15V beyond the supply voltages and 30V differential at the inputs.
- 5. Internally compensated for all gains, the AD521 also offers the user the provision for limiting bandwidth.
- 6. Offset nulling can be achieved with an optional trim pot.
- 7. The AD521 offers superior dynamic performance with a gain-bandwidth product of 40MHz, full peak response of 100kHz (independent of gain) and a settling time of 5μ s to 0.1% of a 10V step.

SPECIFICATIONS (typical @ $V_S = \pm 15V$, $R_L = 2k\Omega$ and $T_A = 25^{\circ}C$ unless otherwise specified)

MODEL	AD521JD	AD521KD	AD521LD	AD521SD (AD521SD/883B)
GAIN				
Range (For Specified Operation, Note 1)	1 to 1000	•	•	•
Equation	$G = R_S/R_GV/V$:	-	•
Error from Equation	(±0 25-0 004G)%	•	-	•
Nonlinearity (Note 2) $1 \le C \le 1000$	0.2% may	•	0.1%	•
Gain Temperature Coefficient	$\pm (3 \pm 0.05 \text{G}) \text{ppm/}^{\circ} \text{C}$	*	* *	$\pm(15 \pm 0.4 \text{G})\text{ppm/}^{\circ}\text{C}$
OUTPUT CHARACTERISTICS				
Rated Output	±10V, ±10mA min	•	•	•
Output at Maximum Operating Temperature	±10V @ 5mA min	•	•	•
Impedance	0 102	•		•
DYNAMIC RESPONSE				
Small Signal Bandwidth (±3dB)	N ANUL-			
G = 1 G = 10	200kHz	•	*	•
G = 100	200kHz	•	•	•
G = 1000	40kHz	*	•	*
Small Signal, ±1 0% Flatness				
G = 1	75kHz	•	•	:
G = 10	26kHz		:	
G = 100	24KHz	•	*	•
Full Peak Response (Note 3)	100kHz	•	•	*
Slew Rate, $1 \le G \le 1000$	10V/µs	•	•	•
Settling Time (any 10V step to within 10mV of Final Value)				
G = 1	7μs	•	•	*
G = 10	5µs	•	•	•
G = 100	10µs	•	:	:
G = 1000 Differential Overland Recovery (±20V Input to within	35µs	•		
10mV of Final Value) (Note 4)				
G = 1000	50 <i>u</i> s	•	•	•
Common Mode Step Recovery (30V Input to within				
10mV of Final Value) (Note 5)			3	
G = 1000	10µs	*	*	•
VOLTAGE OFFSET (may be nulled)				
Input Offset Voltage (VOS I)	3mV max (2mV typ)	1 5mV max (0 5mV typ)	1 0mV max (0 5mV typ)	••
vs. remperature	$3\mu V/\%$	$s_{\mu\nu}$ C max (1.5 $\mu\nu$ C typ)	*	•
Output Offset Voltage (Vosa)	400mV max (200mV typ)	200mV max (30mV typ)	100mV max	**
vs Temperature	$400\mu V/^{\circ}C \max(150\mu V/^{\circ}C typ)$	150μV/°C max (50μV/°C typ)	75μV/°C max	••
vs. Supply (Note 6)	0 005V ₀₅₀ /%	*	*	•
INPUT CURRENTS				
Input Bias Current (either input)	80nA max	40nA max	**	••
vs. Temperature	1nA/ [°] C max	500pA/°C max	**	••
vs Supply	2%/V	•	•	*
input Oriset Current	20nA max 250nA/°C max	10nA max	**	
NINIT	250pA/ C max	125pA/ C max		
INPUI Differential Input Impedance (Note 7)	3 x 10 ⁹ Ω 1 8pF	•	•	
Common Mode Input Impedance (Note 8)	$6 \times 10^{10} \Omega \ 3.0 pF$	•	•	•
Input Voltage Range for Specified Performance				
(with respect to ground)	±10V	•	•	•
Maximum Voltage without Damage to Unit, Power ON				
or OFF Differential Mode (Note 9)	30V	•	•	•
Common Mode Rejection Ratio DC to 60Hz with 1kO	V _S ±15V	•	•	•
source unbalance				
G = 1	70dB min (74dB typ)	74dB min (80dB typ)	**	**
G = 10	90dB min (94dB typ)	94dB min (100dB typ)	**	**
G = 100	100dB min (104dB typ)	104dB min (114dB typ)	**	••
G = 1000	100dB min (110dB typ)	110dB min (120dB typ)	**	**
NOISE	(
RMS RTO 10Ha to 10kHa	$\sqrt{(0.5G)^2 + (225)^2}\mu V$		•	•
Input Current, rms. 10Hz to 10kHz	$V(12G) \neq (50) \mu V$	•	•	•
REFERENCE TERMINAL	10001			
Bias Current	3uA	•	•	•
Input Resistance	10MΩ	*	•	•
Voltage Range	±10V	* •	•	•
Gain to Output		*	*	*
POWER SUPPLY				
Operating Voltage Range	±5V to ±18V	*	•	:
Quescent Supply Current	əmA max	•	•	
IEMPERATURE RANGE	0			
Operating	0 to +/0 C	*	•	-55°C to +125°C
Storage	-25 C to $+150^{\circ}$ C	•	*	-55°C to +125°C
PACKAGE OPTION ¹				
Ceramic (D-14)	AD521JD	AD521KD	AD521LD	AD521SD
	-			

NOTES ¹See Section 16 for package outline information. *Specifications same as AD521JD. **Specifications subject to change without notice

Applying the AD521

4

NOTES:

1. Gains below 1 and above 1000 are realized by simply adjusting the gain setting resistors. For best results, voltage at either input should be restricted to $\pm 10V$ for gains equal to or less than 1.

2. Nonlinearity is defined as the ratio of the deviation from the "best straight line" through a full scale output range of ± 9 volts. With a combination of high gain and ± 10 volt output swing, distortion may increase to as much as 0.3%.

3. Full Peak Response is the frequency below which a typical amplifier will produce full output swing.

4. Differential Overload Recovery is the time it takes the amplifier to recover from a pulsed 30V differential input with 15V of common mode voltage, to within 10mV of final value. The test input is a 30V, 10 μ s pulse at a 1kHz rate. (When a differential signal of greater than 11V is applied between the inputs, transistor clamps are activated which drop the excess input voltage across internal input resistors. If a continuous overload is maintained, power dissipated in these resistors causes temperature gradients and a corresponding change in offset voltage, as well as added thermal time constant, but will not damage the device.)

5. Common Mode Step Recovery is the time it takes the amplifier to recover from a 30V common mode input with zero volts of differential signal to within 10mV of final value. The test input is 30V, 10μ s pulse at a 1kHz rate. (When a com-

DESIGN PRINCIPLE

Figure 1 is a simplified schematic of the AD521. A differential input voltage, V_{IN} , appears across R_G causing an imbalance in the currents through Q_1 and Q_2 , $\Delta I = V_{IN}/R_G$. That imbalance is forced to flow in R_S because the collector currents of Q_3 and Q_4 are constrained to be equal by their biasing (current mirror). These conditions can only be satisfied if the differential voltage across R_S (and hence the output voltage of the AD521) is equal to $\Delta I \times R_S$. The feedback amplifier, A_{FR}

performs that function. Therefore, $V_{OUT} = \frac{V_{IN}}{R_G} \times R_S$ or $\frac{V_{OUT}}{V_{IN}} = \frac{R_S}{R_G}$.

mon mode signal greater than V_S -0.5V is applied to the inputs, transistor clamps are activated which drop the excessive input voltage across internal input resistors. Power dissipated in these resistors causes temperature gradients and a corresponding change in offset voltage, as well as an added thermal time constant, but will not damage the device.)

6. Output Offset Voltage versus Power Supply Change is a constant 0.005 times the unnulled output offset per percent change in either power supply. If the output offset is nulled, the output offset change versus supply change is substantially reduced.

7. Differential Input Impedance is the impedance between the two inputs.

8. Common Mode Input Impedance is the impedance from *either* input to the power supplies.

9. Maximum Input Voltage (differential or at either input) is 30V when using $\pm 15V$ supplies. A more general specification is that neither input may exceed either supply (even when $V_S = 0$) by more than 15V and that the difference between the two inputs must not exceed 30V. (See also Notes 4 and 5.)

10. 0.1Hz to 10Hz Peak-to-Peak Voltage Noise is defined as the maximum peak-to-peak voltage noise observed during 2 of 3 seperate 10 second periods with the test circuit of Figure 8.

Figure 1. Simplified AD521 Schematic

APPLICATION NOTES FOR THE AD521

These notes ensure the AD521 will achieve the high level of performance necessary for many diversified IA applications.

- 1. Gains below 1 and above 1000 are realized by adjusting the gain setting resistors as shown in Figure 2 (the resistor, Rs between pins 10 and 13 should remain $100k\Omega \pm 15\%$, see application note 3). For best results, the input voltage should be restricted to $\pm 10V$ especially for gain equal to or less than 1.
- 2. Provide a return path to ground for input bias currents. The AD521 is an instrumentation amplifier, not an isolation amplifier. When using a thermocouple or other "floating" source, this return path may be provided directly to ground or indirectly through a resistor to ground from pins 1 and/ or 3, as shown in Figure 3. If the return path is not provided, bias currents will cause the output to saturate. The value of the resistor may be determined by dividing the maximum allowable common mode voltage for the application by the bias current of the instrumentation amplifier.

Figure 2. Operating Connections for AD521

- 3. The resistors between pins 10 and 13, (R_{SCALE}) must equal 100k Ω ±15% (Figure 2). If R_{SCALE} is too low (below 85k Ω) the output swing of the AD521 is reduced. At values below 80k Ω and above 120k Ω the stability of the AD521 may be impaired.
- 4. Do not exceed the allowable input signal range. The linearity of the AD521 decreases if the inputs are driven within 5 volts of the supply rails, particularly when the device is used at a gain less than 1. To avoid this possibility, attenuate the input signal through a resistive divider network and use the AD521 as a buffer, as shown in Figure 4. The resistor R/2 matches the impedance seen by both AD521 inputs so that the voltage offset caused by bias currents will be minimized.

a). Transformer Coupled, Direct Return

b). Thermocouple, Direct Return

Figure 3. Ground Returns for "Floating" Transducers

INCREASE R_G TO PICK UP GAIN LOST BY R DIVIDER NETWORK INPUT SIGNAL MUST BE REDUCED IN PROPORTION TO POWER SUPPLY VOLTAGE LEVEL 2.

5. Use the compensation pin (pin 9) and the applicable compensation circuit when the amplifier is required to drive a capacitive load. It is worth mentioning that coaxial cables can "invisibly" provide such capacitance since many popular coaxial cables display capacitance in the vicinity of 30pF per foot.

This compensation (bandwidth control) feature permits the user to fit the response of the AD521 to the particular application as illustrated by Figure 5. In cases of extremely high load capacitance the compensation circuit may be changed as follows:

- 1. Reduce 680Ω to 24Ω
- 2. Reduce 330 Ω to 7.5 Ω
- 3. Increase 1000pF to 0.1μ F
- 4. Set C_X to 1000pF if no compensation was originally used. Otherwise, do not alter the original value.

This allows stable operation for load capacitances up to 3000 pF, but limits the slew rate to approximately $0.16 \text{V}/\mu s$.

6. Signals having frequency components above the Instrumentation Amplifier's output amplifier closed-loop bandwidth will be transmitted from V- to the output with little or no attenuation. Therefore, it is advisable to decouple the V-supply line to the output common or to pin 11.¹

 $(f_t \text{ in kHz}, C_X \text{ in } \mu F)$

Figure 5. Optional Compensation Circuit

INPUT OFFSET AND OUTPUT OFFSET

When specifying offsets and other errors in an operational amplifier, it is often convenient to refer these errors to the inputs. This enables the user to calculate the maximum error he would see at the output with any gain or circuit configuration. An op amp with 1mV of input offset voltage, for example, would produce 1V of offset at the output in a gain of 1000 configuration.

In the case of an instrumentation amplifier, where the gain is controlled in the amplifier, it is more convenient to separate

¹ For further details, refer to "An I.C. User's Guide to Decoupling, Grounding, and Making Things Go Right for a Change," by A. Paul Brokaw. This application note is available from Analog Devices without charge upon request. errors into two categories. Those errors which simply add to the output signal and are unaffected by the gain can be classified as output errors. Those which act as if they are associated with the input signal, such that their effect at the output is proportional to the gain, can be classified as input errors.

As an illustration, a typical AD521 might have a +30mV output offset and a -0.7mV input offset. In a unity gain configuration, the *total* output offset would be +29.3mV or the sum of the two. At a gain of 100, the output offset would be -40mV or: 30mV + 100(-0.7mV) = -40mV.

By separating these errors, one can evaluate the total error independent of the gain settings used, similar to the situation with the input offset specifications on an op amp. In a given gain configuration, both errors can be combined to give a total error *referred to the input* (R.T.I.) or *output* (R.T.O.) by the following formula:

Total Error R.T.I. = input error + (output error/gain)

Total Error R.T.O. = (Gain x input error) + output error

The offset trim adjustment (pins 4 and 6, Figure 2) is associated primarily with the output offset. At any gain it can be used to introduce an output offset equal and opposite to the input offset voltage multiplied by the gain. As a result, the total output offset can be reduced to zero.

As shown in Figure 6, the gain range on the AD521 can be extended considerably by adding an attenuator in the sense terminal feedback path (as well as adjusting the ratio, R_S/R_G). Since the sense terminal is the inverting input to the output amplifier, the additional gain to the output is controlled by R_1 and R_2 . This gain factor is $1 + R_2/R_1$.

Figure 6. Circuit for utilizing some of the unique features of the AD521. Note that gain changes introduced by changing R1 and R2 will have a minimum effect on output offset if the offset is carefully nulled at the highest gain setting.

Where offset errors are critical, a resistor equal to the parallel combination of R_1 and R_2 should be placed between pin 11 and V_{REF} . This minimizes the offset errors resulting from the input current flowing in R_1 and R_2 at the sense terminal. Note that gain changes introduced by changing the R_1/R_2 attenuator will have a minimum effect on output offset if the offset is carefully nulled at the highest gain setting.

When a predetermined output offset is desired, V_{REF} can be placed in series with pin 11. This offset is then multiplied by the gain factor $1 + R_2/R_1$ as shown in the equation of Figure 6.

Figure 7. Ground loop elimination. The reference input, Pin 11, allows remote referencing of ground potential. Differences in ground potentials are attenuated by the high CMRR of the AD521.

Figure 8. Test circuit for measuring peak to peak noise in the bandwidth 0.1Hz to 10Hz. Typical measurements are found by reading the maximum peak to peak voltage noise of the device under test (D.U.T.) for 3 observation periods of 10 seconds each.

High Accuracy Data Acquisition Instrumentation Amplifier

AD522

FEATURES

 $\label{eq:constraint} \begin{array}{l} \hline Performance\\ \mbox{Low Drift: } 2.0 \mu V/^{\circ} C \ (AD522B)\\ \mbox{Low Nonlinearity: } 0.005\% \ (G = 100)\\ \mbox{High CMRR: } > 110dB \ (G = 1000)\\ \mbox{Low Noise: } 1.5 \mu V_{\ P-P} \ (0.1 \ to \ 100Hz)\\ \mbox{Low Noise: } 1.5 \mu V_{\ P-P} \ (0.1 \ t$

PRODUCT DESCRIPTION

The AD522 is a precision IC instrumentation amplifier designed for data acquisition applications requiring high accuracy under worst-case operating conditions. An outstanding combination of high linearity, high common mode rejection, low voltage drift, and low noise makes the AD522 suitable for use in many 12-bit data acquisition systems.

An instrumentation amplifier is usually employed as a bridge amplifier for resistance transducers (thermistors, strain gages, etc.) found in process control, instrumentation, data processing, and medical testing. The operating environment is frequently characterized by low signal-to-noise levels, fluctuating temperatures, unbalanced input impedances, and remote location which hinders recalibration.

The AD522 was designed to provide highly accurate signal conditioning under these severe conditions. It provides output offset voltage drift of less than $10\mu V/^{\circ}C$, input offset voltage drift of less than $2.0\mu V/^{\circ}C$, CMR above 80dB at unity gain (110dB at G = 1000), maximum gain nonlinearity of 0.001% at G = 1, and typical input impedance of $10^{\circ}\Omega$.

AD522 FUNCTIONAL BLOCK DIAGRAM

14-PIN DIP

This excellent performance is achieved by combining a proven circuit configuration with state-of-the-art manufacturing technology which utilizes active laser trimming of tight-tolerance thin-film resistors to achieve low cost, small size and high reliability. This combination of high value with no-compromise performance gives the AD522 the best features of both monolithic and modular instrumentation amplifiers, thus providing extremely cost-effective precision low-level amplification.

The AD522 is available in three versions with differing accuracies and operating temperature ranges; the "A", and "B" are specified from -25° C to $+85^{\circ}$ C, and the "S" is guaranteed over the extended aerospace temperature range of -55° C to $+125^{\circ}$ C. All versions are packaged in a 14-pin DIP and are supplied in a pin configuration similar to that of the popular AD521 instrumentation amplifier.

SPECIFICATIONS¹ (typical @ +V_S = ±15V, R_L = $2k\Omega \& T_A = +25^{\circ}C$ unless otherwise specified)

MODEL	AD522AD	AD522BD	AD522SD
GAIN Gain Equation	$1 + \frac{2(10^5)}{10^5}$	•	*
Cam Equation	Rg		
Gain Range Equation Error	1 to 1000 ,	*	*
G = 1	0 2% max	0.05% max	**
G = 1000 Nonlinearity max (see Fig. 4)	1.0% max	0 2% max	**
G = 1	0 005%	0 001%	**
G = 1000	0 01%	0 005%	**
vs Temp, max G = 1	2ppm/°C (1ppm/°C typ)	•	•
G = 1000	50ppm/°C (25ppm/°C typ)	•	•••••••••••••••••••••••••••••••••••••••
OUTPUT CHARACTERISTICS Output Rating	±10V @ 5mA	*	•
DYNAMIC RESPONSE (see Fig 6)			
Small Signal (-3dB)	2001 11		
G = 1 G = 100	300KHz 3kHz	•	*
Full Power GBW	1 5kHz	•	*
Slew Rate	0 1V/µs	*	*
Settling Time to 0 1%, $G = 100$ to 0.01%, $G = 100$	0 Sms Sms	•	•
to 0 01%, $G = 10$	2ms	•	•
to 0 01%, G = 1	0 5ms	*	*
VOLTAGE OFFSET Offsets Referred to Input Initial Offset Voltage (adjustable to zero)			
G = 1	±400µV max (±200µV typ)	±200µV max(±100µV typ)	±200µV max (±100µV typ)
vs Temperature, max (see Fig 3)	$\pm 50 \mu V/^{\circ} C (\pm 10 \mu V/^{\circ} C \pi m)$	$\pm 25 \mu V/^{\circ} C (\pm 5 \mu V/^{\circ} C \tan)$	$\pm 100 \text{ wW}^{\circ} \text{C} (\pm 10 \text{ wW}^{\circ} \text{C} \text{ two})$
G = 1000	±6μV/°C	±2μV/°C	±6µV/°C
1 < G < 1000	$\pm (\frac{50}{C} + 6)\mu V/^{\circ}C$	$\pm (\frac{25}{C} + 2)\mu V/^{\circ}C$	$\pm (\frac{100}{2} + 6)\mu V/^{\circ}C$
vs Supply, max	G	G	G
G = 1	±20µV/%	*	*
G = 1000	±0 2µV/%	*	*
INPUT CURRENTS			
Initial max, +25°C	±25nA	•	*
vs Temperature	±100pA/°C	•	*
Input Offset Current	+20n4		
vs Temperature	±100pA/°C	•	•
INPUT			
Input Impedance			
Differential Common Mode	10°52 10°9	•	*
Input Voltage Range	10 42		
Maximum Differential Input, Linear	±10V	*	*
Maximum Differential Input, Safe	±20V ±10V	*	*
Maximum Common Mode, Enhear Maximum Common Mode Input, Safe Common Mode Rjection Ratio, Min @ ±10V, 1kΩ Source	±15V	•	•
Imbalance (see Fig. 5)	75JD (00JD mm)	804D (1004D ·····)	
G = 1 (dc to 30Hz) G = 10 (dc to 10Hz)	75dB (90dB typ) 90dB (100dB typ)	80dB (100dB typ) 95dB (110dB typ)	75dB (90dB typ) 90dB (110dB typ)
G = 100 (dc to 3Hz)	100dB (110dB typ)	100dB (120dB typ)	100dB (120dB typ)
G = 1000 (dc to 1Hz)	100dB (120dB typ)	110dB (>120dB typ)	100dB (>120dB typ)
	750B (860B (9P)	80aB (88aB typ)	-
Voltage Noise, RTI (see Fig 4) 0 1Hz to 100Hz (p-p)			
G = 1 G = 1000	15μV 1 5μV	*	*
10Hz to 10kHz (rms)			
G = 1	15µV	•	•
TEMPERATURE RANGE Specified Performance	-25° C to $+85^{\circ}$ C	•	-55°C to +125°C
Operating	-55°C to +125°C	•	*
Storage	-65°C to +150°C	*	*
POWER SUPPLY	±/F 10\X7	•	
Power Supply Range Quiescent Current, max @ ±15V	±(5 to 18)V ±10mA	±8mA	•
PACKAGE OPTIONS ²			
Ceramic ³ (DH-14A)	AD522AD	AD522BD	
Metal (DH-14B)			AD522SD

NOTES
¹Specifications guaranteed after 10 minute warm-up.
²See Section 16 for package outline information.
³Analog Devices reserves the right to ship metal package in lieu
of the standard ceramic packages for A and B grades.
³Analog Devices reserves the right to ship metal package in lieu
of the standard ceramic packages for A and B grades.

Applying the AD522

GENERAL APPLICATION CONSIDERATIONS

Figure 1 illustrates the AD522 wiring configuration when used in a typical bridge amplifier application. In any low-level, high impedance, noise-dominated environment, proper shielding and grounding are requisite for optimum performance; a recommended technique is shown.

Direct coupling of the AD522 inputs makes it necessary to provide a signal ground return for input amplifier bias currents. This can be achieved by direct connection as shown, or through an indirect path of less than $1M\Omega$ resistance such as other system interconnections.

To minimize noise, shielding should be provided for the input leads and gain resistor connections. A passive data guard is provided to improve ac common mode rejection by "bootstrapping" the capacitance of the input cabling, thus minimizing differential phase shift. This will also reduce degradation of system bandwidth.

Balanced design eliminates the need for external bypass capacitors for most applications. If, however, the power supplies are remotely located (farther than 10 feet or so) or if they are likely to carry more than a few millivolts of noise, local filtering will enable the user to retain optimal performance.

Reference and sense pins are provided to permit remote load

sensing. These points can also be used to trim the device CMR, add an output booster, or to offset the output to a reference level. These applications are illustrated in following sections.

It is good practice to place R_G within several inches of the AD522. Longer leads will increase stray capacitance and cause phase shifts that will degrade CMR at higher frequencies. For frequencies below 10Hz, a remote R_G is generally acceptable; no stability problems are caused. Bear in mind that a leakage impedance of 200M Ω between R_G pins will cause an 0.1% gain error at G = 1. Unity gain is not trimmable.

TYPICAL APPLICATION AND ERROR BUDGET ANALYSIS (See Figure 1 and Table I)

A floating transducer with a 0 to 1 volt output has a $1k\Omega$ source imbalance. A noisy environment induces a one volt 0 to 60Hz common mode signal in the ground return. This signal must be amplified to interface with a data acquisition system calibrated for a 0 to 10 volt signal range. The operating temperature range is 0 to $+50^{\circ}$ C and an AD522B is to be used. Table 1 lists error sources and their effect on system accuracy.

The total effect on absolute accuracy is less than $\pm 0.2\%$, allowing adjustment-free 8-bit operation. In computer or microprocessor controlled data-acquisition systems, automatic recalibration can nullify gain and offset drifts leaving noise, distortion and CMR as the only error sources. In this case, full 12-bit operation is achieved.

Gain Errors: Absolute gain errors can be nulled by trimming R_G . Gain drift is a linear effect, not detrimental to resolution and is caused by the change in value of internal resistors over the operating temperature range. An "intelligent" system can correct for these errors with an automatic calibration cycle. Gain nonlinearity never exceeds 0.002% at G = 10.

Offset Drift & Pins Current Errors: Special care has been taken in the design of the AD522 input stage to minimize offset drift. Unless transducer impedances are unbalanced by more than $2k\Omega$, errors caused by offset current drift are negligible compared to offset voltage drift. Although initial offset voltages are laser-nulled for most applications, provisions have been made to allow further adjustment to correct for initial system offset. In this example, all offset drifts amount to $\pm 0.014\%$ and do not effect resolution (can be corrected with an automatic calibration cycle).

CMR and Noise Errors: Common mode rejection and noise performance of instrumentation amplifiers are critical because

Error Source	Specification	Effect on Absolute Accuracy, % of F.S.	Effect on Resolution % of F.S.
Gain Nonlinearity	$\pm 0.002\%$ max, G = 10 (from Spec Sheet and Fig 4)	±0.002	±0 002
Voltage Drift	$\frac{25\mu V/^{\circ}C}{Gain} + 2.0\mu V/^{\circ}C = 4.5\mu V/^{\circ}C$ R T.I. = 0.00055%/^{\circ}C (from Spec Sheet)	±0.011	
CMR	86dB (from Spec. Sheet, CMR vs F ´vs. G, typical curve)	±0 005	±0 005
Noise, R.T.O. (0 1 to 100Hz)	15μV (p-p) R T O (from Spec Sheet, Noise vs G typical curve)	±0 0015	±0 0015
Offset Current Drift	$\pm 50 \text{pA/}^{\circ}\text{C} x$ 1k source imbalance (Spec Sheet) = $\pm 50 \mu \text{V/}^{\circ}\text{C}$ = ± 1 25 μ V R T.1.	±0.000125	
Gain Drift (add 10ppm/°C for external Bc)	60ppm/°C (Spec. Sheet)	±0.15	

Table I. Error Sources

these errors can not be corrected by calibration. Common mode rejection of the AD522 is active laser-trimmed to the limits of thin-film resistor stability. Further trimming could improve CMR on a short term basis, but regular readjustment would be necessary to maintain this improvement (see Figure 2). In this example, untrimmed CMR and noise cause a total error of $\pm 0.0065\%$ of full scale and are the major contributors to resolution error.

Figure 2. Optional CMR Trim

PERFORMANCE CHARACTERISTICS

Offset Voltage and Current Drift: The AD522 is available in four drift selections. Figure 3 is a graph of maximum RTO offset voltage drift vs. gain for all versions. Errors caused by offset voltage drift can thus be determined for any gain. Offset current drift will cause a voltage error equal to the product of the offset current drift and the source impedance unbalance.

Figure 3. Output Offset Drift (RTO) vs. Gain

Gain Nonlinearity and Noise: Gain nonlinearity increases with gain as the device loop-gain decreases. Figure 4 is a plot of typical nonlinearity vs. gain. The shape of the curve can be safely used to predict worst-case nonlinearity at gains below 100. Noise vs. gain is shown on the same graph.

Figure 4. Gain Nonlinearity and Noise (RTO) vs. Gain

Common Mode Rejection: CMR is rated at $\pm 10V$ and $1k\Omega$ source imbalance. At lower gains, CMR depends mainly on thin-film resistor stability but due to gain-bandwidth considerations, is relatively constant with frequency to beyond 60Hz. The dc CMR improves with increasing gain and is increasingly subject to phase shifts in limited bandwidth high-gain amplifiers. Figure 5 illustrates CMR vs. Gain and Frequency.

Dynamic Performance: Settling time and unity gain bandwidth are directly proportional to gain. As a result, dynamic performance can be predicted from the well-behaved curves of Figure 6.

REJECTION

Figure 6. Small Signal Frequency Response (-3dB)

SPECIAL APPLICATIONS

Offset and Gain Trim: Gain accuracy depends largely on the quality of R_G . A precision resistor with a 10ppm/°C temperature coefficient is advised. Offset, like gain, is laser-trimmed to a level suitable for most applications. If further adjustment is required, the circuit shown in Figure 1 is recommended. Note that good quality (25ppm) pots are necessary to maintain voltage drift specifications.

CMR Trim: A short-term CMR improvement of up to 10dB at low gains can be realized with the circuit of Figure 2. Apply a low-frequency 20/G volt peak-to-peak input signal to *both* inputs through their equivalent source resistances and trim the pot for an ac output null.

Sense Output: A sense output is provided to enable remote load sensing or use of an output current booster. Figure 7 illustrates these applications. Being "inside the loop", booster drift errors are minimized. When not used, the sense output should be tied to the output.

Figure 7. Output Current Booster and Buffered Output Level Shifter

Reference Output: The reference terminal is provided to permit the user to offset or "level shift" the output level to a datum compatible with his load. It must be remembered that the total output swing is ± 10 volts to be shared between signal and reference offset. Furthermore, any reference source resistance will unbalance the CMR trim by the ratio $10k/R_{ref}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to $80dB (10k\Omega/1\Omega = 10,000 = 80dB)$. A buffer amplifier can be used to eliminate this error, as shown in Figure 7, but the drift of the buffer will add to output offset drift. When not used, the reference terminal should be grounded.

AD524

FEATURES

Low Noise: $0.3\mu V p-p 0.1Hz$ to 10Hz Low Nonlinearity: 0.003% (G = 1) High CMRR: 120dB (G = 1000) Low Offset Voltage: $50\mu V$ Low Offset Voltage Drift: $0.5\mu V/^{\circ}C$ Gain Bandwidth Product: 25MHzPin Programmable Gains of 1, 10, 100, 1000 Input Protection, Power On – Power Off No External Components Required Internally Compensated MIL-STD-883B, Chips, and Plus Parts Available 16-Pin Ceramic DIP Package and 20-Terminal Leadless Chip Carriers Available

AD524 FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD524 is a precision monolithic instrumentation amplifier designed for data acquisition applications requiring high accuracy under worst-case operating conditions. An outstanding combination of high linearity, high common mode rejection, low offset voltage drift, and low noise makes the AD524 suitable for use in many data acquisition systems.

The AD524 has an output offset voltage drift of less than 25μ V/°C, input offset voltage drift of less than 0.5μ V/°C, CMR above 90dB at unity gain (120dB at G = 1000) and maximum nonlinearity of 0.003% at G = 1. In addition to the outstanding dc specifications the AD524 also has a 25MHz gain bandwidth product (G = 100). To make it suitable for high speed data acquisition systems the AD524 has an output slew rate of 5V/µs and settles in 15µs to 0.01% for gains of 1 to 100.

As a complete amplifier the AD524 does not require any external components for fixed gains of 1, 10, 100 and 1,000. For other gain settings between 1 and 1000 only a single resistor is required. The AD524 input is fully protected for both power on and power off fault conditions.

The AD524 IC instrumentation amplifier is available in four different versions of accuracy and operating temperature range. The economical "A" grade, the low drift "B" grade and lower drift, higher linearity "C" grade are specified from -25° C to $+85^{\circ}$ C. The "S" grade guarantees performance to specification over the extended temperature range -55° C to $+125^{\circ}$ C. Devices are available in a 16-pin ceramic DIP package and a 20-terminal leadless chip carrier.

PRODUCT HIGHLIGHTS

- 1. The AD524 has guaranteed low offset voltage, offset voltage drift and low noise for precision high gain applications.
- 2. The AD524 is functionally complete with pin programmable gains of 1, 10, 100 and 1000, and single resistor programmable for any gain.
- 3. Input and output offset nulling terminals are provided for very high precision applications and to minimize offset voltage changes in gain ranging applications.
- 4. The AD524 is input protected for both power on and power off fault conditions.
- 5. The AD524 offers superior dynamic performance with a gain bandwidth product of 25MHz, full power response of 75kHz and a settling time of 15 μ s to 0.01% of a 20V step (G = 100).

SPECIFICATIONS (@ V_s = $\pm\,15V,~R_L$ = $2k\Omega$ and T_A = $\,+\,25^\circ C$ unless otherwise specified)

	405244		AD514B				ADENC		AD5245				
Madal	Min	AD524A Tyn	Mar	Min	AD524B Typ	Max	Min	AD524C	Max	Min	AD5245 Typ	Max	Units
		-,,,,						- 78			- 7 P		
GAIN							1						
Gain Equation							!						
(External Resistor Gain	۲4 ۲4	0.000 .1		1 1	40.000 .1		54	0.000 .1		<u>آ</u> 4	0.000 .]		
Programming)	[-́	$\frac{1}{R_c}$ + 1	± 20%	-	$\frac{1}{R_c}$ + 1	± 20%	l (-	$\frac{\mathbf{B}_{\mathbf{R}}}{\mathbf{R}_{\mathbf{C}}} + 1$	± 20%	-	$\frac{1}{\mathbf{R}_{c}}$ + 1	± 20%	
		0			6								
Gain Range (Pin Programmable)	1 to	o 1000		11	o 1000		1 10	o 1000		l to	1000		
Gain Error													
$\mathbf{G} = 1$			±0.05			±0.03			±0.02			±0.05	%
$\mathbf{G} = 10$			±0.25			±0.15			$\pm 0.1\%$			±0.25	%
G = 100			±0.5			±0.35			±0.25			±0.5	%
G = 1000			±2.0			±1.0			±0.5			±2.0	%
Nonlinearity													
G = 1			± 0.01			± 0.005			± 0.003			± 0.01	%
G = 10, 100			$\pm 0 01$			±0 005			± 0.003			± 0.01	%
G = 1000	1		± 0.01			± 0.01			± 0.01			±0 01	%
Gain vs. Temperature													
G = 1			5			5	{		5			5	ppm/°C
G = 10			15			10			10			10	ppm/°C
G = 100			35			25			25			25	ppm/°C
G = 1000			100			50			50			50	ppm/°C
VOL TAGE OFFSET (May be Nulled)													
Input Offset Voltage			250			100			50			100	uV
vs Temperature			250	1		0.75			0.5			2.0	uv/℃
Output Offcet Voltage			5			2			2.0			3.0	mV
Temperature			100			50			25	1		50	"V/°C
Offset Deferred to the			100			50			25				μ., σ
Input up Supply													
Input vs. Supply	70			75						75			ap.
G = 1	/0			15			100			05			dD dD
G = 10	85			95			100			105			
G = 100	95			105			110			105			
G = 1000	100			110			115			110			<u>ub</u>
INPUT CURRENT	1												
Input Bias Current			± 50			± 25			±15			± 50	nA
vs. Temperature		± 100			± 100			± 100			± 100		pA/°C
Input Offset Current			±35			±15			±10			±35	nA
vs. Temperature		± 100			± 100			± 100			± 100		pA/°C
INPUT	1												
Input Impedance													
Differential Resistance		109			109			109			109		0
Differential Consultance		10			10			10			10		nF
Common Mode Resistance		109			109		1	109		}	109		0
Common Mode Resistance		10			10			10			10		nF
Common Mode Capacitance		10	-		10			10		-	10		pr
Input voltage Range								+ 10		1	+ 10		v
Max Differ. Input Linear (VD)		± 10			± 10			± 10	``		± 10	`	ľ
Max Common Mode Linear (V _{CM})	12	v - (G × 1	/n)	12	$v = \left(\frac{G}{2} \times \right)$	v _n)	12	v - (G × v	'ь)	121	v - (🗄 × v	ъ)	v
Common Mode Rejection dc		12	2)		12	-)	1	12	-)		12	-/	1
to 60Hz with $1k\Omega$ Source Imbalance													
$\mathbf{G} = 1$	70			75			80			70			dB
G = 10	90			95			100			90			dB
G = 100	100			105			110			100			dB
G = 1000	110			115			120			110			dB
							<u> </u>						
		. 10			. 10			. 10			. 10		v
$V_{OUT}, \mathbf{K}_L = 2\mathbf{K}\Omega$		± 10			± 10			± 10			± 10		· · · · · · · · · · · · · · · · · · ·
DYNAMIC RESPONSE										}			
Small Signal – 3dB							1			l			
G = 1		1			1			1			1		MHz
G = 10		400			400			400			400		kHz
G = 100		150			150			150			150		kHz
G = 1000		25			25			25			25		kHz
Slew Rate	1	5.0		1	5.0		1	5.0		l	5.0		V/µs
Settling Time to 0.01%, 20V Step				1									
G = 1 to 100		15		1	15		1	15]	15		μs
G = 1000	ļ	75		1	75		1	75			75		μs
NORE	1			1			1						
NOISE				1			1			1			
voitage Noise, IKHz	1	7		1	7		1	7			7		nV/\/U-
K. I.I.		/		1	/		1	/ 90		1	, 90		
R.T.O.	l	90		1	90		1	90		1	70		
R.T.I., 0.1 to 10Hz		15		1			I	16		1	15		
G = 1	1	15			15		1	15			22		µvp-p
G = 10		2		1	2		1	4		1	4 0 3		µvp-p
G = 100, 1000		0.3		1	0.3		1	0.5		1	0.5		µvp-p
Current Noise	I			1			1	<i>(</i> ()			40		- 4.
0.1Hz to 10Hz	L	60		1	60		L	60		L	00		рАр-р

Model	AD524A			AD524B			AD524C			AD524S			
	Mın	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
SENSE INPUT							1						
R _{IN}		20			20			20			20		$k\Omega \pm 20\%$
I _{IN}		15			15			15			15		μA
Voltage Range	± 10			± 10			± 10			± 10			v
Gain to Output		1			1			1			1		%
REFERENCE INPUT							1						
R _{IN}		40			40			40			40		$k\Omega \pm 20\%$
I _{IN}	1	15			15			15			15		μA
Voltage Range	± 10			± 10			10			10			v
Gain to Output		1			1			1			1		%
TEMPERATURE RANGE													
Specified Performance	25		+ 85	25		+ 85	25		+ 85	55		+ 125	°C
Storage	65		+ 150	65		+ 150	65		+ 150	65		+ 150	°C
POWER SUPPLY													
Power Supply Range	±6	±15	±18	±6	±15	±18	±6	±15	±18	±6	±15	±18	l v
Quiescent Current		35	5.0		35	5.0		35	5.0		35	5.0	mA
PACKAGE OPTIONS ¹													
16-Pin Ceramic (D-16)		AD524AD			AD524BD			AD524CD			AD524SD		
LCC (E-28A)		AD524AE			AD524BE			AD524CE			AD524SE		

NOTES ¹See Section 16 for package outline informatin

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final

electrical test Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those

shown in boldface are tested on all production units

CONNECTION DIAGRAMS

Leadless Chip Carrier (E) Package

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).

PAD NUMBERS CORRESPOND TO PIN NUMBERS FOR THE D16A 16-PIN CERAMIC PACKAGE

Typical Characteristics

Figure 1. Input Voltage Range vs. Supply Voltage, G = 1

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Input Bias Current vs. CMV

Figure 10. CMRR vs. Frequency RTI, Zero to 1k Source Imbalance

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Supply Voltage

Figure 8. Offset Voltage, RTI, Turn On Drift

Figure 11. Large Signal Frequency Response

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current vs. Temperature

Figure 9. Gain vs. Frequency

Figure 12. Slew Rate vs. Gain

Figure 13. Positive PSRR vs. Frequency

Figure 16. Input Current Noise

Figure 19. Settling Time Gain = 1

Figure 22. Large Signal Pulse Response and Settling Time G = 10

Figure 14. Negative PSRR vs. Frequency

VERTICAL SCALE, 1 DIVISION = $5\mu V$

Figure 17. Low Frequency Noise – G = 1 (System Gain = 1000)

Figure 20. Large Signal Pulse Response and Settling Time – G = 1

Figure 23. Settling Time Gain = 100

Typical Characteristics

VERTICAL SCALE, 1 DIVISION = $0.1 \mu V$

Figure 18. Low Frequency Noise – G = 1000 (System Gain = 100,000)

Figure 21. Settling Time Gain = 10

Figure 24. Large Signal Pulse Response and Settling Time G = 100

INSTRUMENTATION AMPLIFIERS 4-29

Figure 25. Settling Time Gain = 1000

Figure 26. Large Signal Pulse Response and Settling Time G = 1000

Figure 27. Settling Time Test Circuit

Theory of Operation

The AD524 is a monolithic instrumentation amplifier based on the classic 3 op amp circuit. The advantage of monolithic construction is the closely matched components that enhance the performance of the input preamp. The preamp section develops the programmed gain by the use of feedback concepts. The programmed gain is developed by varying the value of R_G (smaller values increase the gain) while the feedback forces the collector currents Q1, Q2, Q3 and Q4 to be constant which impresses the input voltage across R_G .

As R_G is reduced to increase the programmed gain, the transconductance of the input preamp increases to the transconductance of the input transistors. This has three important advantages. First, this approach allows the circuit to achieve a very high open loop gain of 3×10^8 at a programmed gain of 1000 thus reducing gain related errors to a negligible 30ppm. Second, the

Figure 28. Noise Test Circuit

Figure 29. Simplified Circuit of Amplifier; Gain is Defined as $((R56 + R57)/(R_G) + 1$. For a Gain of 1, R_G is an Open Circuit

gain bandwith product which is determined by C3 or C4 and the input transconductance, reaches 25MHz. Third, the input voltage noise reduces to a value determined by the collector current of the input transistors for an RTI noise of $7nV/\sqrt{Hz}$ at G = 1000.

INPUT PROTECTION

As interface amplifiers for data acquisition systems, instrumentation amplifiers are often subjected to input overloads, i.e., voltage levels in excess of the full scale for the selected gain range. At low gains, 10 or less, the gain resistor acts as a current limiting element in series with the inputs. At high gains the lower value of R_G will not adequately protect the inputs from excessive currents. Standard practice would be to place series limiting resistors in each input, but to limit input current to below 5mA with a full differential overload (36<u>V</u>) would require over 7k of resistance which would add 10nV \sqrt{Hz} of noise. To provide both input protection and low noise a special series protect FET was used.

A unique FET design was used to provide a bidirectional current limit, thereby, protecting against both positive and negative overloads. Under nonoverload conditions, three channels CH₂, CH₃, CH₄, act as a resistance ($\approx 1k\Omega$) in series with the input as before. During an overload in the positive direction, a fourth channel, CH₁, acts as a small resistance ($\approx 3k\Omega$) in series with the gate, which draws only the leakage current, and the FET limits I_{DSS}. When the FET enhances under a negative overload, the gate current must go through the small FET formed by CH₁ and when this FET goes into saturation, the gate current is limited and the main FET will go into controlled enhancement. The bidirectional limiting holds the maximum input current to 3mA over the 36V range.

Applying the AD524

INPUT OFFSET AND OUTPUT OFFSET

Voltage offset specifications are often considered a figure of merit for instrumentation amplifiers. While initial offset may be adjusted to zero, shifts in offset voltage due to temperature variations will cause errors. Intelligent systems can often correct for this factor with an auto-zero cycle, but there are many smallsignal high-gain applications that don't have this capability.

Voltage offset and drift comprise two components each; input and output offset and offset drift. Input offset is that component of offset that is directly proportional to gain i.e., input offset as measured at the output at G = 100 is 100 times greater than at G = 1. Output offset is independent of gain. At low gains, output offset drift is dominant, while at high gains input offset drift dominates. Therefore, the output offset voltage drift is normally specified as drift at G = 1 (where input effects are insignificant), while input offset voltage drift is given by drift specification at a high gain (where output offset effects are negligible). All input-related numbers are referred to the input (RTI) which is to say that the effect on the output is "G" times larger. Voltage offset vs. power supply is also specified at one or more gain settings and is also RTI.

By separating these errors, one can evaluate the total error independent of the gain setting used. In a given gain configuration both errors can be combined to give a total error referred to the input (R.T.I.) or output (R.T.O.) by the following formula:

Total Error R.T.I. = input error + (output error/gain) Total Error R.T.O. = (Gain × input error) + output error

As an illustration, a typical AD524 might have a $+250\mu$ V output offset and a -50μ V input offset. In a unity gain configuration, the *total* output offset would be 200μ V or the sum of the two. At a gain of 100, the output offset would be -4.75mV or: $+250\mu$ V + $100(-50\mu$ V) = -4.75mV.

The AD524 provides for both input and output offset adjustment. This simplifies very high precision applications and minimize offset voltage changes in switched gain applications. In such applications the input offset is adjusted first at the highest programmed gain, then the output offset is adjusted at G = 1.

GAIN

The AD524 has internal high accuracy pretrimmed resistors for pin programmable gain of 1, 10, 100 and 1000. One of the preset gains can be selected by pin strapping the appropriate gain terminal and RG_2 together (for $G = 1 RG_2$ is not connected).

Figure 30. Operating Connections for G = 100

The AD524 can be configured for gains other than those that are internally preset; there are two methods to do this. The first method uses just an external resistor connected between pins 3 and 16 which programs the gain according to the formula $R_G = \frac{40k}{G-1}$ (see Figure 31). For best results R_G should be a precision resistor with a low temperature coefficient. An external R_G affects both gain accuracy and gain drift due to the mismatch between it and the internal thin-film resistors. Gain accuracy is determined by the tolerance of the external R_G and the absolute accuracy of the internal resistors ($\pm 20\%$). Gain drift is determined by the tomerature coefficient of R_G and the temperature coefficient of R_G and the temperature coefficient of the temperature coefficient of r_G and the temperature coefficient of the temperature coefficient of r_G and the temperature coefficient of the internal resistors ($\pm 50ppm/^{\circ}C$ typ).

Figure 31. Operating Connections for G = 20

The second technique uses the internal resistors in parallel with an external resistor (Figure 32). This technique minimizes the gain adjustment range and reduces the effects of temperature coefficient sensitivity.

Figure 32. Operating Connections for G = 20, Low Gain T.C. Technique

The AD524 may also be configured to provide gain in the output stage. Figure 33 shows an H pad attenuator connected to the reference and sense lines of the AD524. R1, R2 and R3 should be made as low as possible to minimize the gain variation and reduction of CMRR. Varying R2 will precisely set the gain without affecting CMRR. CMRR is determined by the match of R1 and R3.

Output Gain	R2	R1,R3	Nominal Gain
2	5kΩ	2.26k Ω	2.02
. 5	$1.05k\Omega$	$2.05k\Omega$	5.01
10	$1k\Omega$	$4.42k\Omega$	10.1

Table I. Output Gain Resistor Values

INPUT BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of a dc amplifier. Bias currents are an additional source of input error and must be considered in an total error budget. The bias currents when multiplied by the source resistance appear as an offset voltage. What is of concern in calculating bias current errors is the change in bias current with respect to signal voltage and temperature. Input offset current is the difference between the two input bias currents. The effect of offset current is an input offset voltage whose magnitude is the offset current times the source impedance imbalance.

Although instrumentation amplifiers have differential inputs, there must be a return path for the bias currents. If this is not provided, those currents will charge stray capacitances, causing the output to drift uncontrollably or to saturate. Therefore, when amplifying "floating" input sources such as transformers and thermocouples, as well as ac-coupled sources, there must still be a dc path from each input to ground.

a. Transformer Coupled

b. Thermocouple

c. AC Coupled

Figure 34. Indirect Ground Returns for Bias Currents 4–32 INSTRUMENTATION AMPLIFIERS

COMMON-MODE REJECTION

Common-mode rejection is a measure of the change in output voltage when both inputs are changed equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance. "Common-Mode Rejection Ratio" (CMRR) is a ratio expression while "Common-Mode Rejection" (CMR) is the logarithm of that ratio. For example, a CMRR of 10,000 corresponds to a CMR of 80dB.

In an instrumentation amplifier, ac common-mode rejection is only as good as the differential phase shift. Degradation of ac common-mode rejection is caused by unequal drops across differing track resistances and a differential phase shift due to varied stray capacitances or cable capacitances. In many applications shielded cables are used to minimize noise. This technique can create common mode rejection errors unless the shield is properly driven. Figures 35 and 36 shows active data guards which are configured to improve ac common mode rejection by "bootstrapping" the capacitances of the input cabling, thus minimizing differential phase shift.

Figure 35. Shield Driver, $G \ge 100$

Figure 36. Differential Shield Driver

GROUNDING

Many data-acquisition components have two or more ground pins which are not connected together within the device. These grounds must be tied together at one point, usually at the system power-supply ground. Ideally, a single solid ground would be desirable. However, since current flows through the ground wires and etch stripes of the circuit cards, and since these paths

Figure 37. Basic Grounding Practice

have resistance and inductance, hundreds of millivolts can be generated between the system ground point and the data acquisition components. Separate ground returns should be provided to minimize the current flow in the path from the sensitive points to the system ground point. In this way supply currents and logic-gate return currents are not summed into the same return path as analog signals where they would cause measurement errors.

Since the output voltage is developed with respect to the potential on the reference terminal an instrumentation amplifier can solve many grounding problems.

SENSE TERMINAL

The sense terminal is the feedback point for the instrument amplifier's output amplifier. Normally it is connected to the instrument amplifier output. If heavy load currents are to be drawn through long leads, voltage drops due to current flowing through lead resistance can cause errors. The sense terminal can be wired to the instrument amplifier at the load thus putting the IxR drops "inside the loop" and virtually eliminating this error source.

Figure 38. AD524 Instrumentation Amplifier with Output Current Booster

Typically, IC instrumentation amplifiers are rated for a full ± 10 volt output swing into $2k\Omega$. In some applications, however, the need exists to drive more current into heavier loads. Figure 38 shows how a high-current booster may be connected "inside the loop" of an instrumentation amplifier to provide the required current boost without significantly degrading overall performance. Nonlinearities, offset and gain inaccuracies of the buffer are minimized by the loop gain of the IA output amplifier. Offset drift of the buffer is similarly reduced.

REFERENCE TERMINAL

The reference terminal may be used to offset the output by up to $\pm 10V$. This is useful when the load is "floating" or does not share a ground with the rest of the system. It also provides a direct means of injecting a precise offset. It must be remembered that the total output swing is ± 10 volts to be shared between signal and reference offset.

Figure 39. Use of Reference Terminal to Provide Output Offset

When the IA is of the three-amplifier configuration it is necessary that nearly zero impedance be presented to the reference terminal. Any significant resistance from the reference terminal to ground increases the gain of the noninverting signal path thereby upsetting the common-mode rejection of the IA.

In the AD524 a reference source resistance will unbalance the CMR trim by the ratio of $20k\Omega/R_{REF}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to 86dB ($20k\Omega/1\Omega = 86dB$). An operational amplifier may be used to provide that low impedance reference point as shown in Figure 39. The input offset voltage characteristics of that amplifier will add directly to the output offset voltage performance of the in-strumentation amplifier.

An instrumentation amplifier can be turned into a voltage-to-current converter by taking advantage of the sense and reference terminals as shown in Figure 40.

Figure 40. Voltage-to-Current Converter

By establishing a reference at the "low" side of a current setting resistor, an output current may be defined as a function of input voltage, gain and the value of that resistor. Since only a small current is demanded at the input of the buffer amplifier A_2 , the forced current I_L will largely flow through the load. Offset and drift specifications of A_2 must be added to the output offset and drift specifications of the IA.

PROGRAMMABLE GAIN

Figure 41 shows the AD524 being used as a software programmable gain amplifier. Gain switching can be accomplished with mechanical switches such as DIP switches or reed relays. It should be noted that the "on" resistance of the switch in series with the internal gain resistor becomes part of the gain equation and will have an effect on gain accuracy.

Figure 41. 3 Decade Gain Programmable Amplifier INSTRUMENTATION AMPLIFIERS 4–33

The AD524 can also be connected for gain in the output stage. Figure 42 shows an AD547 used as an active attenuator in the output amplifier's feedback loop. The active attenuation presents a very low impedance to the feedback resistors therefore minimizing the common rejection ratio degradation.

Figure 42. Programmable Output Gain

Figure 43. Programmable Output Gain Using a DAC

Another method for developing the switching scheme is to use a DAC. The AD7528 dual DAC which acts essentially as a pair of switched resistive attenuators having high analog linearity and symmetrical bipolar transmission is ideal in this application. The multiplying DAC's advantage is that it can handle inputs of either polarity or zero without affecting the programmed gain. The circuit shown uses an AD7528 to set the gain (DAC A) and to perform a fine adjustment (DAC B).

AUTO-ZERO CIRCUITS

In many applications it is necessary to provide very accurate data in high gain configurations. At room temperature the offset effects can be nulled by the use of offset trimpots. Over the operating temperature range, however, offset nulling becomes a problem. The circuit of Figure 44 show a CMOS DAC operating in the bipolar mode and connected to the reference terminal to provide software controllable offset adjustments.

Figure 44. Software Controllable Offset

In many applications complex software algorithms for auto-zero applications are not available. For those applications Figure 45 provides a hardware solution.

Figure 45. Auto-Zero Circuit

Error Budget Analysis

Figure 46. Typical Bridge Application

ERROR BUDGET ANALYSIS

To illustrate how instrumentation amplifier specifications are applied, we will now examine a typical case where an AD524 is required to amplify the output of an unbalanced transducer. Figure 46 shows a differential transducer, unbalanced by 100Ω , supplying a 0 to 20mV signal to an AD524C. The output of the IA feeds a 14-bit A to D converter with a 0 to 2 volt input voltage range. The operating temperature range is -25° C to +85°C. Therefore, the largest change in temperature ΔT within the operating range is from ambient to $+85^{\circ}C$ ($85^{\circ}C-25^{\circ}C$ $=60^{\circ}C$).

In many applications, differential linearity and resolution are of prime importance. This would be so in cases where the absolute value of a variable is less important than changes in value. In these applications, only the irreducible errors (45ppm = 0.004%)are significant. Furthermore, if a system has an intelligent processor monitoring the A to D output, the addition of a auto-gain/ auto-zero cycle will remove all reducible errors and may eliminate the requirement for initial calibration. This will also reduce errors to 0.004%.

Error Source	AD524C Specifications	Calculation	Effect on Absolute Accuracy at T _A = 25°C	Effect on Absolute Accuracy at T _A = 85°C	Effect on Resolution
Gain Error	$\pm 0.25\%$	$\pm 0.25\% = 2500$ ppm	2500ppm	2500ppm	-
Gain Instability	25ppm	$(25ppm/^{\circ}C)(60^{\circ}C) = 1500ppm$	-	1500ppm	-
Gain Nonlinearity	$\pm 0.003\%$	$\pm 0.003\% = 30$ ppm	-	-	30ppm
Input Offset Voltage	$\pm 50 \mu V, RTI$	$\pm 50 \mu V/20 mV = \pm 2500 ppm$	2500ppm	2500ppm	-
Input Offset Voltage Drift	$\pm 0.5 \mu V/^{\circ}C$	$(\pm 0.5 \mu V/^{\circ}C)(60^{\circ}C) = 30 \mu V$			
		$30\mu V/20mV = 1500ppm$	-	1500ppm	-
Output Offset Voltage ¹	$\pm 2.0 mV$	$\pm 2.0 \text{mV}/20 \text{mV} = 1000 \text{ppm}$	1000ppm	1000ppm	-
Output Offset Voltage Drift ¹	$\pm 25 \mu V/^{\circ}C$	$(\pm 25\mu V/^{\circ}C)(60^{\circ}C) = 1500\mu V$			
	•	$1500 \mu V/20 mV = 750 ppm$		750ppm	-
Bias Current – Source	$\pm 15nA$	$(\pm 15nA)(100\Omega) = 1.5\mu V$			
Imbalance Error		$1.5\mu V/20mV = 75ppm$	75ppm	75ppm	-
Bias Current – Source	$\pm 100 \text{pA/°C}$	$(\pm 100 \text{pA/°C})(100\Omega)(60^{\circ}\text{C}) = 0.6 \mu\text{V}$			
Imbalance Drift	•	$0.6\mu V/20mV = 30ppm$	-	30ppm	-
Offset Current - Source	$\pm 10 nA$	$(\pm 10nA)(100\Omega) = 1\mu V$			
Imbalance Error		$1\mu V/20mV = 50ppm$	50ppm	50ppm	-
Offset Current - Source	±100pA/°C	$(100 \text{pA/}^{\circ}\text{C})(100 \Omega)(60^{\circ}\text{C}) = 0.6 \mu \text{V}$			
Imbalance Drift	-	$0.6\mu V/20mV = 30ppm$	-	30ppm	-
Offset Current - Source	$\pm 10 nA$	$(10nA)(175\Omega) = 3.5\mu V$			
Resistance – Error		$3.5\mu V/20mV = 87.5ppm$	87.5ppm	87.5ppm	
Offset Current - Source	±100pA/°C	$(100 \text{pA/}^{\circ}\text{C})(175 \Omega)(60^{\circ}\text{C}) = 1 \mu \text{V}$			
Resistance – Drift	•	$1\mu V/20mV = 50ppm$	-	50ppm	-
Common Mode Rejection	115dB	$115 dB = 1.8 ppm \times 5V = 8.8 \mu V$			
5V dc		$8.8\mu V/20mV = 444ppm$	444ppm	444ppm	-
Noise, RTI					
(0.1 - 10 Hz)	0.3µV p-p	$0.3\mu V p p/20mV = 15ppm$	-	-	15ppm
		Total Error	6656.5ppm	10516.5ppm	45ppm

¹Output offset voltage and output offset voltage drift are given as RTI figures.

Table II. Error Budget Analysis of AD524CD in Bridge Application

INSTRUMENTATION AMPLIFIERS 4-35

Figure 47 shows a simple application, in which the variation of the cold-junction voltage of a Type J thermocouple-iron(+)-constantan- is compensated for by a voltage developed in series by the temperature-sensitive output current of an AD590 semiconductor temperature sensor.

The circuit is calibrated by adjusting R_T for proper output voltage with the measuring junction at a known reference tem-

perature and the circuit near 25°C. If resistors with low tempcos are used, compensation accuracy will be to within ± 0.5 °C, for temperatures between + 15°C and + 35°C. Other thermocouple types may be accommodated with the standard resistance values shown in the table. For other ranges of ambient temperature, the equation in the figure may be solved for the optimum values of R_T and R_A.

Figure 47. Cold-Junction Compensation

The microprocessor controlled data acquisition system shown in Figure 48 includes both auto-zero and auto-gain capability. By dedicating two of the differential inputs, one to ground and one to the A/D reference, the proper program calibration cycles can eliminate both initial accuracy errors and accuracy errors over temperature. The auto-zero cycle, in this application, converts a number that appears to be ground and then writes that same number (8 bit) to the AD7524 which eliminates the zero error since its output has an inverted scale. The auto-gain cycle converts the A/D reference and compares it with full scale. A multiplicative correction factor is then computed and applied to subsequent readings.

Figure 48. Microprocessor Controlled Data Acquisition System

Software Programmable Gain Amplifier

AD526

FEATURES

Digitally Programmable Binary Gains from 1 to 16 Two-Chip Cascade Mode Achieves Binary Gain from 1 to 256 Gain Error: 0.01% max, Gain = 1, 2, 4 (C Grade) 0.02% max, Gain = 8, 16 (C Grade) 0.5ppm/°C Drift Over Temperature **Fast Settling Time** 10V Signal Change: 0.01% in $4.5\mu s$ (Gain = 16) Gain Change: 0.01% in 5.6µs (Gain = 16) Low Nonlinearity: ±0.005% FSR max (J Grade) Excellent dc Accuracy: Offset Voltage: 0.5mV max (C Grade) Offset Voltage Drift: 3µV/°C (C Grade) **TTL Compatible Digital Inputs**

PRODUCT DESCRIPTION

The AD526 is a single-ended, monolithic software programmable gain amplifier (SPGA) that provides gains of 1, 2, 4, 8 and 16. It is complete, including amplifier, resistor network and TTL-compatible latched inputs, and requires no external components.

Low gain error and low nonlinearity make the AD526 ideal for precision instrumentation applications requiring programmable gain. The small signal bandwidth is 350kHz at a gain of 16. In addition, the AD526 provides excellent dc precision. The FETinput stage results in a low bias current of 50pA. A guaranteed maximum input offset voltage of 0.5mV max (C grade) and low gain error (0.01%, G=1, 2, 4, C grade) are accomplished using Analog Devices' laser trimming technology.

To provide flexibility to the system designer, the AD526 can be operated in either latched or transparent mode. The force/sense configuration preserves accuracy when the output is connected to remote or low impedance loads.

The AD526 is offered in one commercial (0 to $+70^{\circ}$ C) grade, J, and three industrial grades, A, B and C, which are specified from -40° C to $+85^{\circ}$ C. The S grade is specified from -55° C to $+125^{\circ}$ C. The military version is available processed to MIL-STD 883B, Rev C. The J grade is supplied in a 16-pin plastic DIP, and the other grades are offered in a 16-pin hermetic side-brazed ceramic DIP.

APPLICATION HIGHLIGHTS

- 1. Dynamic Range Extension for ADC Systems: A single AD526 in conjunction with a 12-bit ADC can provide 96dB of dynamic range for ADC systems.
- 2. Gain Ranging Pre-Amps: The AD526 offers complete digital gain control with precise gains in binary steps from 1 to 16. Additional gains of 32, 64, 128 and 256 are possible by cascading two AD526s.

INSTRUMENTATION AMPLIFIERS 4-37

SPECIFICATIONS (@ V_s = $\pm 15V$, R_L = $2k\Omega$ and T_A = $+25^{\circ}C$ unless otherwise specified)

		AD526J			AD526A		A	D526B/	6		AD526C		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
GAIN													
Gain Range				l			Ι.						
(Digitally Programmable)	1	, 2, 4, 8, 1	.6		1, 2, 4, 8,	, 16	1	,2,4,8,	16	1,	2, 4, 8, 1	6	
G = 1			0.05			0.02			0.01			0.01	%
G = 2			0.05			0.03			0.02			0.01	%
G = 4			0.10			0.03	1		0.02			0.01	%
G = 8			0.15			0.07			0.04			0.02	%
G = 16			0.15			0.07	1		0.04			0.02	%
Gain Error Drift										[
Over Temperature		0.5	2.0		0.5	2.0	1	0.5	2.0	1	0.5	2.0	nnm/%C
G = 1 G = 2		0.5	2.0		0.5	2.0	1	0.5	2.0	1	0.5	2.0	ppm/°C
G = 4	L I	0.5	3.0		0.5	3.0		0.5	3.0		0.5	3.0	ppm/°C
G = 8	1	0.5	5.0		0.5	5.0		0.5	5.0		0.5	5.0	ppm/°C
G = 16]	1.0	5.0		1.0	5.0		1.0	5.0		1.0	5.0	ppm/°C
Gain Error $(T_{min} \text{ to } T_{max})$							1						
G = 1			0.06			0.03			0.02			0.015	%
G = 2			0.06			0.04			0.03			0.015	%
G = 4 G = 8			0.12			0.04			0.05			0.015	%
G = 16	1		0.17			0.08			0.05			0.03	%
Nonlinearity	1						1						
G = 1			0.005			0 005	1		0.005			0.0035	% FSR
G = 2	Į.		0.001			0.001			0.001			0.001	%FSR
G = 4			0.001			0.001			0.001			0.001	% FSR
G = 8	1		0.001			0.001			0.001			0.001	% FSR
G = 16	1		0.001			0.001	1		0.001			0.001	% FSR
Nonlinearity $(T_{min} \text{ to } T_{max})$	{									1			AL DOD
G = 1 G = 2	1		0.01			0.01			0.01			0.007	% FSR
G = 2 G = 4			0.001			0.001			0.001			0.001	% FSR
G = 8			0.001			0.001	1		0.001			0.001	%FSR
G = 16	1		0.001	1		0.001			0.001			0.001	% FSR
VOLTAGE OFFSET, ALL GAINS													
Input Offset Voltage		0.4	1.5		0.25	0.7		0.25	0.5		0.25	0.5	mV
Input Offset Voltage Drift Over	ļ												
Temperature		5	20		3	10		3	10		3	10	μV/°C
Input Offset Voltage	1		2.0							1			
I min to I max Input Offset Voltage vs. Supply)		2.0			1.0			0.8			0.8	·mv
$(V_s \pm 10\%)$	80			80			84			90			dB
INDUT BLAS CUPPENIT							<u> </u>						
Over Input Voltage Range + 10V	1	50	150		50	150		50	150		50	150	nA
ANALOGINBUT													
CHARACTERISTICS													
Voltage Range													
(Linear Operation)	±10	±12		±10	± 12		±10	±12		±10	±12		v
Capacitance		5			5			5			5		pF
RATED OUTPUT													
Voltage	±10	± 12		±10	±12		±10	±12		±10	±12		v
$Current (V_{OUT} = \pm 10V)$	±5	±10		±5	± 10		±5	± 10		±5	±10		mA
Short-Circuit Current	15	30		15	30		15	30		15	30		mA
Load Capacitance	1	0.002			0.002			0.002		1	0.002		11
(For Stable Operation)		700			700			700			700		рF
NOISE ALL CADIS	──			<u> </u>			<u> </u>						<u> </u>
NOISE, ALL GAINS										l			
0 1Hz to 10Hz		3		1	3			3			3		uV n-n
Voltage Noise Density, RTI		5		1	5		1	2			-		
f = 10Hz		70			70			70			70		nV√Hz
f = 100Hz	1	60 .			60		1	60		1	60		nV√Hz
f = 1kHz	1	30			30		1	30			30		nV√Hz
f = 10kHz		25			25			25			25		nV∨Hz

		AD5261			AD526A		A	D526B/	s		AD5260	2	
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
DYNAMIC RESPONSE													
- 3dB Bandwidth (Small Signal)				1						[
G = 1		40			4.0		ļ	4.0			40		MH2
G = 1 G = 2		2.0			2.0			2.0			2.0		MH7
G = 4		1.5			1.5		Į	1.5			1.5		MH2
G - 4 C - 8		0.65			0.65			0.65			0.65		MHz
G = 8		0.05			0.05			0.05			0.05		MUT
G = 10 Sugard Sections Turns to 0,010/		0 55			0.55			0.55			0.55		MILLZ
$(\Delta V_{OUT} = \pm 10V)$				[
$\mathbf{G} = 1$		21	4		2.1	4		2.1	4		2.1	4	μs
G = 2		2.5	5	1	2.5	5		2.5	5		2.5	5	μs
G = 4		2.7	5	[2.7	5	1	2.7	5	1	27	5	μs
G = 8		3.6	7	1	3.6	7		3.6	7		3.6	7	μs
G = 16		4.1	7		4.1	7	[4.1	7	1	4.1	7	μs
Full Power Bandwidth]						
G = 1, 2, 4		0.10			0.10			0.10		1	0.10		MHz
G = 8, 16		0.35			0.35			0.35			0.35		MHz
Slew Rate	ļ												
G = 1, 2, 4	4	6		4	6		4	6		4	6		V/µs
G = 8, 16	18	24		18	24		18	24		18	24		V/µs
DIGITAL INPUTS													
(T _{min} to T _{max})													
Input Current ($V_H = 5V$)	60	100	140	60	100	140	60	100	140	60	100	140	μA
Logic "1"	2		6	2		6	2		6	2		6	l v
Logic "0"	0		0.8	0		0.8	0		0.8	0		0.8	v
TIMING				<u> </u>									
$(V_{-} = 0.2V, V_{-} = 2.7V)$]
$(v_L = 0.2v, v_H = 0.7v)$							1						1
T T	50			50			50			50			
I _C	20			30			30			30			115
1 _s	50			30			50			30			ns
1 _H	30			30			30			30			ns
a	50			1 50			1 50			100			
1 _c	50			50			50			50			ns
Ts	40			40			40			40			ns
T _H	10			10			10			10			ns
TEMPERATURE RANGE													
Specified Performance	0		+ 70	- 40		+ 85	- 40/ - 55		+ 85/ + 125	- 40		+ 85	°C
Storage	65		+ 125	- 65		+ 150	- 65		+ 150	-65		+ 150	l℃
POWER SUPPLY													
Operating Panga	+45		+ 16 5	+45		+ 16 5	+15		+ 16 5	+45		+ 16 5	l v
Operating Kange	±4.5		± 10.5	±4.5		± 10.5	±4.5		± 10.5	±4.5		I 10.5	I * .
Positive Supply Current		10	14		10	14		10	14		10	14	mA
Negative Supply Current		10	13		10	13		10	13		10	13	mA
PACKAGE OPTIONS ²													
Plastic (N-16)		D5261N											1
	A 1	20JN					ADGOOD		2460		4.0526	CD	
Ceramic DIP(D-16)					5526AD		AD526B	U ADS	205D		AD526	CD	1
							L	AD5	26SD/883B				

Specifications subject to change without notice.

NOTE Refer to Figure 35 for definitions. FSR = Full-Scale Range = 20V RTI = Referred to Input. ²See Section 16 for package outline information.

Specifications shown in <u>boldface</u> are tested on all production units at final electrical test. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Typical Characteristics

Figure 1. Output Voltage vs. Supply Voltage, G = 16

Figure 4. Input Bias Current vs. Temperature

Figure 7. Large Signal Frequency Response

Figure 10. Noise Spectral Density

Figure 2. Output Voltage Swing vs. Resistive Load

Figure 5. Input Bias Current vs. Input Voltage

Figure 8. PSRR vs. Frequency

Figure 11. Nonlinearity vs. Temperature, Gain = 1

Figure 3. Input Bias Current vs. Supply Voltage

Figure 6. Gain vs. Frequency

Figure 9. Normalized Gain vs. Temperature, Gain = 1

Figure 12. Wideband Output Noise, G = 16 (Amplified by 10)

Figure 13. Large Signal Pulse Response and Settling Time*, G = 1

Figure 16. Small Signal Pulse Response, G=2

Figure 19. Large Signal Pulse Response and Settling Time*, G=8

Figure 22. Small Signal Pulse Response, Gain = 16

*For Settling Time Traces, 0.01% = 1/2 Vertical Division

Figure 14. Small Signal Pulse Response, G = 1

Figure 17. Large Signal Pulse Response and Settling Time*, G=4

Figure 20. Small Signal Pulse Response, G = 8

Figure 23. Total Harmonic Distortion vs. Frequency, Gain = 16

Figure 15. Large Signal Pulse Response and Settling Time*, G=2

Figure 18. Small Signal Pulse Response, G = 4

Figure 21. Large Signal Pulse Response and Settling Time*, G = 16

Figure 24. Phase Distortion vs. Frequency, Gain = 16

Figure 25. Output Impedance vs. Frequency

Figure 28. Gain Change Settling Time*, Gain Change 1 to 8

Figure 26. Gain Change Settling Time*, Gain Change: 1 to 2

Figure 29. Gain Change Settling Time*, Gain Change 1 to 16

Figure 27. Gain Change Settling Time*, Gain Change 1 to 4

*Scope Traces are: Top: Output Transition Middle: Output Settling Bottom: Digital Input

Figure 30. Wideband Noise Test Circuit

Figure 31. Settling Time Test Circuit

Theory of Operation

THEORY OF OPERATION

The AD526 is a complete software programmable gain amplifier (SPGA) implemented monolithically with a drift-trimmed BiFET amplifier, a laser wafer trimmed resistor network. IFET analog switches and TTL compatible gain code latches.

A particular gain is selected by applying the appropriate gain code (see Table I) to the control logic. The control logic turns on the IFET switch that connects the correct tap on the gain network to the inverting input of the amplifier; all unselected JFET gain switches are off (open). The "on" resistance of the gain switches causes negligible gain error since only the amplifier's input bias current, which is less than 150pA, actually flows through these switches.

The AD526 is capable of storing the gain code, (latched mode), B, A0, A1, A2, under the direction of control inputs $\overline{\text{CLK}}$ and $\overline{\text{CS}}$. Alternatively, the AD526 can respond directly to gain code changes if the control inputs are tied low (transparent mode).

For gains of 8 and 16, a fraction of the frequency compensation capacitance (C1 in Figure 32) is automatically switched out of the circuit. This increases the amplifier's bandwidth and improves its signal settling time and slew rate.

4

Figure 32. Simplified Schematic of the AD526

TRANSPARENT MODE OF OPERATION

In the transparent mode of operation, the AD526 will respond directly to level changes at the gain code inputs (A0, A1, A2) if B is tied high and both \overline{CS} and \overline{CLK} are allowed to float low.

After the gain codes are changed, the AD526's output voltage typically requires 5.5µs to settle to within 0.01% of the final value. Figures 26 to 29 show the performance of the AD526 for positive gain code changes.

Figure 33. Transparent Mode

LATCHED MODE OF OPERATION

The latched mode of operation is shown in Figure 34. When either \overline{CS} or \overline{CLK} go to a logic "1," the gain code (A0, A1, A2, B) signals are latched into the registers and held until both \overline{CS} and $\overline{\text{CLK}}$ return to "0." Unused $\overline{\text{CS}}$ or $\overline{\text{CLK}}$ inputs should be tied to ground. The \overline{CS} and \overline{CLK} inputs are functionally and electrically equivalent.

Figure 34. Latched Mode

	TIMING	AND	CONTROL	
--	--------	-----	---------	--

GAJ	N CO	DE		CONTROL	CONDITION	
A2	A1	A0	B	$\overline{\text{CLK}}(\overline{\text{CS}}=0)$	Gain	Condition
х	х	х	х	1	Previous State	Latched
0	0	0	1	0	1	Transparent
0	0	1	1	0	2	Transparent
0	1	0	1	0	4	Transparent
0	1	1	1	0	8	Transparent
1	Х	Х	1	0	16	Transparent
Х	Х	Х	0	0	1	Transparent
Х	Х	Х	0	1	1	Latched
0	0	0	1	1	1	Latched
0	0	1	1	1	2	Latched
0	1	0	1	1	4	Latched
0	1	1	1	1	8	Latched
1	X	х	1	1	16	Latched

NOTE: X = Don't Care

Table I. AD526 Logic Input Truth Table

The specifications on page 3 in combination with Figure 35 give the timing requirements for loading new gain codes.

Figure 35. AD526 Timing

DIGITAL FEEDTHROUGH

With either \overline{CS} or \overline{CLK} or both held high, the AD526 gain state will remain constant regardless of the transitions at the A0, A1, A2 or B inputs. However, high-speed logic transitions will unavoidably feed through to the analog circuitry within the AD526 causing spikes to occur at the signal output.

This feedthrough effect can be completely eliminated by operating the AD526 in the transparent mode and latching the gain code in an external bank of latches (Figure 36).

To operate the AD526 using serial inputs, the configuration shown in Figure 36 can be used with the 74LS174 replaced by a serial-in/parallel-out latch, such as the 54LS594.

Figure 36. Using an External Latch to Minimize Digital Feedthrough

GROUNDING AND BYPASSING

Proper signal and grounding techniques must be applied in board layout so that specified performance levels of precision data acquisition components, such as the AD526, are not degraded.

As is shown in Figure 37, logic and signal grounds should be separate. By connecting the signal source ground locally to the AD526 analog ground Pins 5 and 6, gain accuracy of the AD526 is maintained. This ground connection should not be corrupted by currents associated with other elements within the system.

Utilizing the force and sense outputs of the AD526, as shown in Figure 38, avoids signal drops along etch runs to low impedance loads.

Figure 37. Grounding and Bypassing

CASCADED OPERATION

A cascade of two AD526s can be used to achieve binarily weighted gains from 1 to 256. If gains from 1 to 128 are needed, no additional components are required. This is accomplished by using the B pin as shown in Figure 38. When the B pin is low, the AD526 is held in a unity gain stage independent of the other gain code values.

V _{OUT} /V _{IN}	A2	A1	A0
1	0	0	0
2	0	0	1
4	0	1	0
8	0	1	1
16	1	0	0
32	1	0	1
64	1	1	0
128	1	1	1

Table II. Logic Table for Figure 38

Figure 38. Cascaded Operation

4

OFFSET NULLING

Input voltage offset nulling of the AD526 is best accomplished at a gain of 16, since the referred-to-input (RTI) offset is amplified the most at this gain and therefore is most easily trimmed. The resulting trimmed value of RTI voltage offset typically varies less than $3\mu V$ across all gain ranges.

Note that the low input current of the AD526 minimizes RTI voltage offsets due to source resistance.

Figure 39. Offset Voltage Null Circuit

OUTPUT CURRENT BOOSTER

The AD526 is rated for a full $\pm 10V$ output voltage swing into $2k\Omega$. In some applications, the need exists to drive more current into heavier loads. As shown in Figure 40, a high current booster may be connected "inside the loop" of the SPGA to provide the required current boost without significantly degrading overall performance. Nonlinearities, offset and gain inaccuracies of the buffer are minimized by the loop gain of the AD526 output amplifier.

Figure 40. Current Output Boosting

OFFSET NULLING WITH A D/A CONVERTER

Figure 41 shows the AD526 with offset nulling accomplished with an 8-bit D/A converter (AD7524) circuit instead of the potentiometer shown in Figure 39. The calibration procedure is the same as before except that instead of adjusting the potentiometer, the D/A converter corrects for the offset error. This calibration circuit has a number of benefits in addition to eliminating the trimpot. The most significant benefit is that calibration can be under the control of a microprocessor and therefore can be implemented as part of an autocalibration scheme. Secondly, dipswitches or RAM can be used to hold the 8-bit word after its value has been determined. In Figure 42 the offset null sensitivity, at a gain of 16, is 80μ V per LSB of adjustment, which guarantees dc accuracy to the 16-bit performance level.

Figure 41. Offset Nulling Using a DAC

Applications

FLOATING-POINT CONVERSION

High resolution converters are used in systems to obtain high accuracy, improve system resolution or increase dynamic range. There are a number of high resolution converters available with throughput rates of 66.6kHz that can be purchased as a single component solution; however in order to achieve higher throughput rates, alternative conversion techniques must be employed. A floating point A/D converter can improve both throughput rate and dynamic range of a system.

In a floating point A/D converter (Figure 42), the output data is presented as a 16-bit word, the lower 12 bits from the A/D converter form the mantissa and the upper 4 bits from the digital signal used to set the gain form the exponent. The AD526 programmable gain amplifier in conjunction with the comparator circuit scales the input signal to a range between half scale and full scale for the maximum usable resolution.

The A/D converter diagrammed in Figure 42 consists of a pair of AD585 sample/hold amplifiers, a flash converter, a five-range programmable gain amplifier (the AD526) and a fast 12-bit A/D converter (the AD7572). The floating-point A/D converter achieves its high throughput rate of 125kHz by overlapping the acquisition time of the first sample/hold amplifier and the settling time of the AD526 with the conversion time of the A/D converter. The first sample/hold amplifier holds the signal for the flash autoranger, which determines which binary quantum the input falls within, relative to full scale. Once the AD526 has settled to the appropriate level, then the second sample/hold amplifier can be put into hold which holds the amplified signal while the AD7572 performs its conversion routine. The acquisition time for the AD585 is 3μ s, and the conversion time for the AD7572 is 5μ s for a total of 8μ s, or 125kHz. This performance relies on the fast settling characteristics of the AD526 after the flash autoranging (comparator) circuit quantizes the input signal. A 16-bit register holds the 3-bit output from the flash autoranger and the 12-bit output of the AD572.

The A/D converter in Figure 42 has a dynamic range of 96dB. The dynamic range of a converter is the ratio of the full-scale input range to the LSB value. With a floating-point A/D converter the smallest value LSB corresponds to the LSB of the monolithic converter divided by the maximum gain of the PGA. The floating point A/D converter has a full-scale range of 5V, a maximum gain of 16V/V from the AD526 and a 12-bit A/D converter; this produces:

LSB = ([FSR/2^N]/Gain) = ([5V/4096]/16) = 76 μ V. The dynamic range in dBs is based on the log of the ratio of the full-scale input range to the LSB; dynamic range = $20\log(5V/76\mu V)$ = 96dB.

HIGH ACCURACY A/D CONVERTERS

Very high accuracy and high resolution floating-point A/D converters can be achieved by the incorporation of offset and gain calibration routines. There are two techniques commonly used for calibration, a hardware circuit as shown in Figure 43 and/or a software routine. In this application the microprocessor is functioning as the autoranging circuit, requiring software overhead; therefore, a hardware calibration technique was applied which reduces the software burden. The software is used to set the gain of the AD526. In operation the signal is converted, and if the MSB of the AD574 is not equal to a logical 1, the gain is increased by binary steps, up to the maximum gain. This maximizes the full-scale range of the conversion process and insures a wide dynamic range.

The calibration technique uses two point correction, offset and gain. The hardware is simplified by the use of programmable magnitude comparators, the 74ALS528s, which can be "burned" for a particular code. In order to prevent under or over range hunting during the calibration process, the reference offset and gain codes should be different from the endpoint codes. A calibration cycle consists of selecting whether gain or offset is to be calibrated then selecting the appropriate multiplexer channel to apply the reference voltage to the signal channel. Once the operation has been initiated, the counter, a 74ALS869, drives the D/A converter in a linear fashion providing a small correction voltage to either the gain or offset trim point of the AD574. The output of the A/D converter is then compared to the value preset in the 74ALS528 to determine a match. Once a match is detected, the 74ALS528 produces a low going pulse which stops the counter. The code at the D/A converter is latched until the next calibration cycle. Calibration cycles are under the control of the microprocessor in this application and should be implemented only during periods of converter inactivity.

Figure 43. High Accuracy A/D Converter

Precision Instrumentation Amplifier

AD624

FEATURES

Low Noise: 0.2μ V p-p 0.1Hz to 10Hz Low Gain TC: 5ppm max (G = 1) Low Nonlinearity: 0.001% max (G = 1 to 200) High CMRR: 130dB min (G = 500 to 1000) Low Input Offset Voltage: 25μ V, max Low Input Offset Voltage Drift: 0.25μ V/°C max Gain Bandwidth Product: 25MHz Pin Programmable Gains of 1, 100, 200, 500, 1000 No External Components Required Internally Compensated

AD624 FUNCTIONAL BLOCK DIAGRAM

4

PRODUCT DESCRIPTION

The AD624 is a high precision low noise instrumentation amplifier designed primarily for use with low level transducers, including load cells, strain gauges and pressure transducers. An outstanding combination of low noise, high gain accuracy, low gain temperature coefficient and high linearity make the AD624 ideal for use in high resolution data acquisition systems.

The AD624C has an input offset voltage drift of less than $0.25\mu V/$ °C, output offset voltage drift of less than $10\mu V/$ °C, CMRR above 80dB at unity gain (130dB at G = 500) and a maximum nonlinearity of 0.001% at G = 1. In addition to these outstanding dc specifications the AD624 exhibits superior ac performance as well. A 25MHz gain bandwidth product, 5V/µs slew rate and 15µs settling time permit the use of the AD624 in high speed data acquisition applications.

The AD624 does not need any external components for pretrimmed gains of 1, 100, 200, 500 and 1000. Additional gains such as 250 and 333 can be programmed within one percent accuracy with external jumpers. A single external resistor can also be used to set the 624's gain to any value in the range of 1 to 10,000.

PRODUCT HIGHLIGHTS

- 1. The AD624 offers outstanding noise performance. Input noise is typically less than $4nV/\sqrt{Hz}$ at 1kHz.
- 2. The AD624 is a functionally complete instrumentation amplifier. Pin programmable gains of 1, 100, 200, 500 and 1000 are provided on the chip. Other gains are achieved through the use of a single external resistor.
- 3. The offset voltage, offset voltage drift, gain accuracy and gain temperature coefficients are guaranteed for all pre-trimmed gains.
- 4. The AD624 provides totally independent input and output offset nulling terminals for high precision applications. This minimizes the effect of offset voltage in gain ranging applications.
- 5. A sense terminal is provided to enable the user to minimize the errors induced through long leads. A reference terminal is also provided to permit level shifting at the output.

SPECIFICATIONS (@ $V_s = \pm 15V$, $R_L = 2k\Omega$ and $T_A = +25^{\circ}C$ unless otherwise specified)

Model													
		AD624A			AD624B			AD624C			AD624S		
,	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
GAIN													
Gain Equation													
(External Resistor Gain	r₄	0.000]		٢٩	0.000 .1		Γ40	.000 .1		۲ 4	0.000 .1		
Programming)	[-	$\frac{1}{R_G}$ + 1	± 20%	1	$\frac{1}{R_G}$ + 1	±20%	1 17	$\frac{1}{R_G}$ + 1	±20%	[-	$\frac{1}{R_G}$ + 1	± 20%	
Gain Bange (Pin Programmable)	1.	1000		15	- 1000		lto	1000		1 10	1000		
Gain Error		, 1000			01000			1000			1000		
G = 1			±0.05			±0.03			±0.02			±0.05	%
G = 100			±0.25			±0.15			±0.1			±0.25	%
G = 200,500			±0.5			±0.35			±0.25			±0.5	%
G = 1000			±1.0			±1.0			±1.0			±1.0	%
Nonlinearity													
G = 1			± 0.005			± 0.003			± 0.001			±0.005	%
G = 100,200			±0.005			± 0.003	l		±0.001			±0.005	%
G = 500, 1000			±0.005			±0.005	1		±0.005			± 0.005	%
Gain vs. Temperature													
G = 1			5			5			5			5	ppm/°C
G = 100,200			10			10			10			10	ppm/°C
G = 500, 1000			25			15			15			15	ppm/°C
VOLTAGE OFFSET (May be Nulled)													
Input Offset Voltage			200			75			25			75	μV
vs. Temperature			2			0.5			0.25			2.0	μV/℃
Output Offset Voltage			5			3			2			3	mV
vs. Temperature			50			25			10			50	μν//C
Offset Referred to the										1			l
Input vs. Supply													
$\mathbf{G} = 1$	70			75			80			105			
G = 100,200	95			105			110			105			
G = 500,1000	100			110			115			110			
INPUTCURRENT								,				. 50	
Input Bias Current		. 50	± 50		. 50	± 25		. 50	±15		+ 50	I 20	- nA
vs. 1 emperature		± 50	+ 25		± 50	+ 15		± 50	+ 10		± 30	+ 25	pri/C
Input Offset Current		+ 20	135		+ 20	±15		+ 20	I IV		+ 20	± 35	nA/°C
		± 20			± 20			± 20			- 20		p.0 0
INPUT													
Input Impedance		109			109		1	109			109		0
Differential Consoliton on		10			10			10	,		10		nF
Common Mode Resistance		109			109			109			109		0
Common-Mode Conscitance		10		l	10			10			10		nF
Input Voltage Range		10			10		1	10					P.
Max Differ, Input Linear (Vp)		±10		i	±10			±10			±10	-	l v
······································		(G)		/G)		/G			. (G	.)	1
Max Common-Mode Linear (V _{CM})	12	$V - \left(\frac{2}{2} \times V\right)$	'o)	12	V-(=×)	<i>ъ</i>)	120	/-(<u>=</u> ×'	v _d)	12	/-(<u>=</u> ×'	v _D)	l v
Common-Mode Rejection dc				1									
to 60Hz with 1k11 Source Imbalance)
G = 1	70			75			80			70			
G = 100,200	100			105			110			100			
G = 500, 1000	110			120			130			110			uв
OUTPUT RATING	l						l						
$V_{OUT}, R_L = 2k\Omega$		± 10			±10		1	±10			± 10		V
DYNAMIC RESPONSE													
Small Signal – 3dB							1						
G = 1	1	1		l	1		ł	1		1	1		MHz
G = 100		150			150			150			150		kHz
G = 200		100			100			100			100		kHz
G = 500		50			50			50			50		kHz
G = 1000		25		l	25			25			25		kHz
	4			L			1			1			

Model	Min	AD624A Typ	May	Min	AD624B	Max	Min	AD624C	Max	Min	AD624S Typ	Max	Units
Slaw Data		- Jp			- JP			-70			- 7 F		
Siew Rate		50			50			50			5.0		v/μs
G = 1 to 200		16			15			16			15		
G = 500		15			15	ł		25			25		με
G = 1000		75			75			75			75	1	μs μs
NOISE													<u> </u>
Voltage Noise, 1kHz													
R T.I.		4		1	4			4			4		nV/\sqrt{Hz}
RTO.		75		1	75			75			75		nV/\sqrt{Hz}
R.T I .0.1 to 10Hz													
G = 1		10			10			10			10		μV p-p
G = 100		0.3			03			03			03		μVp-p
G = 200, 500, 1000		02			02			02			02		μVp-p
Current Noise													
0.1Hz to 10Hz		60		1	60			60			60		pA p-p
SENSE INPUT													
R _{IN}	8	10	12	8	10	12	8	10	12	8	10	12	kΩ
IIN		30			30			30			30		μΑ
Voltage Range	± 10			± 10			± 10			±10			v
Gain to Output		1			1			1			1		%
REFERENCE INPUT	T												
R _{IN}	16	20	24	16	20	24	16	20	24	16	20	24	kΩ
I _{IN}		30			30		1	30			30		μΑ
Voltage Range	± 10			± 10			± 10			±10			v
Gain to Output		1		1	1			1			1		%
TEMPERATURERANGE													
Specified Performance	- 25		+ 85	- 25		+ 85	- 25		+ 85	- 55		+ 125	°C
Storage	- 65		+ 150	- 65		+ 150	- 65		+ 150	- 65		+ 150	°C
POWER SUPPLY													
Power Supply Range	±6	±15	±18	±6	±15	±18	±6	±15	±18	±6	±15	±18	v
Quiescent Current		35	5	1	3.5	5		35	5		35	5	mA
PACKAGE ¹	1						I						
Ceramic (D-16)		AD624A		ł	AD624B			AD624C			AD624S		
								_					

NOTES See Section 16 for package outline information Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All imm and max specifications are guaranteed, although only those shown in boldface are tested on all production units

PIN CONFIGURATION

Typical Characteristics

Figure 1. Input Voltage Range vs. Supply Voltage, G = 1

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Input Bias Current vs. CMV

Figure 10. CMRR vs. Frequency RTI, Zero to 1k Source Imbalance

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Input Bias Current vs. Supply Voltage

Figure 8. Offset Voltage, RTI, Turn On Drift

Figure 11. Large Signal Frequency Response

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Input Bias Current vs. Temperature

Figure 9. Gain vs. Frequency

Figure 12. Positive PSRR vs. Frequency

Figure 13. Negative PSRR vs. Frequency

Figure 16. Low Frequency Voltage Noise – G = 1 (System Gain = 1000)

Figure 19. Large Signal Pulse Response and Settling Time – G = 1

Figure 22. Range Signal Pulse Response and Settling Time G = 500

Figure 14. RTI Noise Spectral Density vs. Gain

Figure 17. Low Frequency Voltage Noise – G = 1000 (System Gain = 100,000)

Figure 20. Settling Time Gain = 100

Figure 23. Settling Time Gain = 1000

Figure 15. Input Current Noise

Figure 18. Settling Time Gain = 1

Figure 21. Large Signal Pulse Response and Settling Time G = 100

Figure 24. Large Signal Pulse Response and Settling Time G = 1000

Figure 25. Settling Time Test Circuit

Theory of Operation

The AD624 is a monolithic instrumentation amplifier based on a modification of the classic three-op-amp instrumentation amplifier. Monolithic construction and laser-wafer-trimming allow the tight matching and tracking of circuit components and the high level of performance that this circuit architecture is capable of.

A preamp section (Q1-Q4) develops the programmed gain by the use of feedback concepts. Feedback from the outputs of A1 and A2 forces the collector currents of Q1-Q4 to be constant thereby impressing the input voltage across R_G .

The gain is set by choosing the value of R_G from the equation, $Gain = \frac{40k}{R_G} + 1$. The value of R_G also sets the transconductance of the input preamp stage increasing it asymptotically to the transconductance of the input transistors as R_G is reduced for larger gains. This has three important advantages. First, this approach allows the circuit to achieve a very high open loop gain of 3×10^8 at a programmed gain of 1000 thus reducing gain related errors to a negligible 3ppm. Second, the gain bandwidth product which is determined by C3 or C4 and the input transconductance, reaches 25MHz. Third, the input voltage noise reduces to a value determined by the collector current of the input transistors for an RTI noise of $4nV/\sqrt{Hz}$ at $G \ge 500$.

Figure 26. Noise Test Circuit

INPUT CONSIDERATIONS

Under input overload conditions the user will see $R_G + 100\Omega$ and two diode drops (-1.2V) between the plus and minus inputs, in either direction. If safe overload current under all conditions is assumed to be 10mA, the maximum overload voltage is $\sim \pm 2.5V$. While the AD624 can withstand this continuously, momentary overloads of $\pm 10V$ will not harm the device. On the other hand the inputs should never exceed the supply voltage.

Figure 27. Simplified Circuit of Amplifier; Gain is Defined as $((R56 + R57)/(R_G) + 1$. For a Gain of 1, R_G is an Open Circuit.

The AD524 should be considered in applications that require protection from severe input overload. If this is not possible, external protection resistors can be put in series with the inputs of the AD624 to augment the internal (50 Ω) protection resistors. This will most seriously degrade the noise performance. For this reason the value of these resistors should be chosen to be as low as possible and still provide 10mA of current limiting under maximum continuous overload conditions. In selecting the value of these resistors, the internal gain setting resistor and the 1.2 volt drop need to be considered. For example, to protect the device from a continuous differential overload of 20V at a gain of 100, $1.9k\Omega$ of resistance is required. The internal gain resistor is 404 Ω ; the internal protect resistor is 100 Ω . There is a 1.2V drop across D1 or D2 and the base-emitter junction of either Q1 and Q3 or Q2 and Q4 as shown in Figure 27, 1400 Ω of external resistance would be required (700 Ω in series with each input). The RTI noise in this case would be $\sqrt{4\text{KTR}_{\text{ext}} + (4n\text{V}/\sqrt{\text{Hz}})^2} = 6.2n\text{V}/\sqrt{\text{Hz}}.$

INPUT OFFSET AND OUTPUT OFFSET

Voltage offset specifications are often considered a figure of merit for instrumentation amplifiers. While initial offset may be adjusted to zero, shifts in offset voltage due to temperature variations will cause errors. Intelligent systems can often correct for this factor with an auto-zero cycle, but there are many smallsignal high-gain applications that don't have this capability.

Voltage offset and offset drift each have two components; input and output. Input offset is that component of offset that is

Applying the AD624

directly proportional to gain i.e., input offset as measured at the output at G = 100 is 100 times greater than at G = 1. Output offset is independent of gain. At low gains, output offset drift is dominant, while at high gains input offset drift dominates. Therefore, the output offset voltage drift is normally specified as drift at G = 1 (where input effects are insignificant), while input offset voltage drift is given by drift specification at a high gain (where output offset effects are negligible). All input-related numbers are referred to the input (RTI) which is to say that the effect on the output is "G" times larger. Voltage offset vs. power supply is also specified at one or more gain settings and is also RTI.

By separating these errors, one can evaluate the total error independent of the gain setting used. In a given gain configuration both errors can be combined to give a total error referred to the input (R.T.I.) or output (R.T.O.) by the following formula:

Total Error R.T.I. = input error + (output error/gain) Total Error R.T.O. = (Gain × input error) + output error

As an illustration, a typical AD624 might have a $+250\mu$ V output offset and a -50μ V input offset. In a unity gain configuration, the *total* output offset would be 200μ V or the sum of the two. At a gain of 100, the output offset would be -4.75mV or: $+250\mu$ V + $100(-50\mu$ V) = -4.75mV.

The AD624 provides for both input and output offset adjustment. This optimizes nulling in very high precision applications and minimizes offset voltage effects in switched gain applications. In such applications the input offset is adjusted first at the highest programmed gain, then the output offset is adjusted at G = 1.

GAIN

The AD624 includes high accuracy pre-trimmed internal gain resistors. These allow for single connection programming of gains of 1, 100, 200 and 500. Additionally, a variety of gains including a pre-trimmed gain of 1000 can be achieved through series and parallel combinations of the internal resistors. Table I shows the available gains and the appropriate pin connections and gain temperature coefficients.

The gain values achieved via the combination of internal resistors are extremely useful. The temperature coefficient of the gain is dependent primarily on the mismatch of the temperature coefficients of the various internal resistors. Tracking of these resistors is extremely tight resulting in the low gain TC's shown in Table I.

If the desired value of gain is not attainable using the internal resistors, a single external resistor can be used to achieve any gain between 1 and 10,000. This resistor connected between

Figure 28. Operating Connections for G = 200

Gain (Nominal)	Temperature Coefficient (Nominal)	Pin 3 to Pin	Connect Pins
1	– 1.5ppm/°C	-	-
100	– 1.5ppm/°C	13	-
125	− 5ppm/°C	13	11 to 16
137	- 5.5ppm/°C	13	11 to 12
186.5	-6.5ppm/°C	13	11 to 12 to 16
200	– 3.5ppm/°C	12	-
250	-5.5ppm/°C	12	11 to 13
333	-15ppm/°C	12	11 to 16
375	-0.5ppm/°C	12	13 to 16
500	– 10ppm/°C	11	-
624	– 5ppm/°C	11	13 to 16
688	-1.5ppm/°C	11	11 to 12; 13 to 16
831	+4ppm/°C	11	16 to 12
1000	0ppm/°C	11	16 to 12; 13 to 11

Table I.

pins 3 and 16 programs the gain according to the formula $R_G = \frac{40k}{G-1}$ (see Figure 29). For best results R_G should be a precision resistor with a low temperature coefficient. An external R_G affects both gain accuracy and gain drift due to the mismatch between it and the internal thin-film resistors R56 and R57. Gain accuracy is determined by the tolerance of the external R_G and the absolute accuracy of the internal resistors (\pm 20%). Gain drift is determined by the mismatch of the temperature coefficient of R_G and the temperature coefficient of the internal resistors ($-15ppm^{0}C$ typ), and the temperature coefficient of the internal interconnections.

The AD624 may also be configured to provide gain in the output stage. Figure 30 shows an H pad attenuator connected to the reference and sense lines of the AD624. The values of R1, R2 and R3 should be selected to be as low as possible to minimize the gain variation and reduction of CMRR. Varying R2 will precisely set the gain without affecting CMRR. CMRR is determined by the match of R1 and R3.

INSTRUMENTATION AMPLIFIERS 4–55

NOISE

The AD624 is designed to provide noise performance near the theoretical noise floor. This is an extremely important design criteria as the front end noise of an instrumentation amplifier is the ultimate limitation on the resolution of the data acquisition system it is being used in. There are two sources of noise in an instrument amplifier, the input noise, predominantly generated by the differential input stage, and the output noise, generated by the output amplifier. Both of these components are present at the input (and output) of the instrumentation amplifier. At the input, the input noise will appear unaltered; the output noise will be attenuated by the closed loop gain (at the output, the output noise will be unaltered; the input noise sources must be root sum squared to determine the total noise level expected at the input (or output).

The low frequency (0.1 to 10Hz) voltage noise due to the output stage is $10\mu V$ p-p, the contribution of the input stage is $0.2\mu V$ p-p. At a gain of 10, the RTI voltage noise would be $1\mu V$ p-p, $\sqrt{\left(\frac{10}{Q}^2 + (0.2)^2\right)^2}$. The RTO voltage noise would be $10.2\mu V$ p-p, $\sqrt{10^2 + (0.2 \text{ (G)})^2}$. These calculations hold for applications using either internal or external gain resistors.

INPUT BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of a dc amplifier. Bias currents are an additional source of input error and must be considered in an total error budget. The bias currents when multiplied by the source resistance imbalance appear as an additional offset voltage. (What is of concern in calculating bias current errors is the change in bias current with respect to signal voltage and temperature.) Input offset current is the difference between the two input bias currents. The effect of offset current is an input offset voltage whose magnitude is the offset current times the source resistance.

Although instrumentation amplifiers have differential inputs, there must be a return path for the bias currents. If this is not provided, those currents will charge stray capacitances, causing the output to drift uncontrollably or to saturate. Therefore, when amplifying "floating" input sources such as transformers and thermocouples, as well as ac-coupled sources, there must still be a dc path from each input to ground, (see Figure 31).

Figure 31b. Thermocouple

Figure 31c. AC Coupled Figure 31. Indirect Ground Returns for Bias Currents

COMMON-MODE REJECTION

Common-mode rejection is a measure of the change in output voltage when both inputs are changed by equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance. "Common-Mode Rejection Ratio" (CMRR) is a ratio expression while "Common-Mode Rejection" (CMR) is the logarithm of that ratio. For example, a CMRR of 10,000 corresponds to a CMR of 80dB.

In an instrumentation amplifier, ac common-mode rejection is only as good as the differential phase shift. Degradation of ac common-mode rejection is caused by unequal drops across differing track resistances and a differential phase shift due to varied stray capacitances or cable capacitances. In many applications shielded cables are used to minimize noise. This technique can create common-mode rejection errors unless the shield is properly driven. Figures 32 and 33 shows active data guards which are configured to improve ac common-mode rejection by "bootstrapping" the capacitances of the input cabling, thus minimizing differential phase shift.

Figure 32. Shield Driver, $G \ge 100$

Figure 33. Differential Shield Driver

GROUNDING

Many data-acquisition components have two or more ground pins which are not connected together within the device. These grounds must be tied together at one point, usually at the system power supply ground. Ideally, a single solid ground would be desirable. However, since current flows through the ground wires and etch stripes of the circuit cards, and since these paths have resistance and inductance, hundreds of millivolts can be generated between the system ground point and the data acquisition components. Separate ground returns should be provided to

4

Figure 34. Basic Grounding Practice

minimize the current flow in the path from the most sensitive points to the system ground point. In this way supply currents and logic-gate return currents are not summed into the same return path as analog signals where they would cause measurement errors (see Figure 34).

Since the output voltage is developed with respect to the potential on the reference terminal an instrumentation amplifier can solve many grounding problems.

SENSE TERMINAL

The sense terminal is the feedback point for the instrument amplifier's output amplifier. Normally it is connected to the instrument amplifier output. If heavy load currents are to be drawn through long leads, voltage drops due to current flowing through lead resistance can cause errors. The sense terminal can be wired to the instrument amplifier at the load thus putting the IxR drops "inside the loop" and virtually eliminating this error source.

Figure 35. AD624 Instrumentation Amplifier with Output Current Booster

Typically, IC instrumentation amplifiers are rated for a full ± 10 volt output swing into $2k\Omega$. In some applications, however, the need exists to drive more current into heavier loads. Figure 35 shows how a current booster may be connected "inside the loop" of an instrumentation amplifier to provide the required current without significantly degrading overall performance. The effects of nonlinearities, offset and gain inaccuracies of the buffer are reduced by the loop gain of the IA output amplifier. Offset drift of the buffer is similarly reduced.

REFERENCE TERMINAL

The reference terminal may be used to offset the output by up to $\pm 10V$. This is useful when the load is "floating" or does not share a ground with the rest of the system. It also provides a direct means of injecting a precise offset. It must be remembered that the total output swing is ± 10 volts, from ground, to be shared between signal and reference offset.

Figure 36. Use of Reference Terminal to Provide Output Offset

When the IA is of the three-amplifier configuration it is necessary that nearly zero impedance be presented to the reference terminal. Any significant resistance, including those caused by PC layouts or other connection techniques, which appears between the reference pin and ground will increase the gain of the noninverting signal path, thereby upsetting the common-mode rejection of the IA. Inadvertent thermocouple connections created in the sense and reference lines should also be avoided as they will directly affect the output offset voltage and output offset voltage drift.

In the AD624 a reference source resistance will unbalance the CMR trim by the ratio of $10k\Omega/R_{REF}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to 80dB ($10k\Omega/1\Omega = 80dB$). An operational amplifier may be used to provide that low impedance reference point as shown in Figure 36. The input offset voltage characteristics of that amplifier will add directly to the output offset voltage performance of the instrumentation amplifier.

An instrumentation amplifier can be turned into a voltage-to-current converter by taking advantage of the sense and reference terminals as shown in Figure 37.

Figure 37. Voltage-to-Current Converter

By establishing a reference at the "low" side of a current setting resistor, an output current may be defined as a function of input voltage, gain and the value of that resistor. Since only a small current is demanded at the input of the buffer amplifier A_2 , the forced current I_L will largely flow through the load. Offset and drift specifications of A_2 must be added to the output offset and drift specifications of the IA.

PROGRAMMABLE GAIN

Figure 38 shows the AD624 being used as a software programmable gain amplifier. Gain switching can be accomplished with mechanical switches such as DIP switches or reed relays. It should be noted that the "on" resistance of the switch in series with the internal gain resistor becomes part of the gain equation and will have an effect on gain accuracy.

Figure 38. Gain Programmable Amplifier

A significant advantage in using the internal gain resistors in a programmable gain configuration is the minimization of thermocouple signals which are often present in multiplexed data acquisition systems.

If the full performance of the AD624 is to be achieved, the user must be extremely careful in designing and laying out his circuit to minimize the remaining thermocouple signals.

The AD624 can also be connected for gain in the output stage. Figure 39 shows an AD547 used as an active attenuator in the output amplifier's feedback loop. The active attenuation presents a very low impedance to the feedback resistors therefore minimizing the common-mode rejection ratio degradation.

Figure 39. Programmable Output Gain

Another method for developing the switching scheme is to use a DAC. The AD7528 dual DAC which acts essentially as a pair of switched resistive attenuators having high analog linearity and symmetrical bipolar transmission is ideal in this application. The multiplying DAC's advantage is that it can handle inputs of either polarity or zero without affecting the programmed gain. The circuit shown uses an AD7528 to set the gain (DAC A) and to perform a fine adjustment (DAC B).

Figure 40. Programmable Output Gain Using a DAC

AUTO-ZERO CIRCUITS

In many applications it is necessary to provide very accurate data in high gain configurations. At room temperature the offset effects can be nulled by the use of offset trimpots. Over the operating temperature range, however, offset nulling becomes a problem. The circuit of Figure 41 shows a CMOS DAC operating in the bipolar mode and connected to the reference terminal to provide software controllable offset adjustments.

Figure 41. Software Controllable Offset

In many applications complex software algorithms for auto-zero applications are not available. For these applications Figure 42 provides a hardware solution.

Figure 42. Auto-Zero Circuit

The microprocessor controlled data acquisition system shown in Figure 43 includes includes both auto-zero and auto-gain capability. By dedicating two of the differential inputs, one to ground and one to the A/D reference, the proper program calibration cycles can eliminate both initial accuracy errors and accuracy errors over temperature. The auto-zero cycle, in this application, converts a number that appears to be ground and then writes that same number (8 bit) to the AD7524 which eliminates the zero error since its output has an inverted scale. The auto-gain cycle converts the A/D reference and compares it with full scale. A multiplicative correction factor is then computed and applied to subsequent readings.

Figure 43. Microprocessor Controlled Data Acquisition System

WEIGH SCALE

Figure 44 shows an example of how an AD624 can be used to condition the differential output voltage from a load cell. The 10% reference voltage adjustment range is required to accommodate the 10% transducer sensitivity tolerance. The high linearity and low noise of the AD624 make it ideal for use in applications of this type particularly where it is desirable to measure small changes in weight as opposed to the absolute value. The addition of an auto gain/auto tare cycle will enable the system to remove offsets, gain errors, and drifts making possible true 14-bit performance.

Figure 44. AD624 Weigh Scale Application

AC BRIDGE

Bridge circuits which use dc excitation are often plagued by errors caused by thermocouple effects, l/f noise, dc drifts in the electronics, and line noise pick-up. One way to get around these problems is to excite the bridge with an ac waveform, amplify the bridge output with an ac amplifier, and synchronously demodulate the resulting signal. The ac phase and amplitude information from the bridge is recovered as a dc signal at the output of the synchronous demodulator. The low frequency system noise, dc drifts, and demodulator noise all get mixed to the carrier frequency and can be removed by means of a low pass filter. Dynamic response of the bridge must be traded off against the amount of attenuation required to adequately suppress these residual carrier components in the selection of the filter.

Figure 45 is an example of an ac bridge system with the AD630 used as a synchronous demodulator. The oscilloscope photograph shows the results of a 0.05% bridge imbalance caused by the 1Meg resistor in parallel with one leg of the bridge. The top trace represents the bridge excitation, the upper middle trace is the amplified bridge output, the lower-middle trace is the output of the synchronous demodulator and the bottom trace is the filtered dc system output.

This system can easily resolve a 0.5ppm change in bridge impedance. Such a change will produce a 6.3mV change in the low pass filtered dc output, well above the RTO drifts and noise.

The AC-CMRR of the AD624 decreases with the frequency of the input signal. This is due mainly to the package-pin capacitance associated with the AD624's internal gain resistors. If AC-CMRR is not sufficient for a given application, it can be trimmed by using a variable capacitor connected to the amplifier's RG_2 pin as shown in Figure 45.

Figure 45. AC Bridge

Figure 46. AC Bridge Waveforms

Figure 47. Typical Bridge Application

ERROR BUDGET ANALYSIS

To illustrate how instrumentation amplifier specifications are applied, we will now examine a typical case where an AD624 is required to amplify the output of an unbalanced transducer. Figure 47 shows a differential transducer, unbalanced by $\approx 5\Omega$, supplying a 0 to 20mV signal to an AD624C. The output of the IA feeds a 14-bit A to D converter with a 0 to 2 volt input voltage range. The operating temperature range is -25° C to $+85^{\circ}$ C. Therefore, the largest change in temperature Δ T within the operating range is from ambient to $+85^{\circ}$ C (85° C - 25° C = 60° C).

In many applications, differential linearity and resolution are of prime importance. This would be so in cases where the absolute value of a variable is less important than changes in value. In these applications, only the irreducible errors (20ppm = 0.002%) are significant. Furthermore, if a system has an intelligent processor monitoring the A to D output, the addition of a auto-gain/ auto-zero cycle will remove all reducible errors and may eliminate the requirement for initial calibration. This will also reduce errors to 0.002%.

T.C.

T. CC /

Error Source	AD624C Specifications	Calculation	Absolute Accuracy at $T_A = 25^{\circ}C$	Absolute Accuracy at $T_A = 85^{\circ}C$	Effect on Resolution
Gain Error	$\pm 0.1\%$	$\pm 0.1\% = 1000$ ppm	1000ppm	1000ppm	-
Gain Instability	10ppm	$(10ppm/^{\circ}C)(60^{\circ}C) = 600ppm$	-	600ppm	-
Gain Nonlinearity	$\pm 0.001\%$	$\pm 0.001\% = 10$ ppm	-	-	10ppm
Input Offset Voltage	$\pm 25 \mu V, RTI$	$\pm 25\mu V/20mV = \pm 1250ppm$	1250ppm	1250ppm	-
Input Offset Voltage Drift	$\pm 0.25 \mu V/^{\circ}C$	$(\pm 0.25 \mu V/^{\circ}C)(60^{\circ}C) = 15 \mu V$			
		$15\mu V/20mV = 750ppm$	-	750ppm	<u> </u>
Output Offset Voltage ¹	$\pm 2.0 \text{mV}$	$\pm 2.0 \text{mV}/20 \text{mV} = 1000 \text{ppm}$	1000ppm	1000ppm	-
Output Offset Voltage Drift ¹	$\pm 10 \mu V/^{\circ}C$	$(\pm 10\mu V/^{\circ}C)(60^{\circ}C) = 600\mu V$			
		$600\mu V/20mV = 300ppm$	-	300ppm	-
Bias Current – Source	$\pm 15nA$	$(\pm 15 \mathrm{nA})(5\Omega) = 0.075 \mathrm{\mu V}$			
Imbalance Error		$0.075 \mu V/20 mV = 3.75 ppm$	3.75ppm	3.75ppm	-
Offset Current - Source	$\pm 10 nA$	$(\pm 10 \mathrm{nA})(5\Omega) = 0.050 \mathrm{\mu V}$			
Imbalance Error		$0.050 \mu V/20 mV = 2.5 ppm$	2.5ppm	2.5ppm	-
Offset Current - Source	$\pm 10 nA$	$(10nA)(175\Omega) = 3.5\mu V$			
Resistance – Error		$3.5\mu V/20mV = 87.5ppm$.	87.5ppm	87.5ppm	-
Offset Current - Source	± 100pA/°C	$(100 \text{pA/°C})(175 \Omega)(60 \text{°C}) = 1 \mu \text{V}$			1
Resistance – Drift		$1\mu V/20mV = 50ppm$	-	50ppm	-
Common Mode Rejection	115dB	$115 dB = 1.8 ppm \times 5V = 9\mu V$			
5V dc		$9\mu V/20mV = 444ppm$	450ppm	450ppm	-
Noise, RTI		ς.			
(0.1–10Hz)	0.22µV p-p	$0.22\mu V p - p/20mV = 10ppm$	-	-	10ppm
		Total Error	3793.75ppm	5493.75ppm	20ppm

¹Output offset voltage and output offset voltage drift are given as RTI figures.

Table II. Error Budget Analysis of AD624CD in Bridge Application

Programmable Gain Instrumentation Amplifier

AD625

FEATURES

User Programmed Gains of 1 to 10,000 Low Gain Error: 0.02% max Low Gain TC: 5ppm/°C max Low Nonlinearity: 0.001% max Low Offset Voltage: 25µV Low Noise 4nV/\/Hz (at 1kHz) RTI Gain Bandwidth Product: 25MHz 16-Pin Ceramic or Plastic DIP Package MIL-Standard Parts Available Low Cost

AD625 FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD625 is a precision instrumentation amplifier specifically designed to fulfill two major areas of application: 1) Circuits requiring nonstandard gains (i.e., gains not easily achievable with devices such as the AD524 and AD624). 2) Circuits requiring a low cost, precision software programmable gain amplifier.

For low noise, high CMRR, and low drift the AD625JN is the most cost effective instrumentation amplifier solution available. An additional three resistors allow the user to set any gain from 1 to 10,000. The error contribution of the AD625JN is less than 0.05% gain error and under 5ppm/°C gain TC; performance limitations are primarily determined by the external resistors. Common-mode rejection is independent of the feedback resistor matching.

A software programmable gain amplifier (SPGA) can be configured with the addition of a CMOS multiplexer (or other switch network), and a suitable resistor network. Because the ON resistance of the switches is removed from the signal path, an AD625 based SPGA will deliver 12-bit precision, and can be programmed for any set of gains between 1 and 10,000, with completely user selected gain steps.

For the highest precision the AD625C offers an input offset voltage drift of less than 0.25μ V/°C, output offset drift below 15μ V/°C, and a maximum nonlinearity of 0.001% at G = 1. All grades exhibit excellent ac performance; a 25MHz gain bandwidth product, 5Vµs slew rate and 15µs settling time.

The AD625 is available in three accuracy grades (A, B, C) for industrial (-25° C to $+85^{\circ}$ C) temperature range, two grades (J, K) for commercial (0 to $+70^{\circ}$ C) temperature range, and one (S) grade rated over the extended (-55° C to $+125^{\circ}$ C) temperature range.

PRODUCT HIGHLIGHTS

- 1. The AD625 affords up to 16-bit precision for user selected fixed gains from 1 to 10,000. Any gain in this range can be programmed by 3 external resistors.
- A 12-bit software programmable gain amplifier can be configured using the AD625, a CMOS multiplexer and a resistor network. Unlike previous instrumentation amplifier designs, the ON resistance of a CMOS switch does not affect the gain accuracy.
- The gain accuracy and gain temperature coefficient of the amplifier circuit are primarily dependent on the user selected external resistors.
- 4. The AD625 provides totally independent input and output offset nulling terminals for high precision applications. This minimizes the effects of offset voltage in gain-ranging applications.
- 5. The proprietary design of the AD625 provides input voltage noise of $4nV/\sqrt{Hz}$ at 1kHz.
- 6. External resistor matching is not required to maintain high common-mode rejection.

SPECIFICATIONS (typical @ $V_s = \pm 15V$, $R_L = 2k\Omega$ and $T_A = +25^{\circ}C$ unless otherwise specified)

		AD625A/J/S			AD625B/K			AD625C		_
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
GAIN Gain Equation		$\frac{2 R_F}{R_C} + 1$			$\frac{2 R_F}{R_C} + 1$			$\frac{2 R_F}{R_C} + 1$		
Gain Range Gaın Error ¹ Nonlinearity, Gain = 1-256 Gain>256 Gain vs. Temp. Gain<1000 ¹	1	±.035	10,000 ±0.05 ±0.005 ±0.01 5	1	±0.02	10,000 ± 0.03 ± 0.002 ± 0.008 5	1	± 0.01	$10,000 \\ \pm 0.02 \\ \pm 0.001 \\ \pm 0.005 \\ 5$	% % 90 ppm/°C
GAIN SENSE INPUT Gain Sense Current vs. Temperature Gain Sense Offset Current vs. Temperature		300 5 150 2	500 20 500 15		150 2 75 1	250 15 250 10		50 2 50 1	100 10 100 5	nA nA/°C nA nA/°C
VOLTAGE OFFSET (May be Nulled) Input Offset Voltage vs. Temperature Output Offset Voltage vs. Temperature Offset Referred to the Input up Supply		50 1 4 20	200 2/2 5 50/50		25 0.25 2 10	50 0.50/1 3 25/40		10 0.1 1 10	25 0.25 2 15	μV μV/°C mV μV/°C
G = 1 G = 100 G = 1000	70 85 95 100	75 95 100 110		75 90 105 110	85 100 110 120		80 95 110 115	90 105 120 140		dB dB dB dB
INPUT CURRENT Input Bias Current vs. Temperature Input Offset Current vs. Temperature		± 30 ± 50 ± 2 ± 20	±50 ±35		$\pm 20 \\ \pm 50 \\ \pm 1 \\ \pm 20$	±25 ±15		$\pm 10 \\ \pm 50 \\ \pm 1 \\ \pm 20$	±15 ±5	nA pA/°C nA pA/°C
INPUT Input Impedance Differential Resistance Differential Capacitance Common-Mode Resistance Common-Mode Capacitance Input Voltage Range Differ. Input Linear (V _D)		1 4 1 4	± 10		1 4 1 4	±10		1 4 1 4	± 10	GΩ pF GΩ pF V
Common-Mode Linear (V_{CM}) Common-Mode Rejection Ratio dc to 60Hz with 1k Ω Source Imbalance G = 1 G = 10	70 90	$12V - \left(\frac{G}{2} \times V\right)$	ИD)	75 95	$12V - \left(\frac{G}{2} \times \frac{1}{2}\right)$	v _D)	80 100	$12V - \left(\frac{G}{2} \times V\right)$ 90 115	/D)	dB dB
G = 100 $G = 1000$	100 110	105 115		105 115	115 125		110 120	125 140		dB dB
DYNAMIC RESPONSE		@5mA			<u>4 10v</u> (@5mA			£ 10V @ 5mA		
$ \begin{array}{l} Small \ Signal - 3dB \\ G = 1 \left(R_F = 20k\Omega \right) \\ G = 10 \\ G = 100 \\ G = 1000 \\ Slew Rate \\ Settling \ Time \ to 0.01\%, 20V \ Step \\ \end{array} $		650 400 150 25 5.0			650 400 150 25 5.0			650 400 150 25 5.0		kHz kHz kHz kHz V/µs
G = 1 to 200 G = 500 G = 1000		15 35 75			15 35 75			15 35 75		μs μs μs
NOISE Voltage Noise, 1kHz R.T.I. R.T.O. R.T.I., 0.1 to 10Hz G = 1		4 75 10			4 75 10			4 75 10		nV/\sqrt{Hz} nV/\sqrt{Hz} $\mu V p-p$
G = 10 G = 100 G = 1000 Current Noise 0.1Hz to 10Hz		1.0 0.3 0.2 60			1.0 0.3 0.2 60			1.0 0.3 0.2 60		μV p-p μV p-p μV p-p pA p-p

	AD625A/J/S			AD625B/K				AD625C		
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
SENSE INPUT							1			
R _{IN}		10			10			10		kΩ
I _{IN}		30			30			30		μA
Voltage Range	± 10			±10			± 10			v
Gain to Output		1 ± 0.01			1 ± 0.01			1 ± 0.01		%
REFERENCE INPUT			-							
R _{IN}		20			20			20		kΩ
I _{IN}		30			30			30		μA
Voltage Range	± 10			±10			±10			v
Gain to Output		1 ± 0.01			1 ± 0.01			1 ± 0.01		%
TEMPERATURE RANGE					,					
Specified Performance										
J/K Grades	0		+ 70	0		+ 70				°C
A/B/C Grades	- 25		+ 85	- 25		+ 85	- 25		+ 85	°C
S Grade	- 55		+ 125							
Storage	- 65		+ 150	- 65		+ 150	- 65		+ 150	°C
POWER SUPPLY										
Power Supply Range		± 6 to ± 18		± 6 to ± 18		± 6 to ± 18			v	
Quiescent Current		3.5	5		3.5	5		3.5	5	mA
PACKAGE OPTIONS ²							1			
Ceramic (D-16)	I I	D625AD/	SD		AD625BD			AD625CD		
Plastic DIP(N-16)		AD625IN			AD625KN					
. /				1			1			

NOTES

¹Gain error and gain TC are for the AD625 only Resistor network errors will add to the specified errors.

²See Section 16 for package outline information.

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final

electrical test. Results from those tests are used to calculate outgoing quality levels. All mim and max specifications are guaranteed, although only those

shown in boldface are tested on all production units.

PIN CONFIGURATION

Typical Characteristics

Figure 1. Input Voltage Range vs. Supply Voltage, G = 1

Figure 4. CMRR vs. Frequency RTI, Zero to $1k\Omega$ Source Imbalance

Figure 7. Offset Voltage, RTI, Turn On Drift

Figure 10. Input Bias Current vs. Temperature

Figure 2. Output Voltage Swing vs. Supply Voltage

Figure 5. Large Signal Frequency Response

Figure 8. Negative PSRR vs. Frequency

Figure 11. Overange and Gain Switching Test Circuit (G=8, G=1)

Figure 3. Output Voltage Swing vs. Resistive Load

Figure 6. Gain vs. Frequency

Figure 9. Positive PSRR vs. Frequency

Figure 12. Gain Overange Recovery

.

Figure 13. Quiescent Current vs. Supply Voltage

Figure 16. Low Frequency Voltage Noise, G=1 (System Gain=1000)

Figure 19. Large Signal Pulse Response and Settling Time, G=1

Figure 22. Large Signal Pulse Response and Settling Time, G = 10

Figure 14. RTI Noise Spectral Density vs. Gain

Figure 17. Noise Test Circuit

Figure 20. Settling Time to 0.01%

Figure 23. Settling Time Test Circuit

Typical Characteristics

Figure 15. Input Current Noise

Figure 18. Low Frequency Voltage Noise, G=1000 (System Gain=100,000)

	1mV	10¥			
					·
Ν			\mathbf{V}		\int
T		ŧ	\Box		
		i			
		Į į		10µS	

Figure 21. Large Signal Pulse Response and Settling Time, G = 100

5mV		10 V				
	1				T	
	1					
		1				-
	1				J	
	ā		à		d	la
				100,	w	-

Figure 24. Large Signal Pulse Response and Settling Time, G=1000

INSTRUMENTATION AMPLIFIERS 4-65

Theory of Operation

The AD625 is a monolithic instrumentation amplifier based on a modification of the classic three-op-amp approach. Monolithic construction and laser-wafer-trimming allow the tight matching and tracking of circuit components. This insures the high level of performance inherent in this circuit architecture.

A preamp section (Q1-Q4) provides additional gain to A1 and A2. Feedback from the outputs of A1 and A2 forces the collector currents of Q1-Q4 to be constant, thereby, impressing the input voltage across R_G . This creates a differential voltage at the outputs of A1 and A2 which is given by the gain ($2R_F/R_G + 1$) times the differential portion of the input voltage. The unity gain subtractor, A3, removes any common-mode signal from the output voltage yielding a single ended output, V_{OUT} , referred to the potential at the reference pin.

The value of R_G is the determining factor of the transconductance of the input preamp stage. As R_G is reduced for larger gains the transconductance increases. This has three important advantages. First, this approach allows the circuit to achieve a very high open-loop gain of $(3 \times 10^8$ at programmed gains ≥ 500) thus reducing gain related errors. Second, the gain-bandwidth product, which is determined by C3, C4, and the input transconductance, increases with gain, thereby, optimizing frequency response. Third, the input voltage noise is reduced to a value determined by the collector current of the input transistors $(4nV/\sqrt{Hz})$.

INPUT PROTECTION

Differential input amplifiers frequently encounter input voltages outside of their linear range of operation. There are two considerations when applying input protection for the AD625; 1) that continuous input current must be limited to less than 10mA and 2) that input voltages must not exceed either supply by more than one diode drop (approximately 0.6V @ 25°C).

Under differential overload conditions there is $(R_G + 100)\Omega$ in series with two diode drops (approximately 1.2V) between the plus and minus inputs, in either direction. With no external protection and R_G very small (i.e., 40Ω), the maximum overload voltage the AD625 can withstand, continuously, is approximately $\pm 2.5V$. Figure 26A shows the external components necessary to protect the AD625 under all overload conditions at any gain.

Figure 25. Simplified Circuit of the AD625

The diodes to the supplies are only necessary if input voltages outside of the range of the supplies are encountered. In higher gain applications where differential voltages are small, back-to-back zener diodes and smaller resistors, as shown in Figure 26b, provides adequate protection. Figure 26c shows low cost FETs with a maximum ON resistance of 300Ω configured to offer input protection with minimal degradation to noise, $(5.2nV/\sqrt{Hz})$ compared to normal noise performance of $4nV/\sqrt{Hz}$).

During differential overload conditions, excess current will flow through the gain sense lines (pins 2 and 15). This will have no effect in fixed gain applications. However, if the AD625 is being used in an SPGA application with a CMOS multiplexer, this current should be taken into consideration. The current capabilities of the multiplexer may be the limiting factor in allowable overflow current. The ON resistance of the switch should be included as part of R_G when calculating the necessary input protection resistance.

Figure 26a. Input Protection Circuit

Figure 26b. Input Protection Circuit for G>5

Figure 26c. Input Protection Circuit

Applying the AD625

Any resistors in series with the inputs of the AD625 will degrade the noise performance. For this reason the circuit in Figure 26b should be used if the gains are all greater than 5. For gains less than 5, either the circuit in Figure 26a or in Figure 26c can be used. The two 1.4k Ω resistors in Figure 26a will degrade the noise performance to:

 $\sqrt{4kTR_{ext} + (4nV/\sqrt{Hz})^2} = 7.9nV/\sqrt{Hz}$

RESISTOR PROGRAMMABLE GAIN AMPLIFIER

In the resistor-programmed mode (Figure 27), only three external resistors are needed to select any gain from 1 to 10,000. Depending on the application, discrete components or a pretrimmed network can be used. The gain accuracy and gain TC are primarily determined by the external resistors since the AD625C contributes less than 0.02% to gain error and under 5ppm/°C gain TC. The gain sense current is insensitive to common-mode voltage, making the CMRR of the resistor programmed AD625 independent of the match of the two feedback resistors, R_F .

Selecting Resistor Values

As previously stated each R_F provides feedback to the input stage and sets the unity gain transconductance. These feedback resistors are provided by the user. The AD625 is tested and specified with a value of 20k\Omega for R_F . Since the magnitude of RTO errors increases with increasing feedback resistance, values much above 20k\Omega are not recommended (values below 10k\Omega for R_F may lead to instability). Refer to the graph of RTO noise, offset, drift, and bandwidth (Figure 28) when selecting the feedback resistors. The gain resistor (R_G) is determined by the formula $R_G = 2R_F/(G-1)$.

Figure 27. AD625 in Fixed Gain Configuration

A list of standard resistors which can be used to set some common gains is shown in Table I.

For single gain applications, only one offset null adjust is necessary; in these cases the RTI null should be used.

Figure 28. RTO Noise, Offset, Drift, and Bandwidth vs. Feedback Resistance Normalized to $20k\Omega$

R _F	R _G		
20kΩ	∞		
19.6kΩ	39.2kΩ		
20kΩ	10kΩ		
20kΩ	4.42kΩ		
20kΩ	2.1kΩ		
19.6kΩ	806Ω		
20kΩ	402Ω		
20.5kΩ	205Ω		
19.6kΩ	78.7Ω		
19.6kΩ	39.2Ω		
20kΩ	13.3kΩ		
19.6kΩ	5.62kΩ		
20kΩ	2.67kΩ		
19.6kΩ	1.27kΩ		
20kΩ	634Ω		
20kΩ	316Ω		
19.6kΩ	154Ω		
19.6kΩ	76.8Ω		
19.6kΩ	38.3 Ω		
	R _F 20kΩ 19.6kΩ 20kΩ 20kΩ 20kΩ 19.6kΩ 20.5kΩ 19.6kΩ 20kΩ 19.6kΩ 20kΩ 19.6kΩ 20kΩ 19.6kΩ 20kΩ 19.6kΩ 20kΩ 19.6kΩ 19.6kΩ		

Table I. Common Gains Nominally within ±0.5% Error Using Standard 1% Resistors
SENSE TERMINAL

The sense terminal is the feedback point for the AD625 output amplifier. Normally it is connected directly to the output. If heavy load currents are to be drawn through long leads, voltage drops through lead resistance can cause errors. In these instances the sense terminal can be wired to the load thus putting the I \times R drops "inside the loop" and virtually eliminating this error source.

Typically, IC instrumentation amplifiers are rated for a full ± 10 volt output swing into $2k\Omega$. In some applications, however, the need exists to drive more current into heavier loads. Figure 29 shows how a high-current booster may be connected "inside the loop" of an instrumentation amplifier. By using an external power boosting circuit, the power dissipated by the AD625 will remain low, thereby, minimizing the errors induced by self-heating. The effects of nonlinearities, offset and gain inaccuracies of the buffer are reduced by the loop gain of the AD625's output amplifier.

Figure 29. AD625 Instrumentation Amplifier with Output Current Booster

REFERENCE TERMINAL

The reference terminal may be used to offset the output by up to $\pm 10V$. This is useful when the load is "floating" or does not share a ground with the rest of the system. It also provides a direct means of injecting a precise offset. However, it must be remembered that the total output swing is ± 10 volts, from ground, to be shared between signal and reference offset.

The AD625 reference terminal must be presented with nearly zero impedance. Any significant resistance, including those caused by PC layouts or other connection techniques, will increase the gain of the noninverting signal path, thereby, upsetting the common-mode rejection of the In-Amp. Inadvertent thermocouple connections created in the sense and reference lines should also be avoided as they will directly affect the output offset voltage and output offset voltage drift.

In the AD625 a reference source resistance will unbalance the CMR trim by the ratio of $10k\Omega/R_{REF}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to 80dB ($10k\Omega/I\Omega$ = 80dB). An operational amplifier may be used to provide the low impedance reference point as shown in Figure 30. The input offset voltage characteristics of that amplifier will add directly to the output offset voltage performance of the in-strumentation amplifier.

The circuit of Figure 30 also shows a CMOS DAC operating in the bipolar mode and connnected to the reference terminal to provide software controllable offset adjustments. The total offset range is equal to $\pm (V_{REF}/2 \times R_5/R_4)$, however, to be symmetrical about 0V $R_3 = 2 \times R_4$.

The offset per bit is equal to the total offset range divided by 2^N , where N = number of bits of the DAC. The range of offset for Figure 30 is ± 120 mV, and the offset is incremented in steps of 0.9375mV/LSB.

Figure 30. Software Controllable Offset

An instrumentation amplifier can be turned into a voltage-tocurrent converter by taking advantage of the sense and reference terminals as shown in Figure 31.

Figure 31. Voltage-to-Current Converter

By establishing a reference at the "low" side of a current setting resistor, an output current may be defined as a function of input voltage, gain and the value of that resistor. Since only a small current is demanded at the input of the buffer amplifier A1, the forced current I_L will largely flow through the load. Offset and drift specifications of A2 must be added to the output offset and drift specifications of the In-Amp.

INPUT AND OUTPUT OFFSET VOLTAGE

Offset voltage specifications are often considered a figure of merit for instrumentation amplifiers. While initial offset may be adjusted to zero, shifts in offset voltage due to temperature variations will cause errors. Intelligent systems can often correct for this factor with an auto-zero cycle, but this requires extra circuitry.

Offset voltage and offset voltage drift each have two components: input and output. Input offset is that component of offset that is generated at the input stage. Measured at the output it is directly proportional to gain, i.e., input offset as measured at the output at G = 100 is 100 times greater than that measured at G = 1. Output offset is generated at the output and is constant for all gains.

The input offset and drift are multiplied by the gain, while the output terms are independent of gain, therefore, input errors dominate at high gains and output errors dominate at low gains. The output offset voltage (and drift) is normally specified at G = 1 (where input effects are insignificant), while input offset (and drift) is given at a high gain (where output effects are negligible). All input-related parameters are specified referred to the input (RTI) which is to say that the effect on the output is "G" times larger. Offset voltage vs. power supply is also specified as an RTI error.

By separating these errors, one can evaluate the total error independent of the gain. For a given gain, both errors can be combined to give a total error referred to the input (RTI) or output (RTO) by the following formula:

Total Error RTI = input error + (output error/gain)

Total Error RTO = (Gain × input error) + output error

The AD625 provides for both input and output offset voltage adjustment. This simplifies nulling in very high perecision applications and minimizes offset voltage effects in switched gain applications. In such applications the input offset is adjusted first at the highest programmed gain, then the output offset is adjusted at G = 1. If only a single null is desired, the input offset null should be used. The most additional drift when using only the input offset null is $0.9\mu V/^{\circ}C$, RTO.

COMMON-MODE REJECTION

Common-mode rejection is a measure of the change in output voltage when both inputs are changed by equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance.

In an instrumentation amplifier, degradation of common-mode rejection is caused by a differential phase shift due to differences in distributed stray capacitances. In many applications shielded cables are used to minimize noise. This technique can create

common-mode rejection errors unless the shield is properly driven. Figures 32 and 33 show active data guards which are configured to improve ac common-mode rejection by "bootstrapping" the capacitances of the input cabling, thus minimizing differential phase shift.

Figure 33. Differential Shield Driver

GROUNDING

In order to isolate low level analog signals from a noisy digital environment, many data-acquisition components have two or more ground pins. These grounds must eventually be tied together at one point. It would be convenient to use a single ground line, however, current through ground wires and pc runs of the circuit card can cause hundreds of millivolts of error. Therefore, separate ground returns should be provided to minimize the current flow from the sensitive points to the system ground (see Figure 34). Since the AD625 output voltage is developed with respect to the potential on the reference terminal, it can solve many grounding problems.

Figure 34. Basic Grounding Practice for a Data Acquisition System

GROUND RETURNS FOR BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of a dc amplifier. There must be a direct return path for these currents, otherwise they will charge external capacitances, causing the output to drift uncontrollably or saturate. Therefore, when amplifying "floating" input sources such as transformers, or ac-coupled sources, there must be a dc path from each input to ground as shown in Figure 35.

Figure 35a. Ground Returns for Bias Currents with Transformer Coupled Inputs

Figure 35b. Ground Returns for Bias Currents with Thermocouple Input

Figure 35c. Ground Returns for Bias Currents with AC Coupled Inputs

AUTO-ZERO CIRCUITS

In many applications it is necessary to maintain high accuracy. At room temperature, offset effects can be nulled by the use of offset trimpots. Over the operating temperature range, however, offset nulling becomes a problem. For these applications the auto-zero circuit of Figure 36 provides a hardware solution.

OTHER CONSIDERATIONS

One of the more overlooked problems in designing ultra-low-drift dc amplifiers is thermocouple induced offset. In a circuit comprised of two dissimilar conductors (i.e., copper, kovar), a current flows when the two junctions are at different temperatures. When this circuit is broken, a voltage known as the "Seebeck" or thermocouple emf can be measured. Standard IC lead material (kovar) and copper form a thermocouple with a high thermoelectric potential (about 35μ V°C). This means that care must be taken to insure that all connections (especially those in the input circuit of the AD625) remain isothermal. This includes the input leads (1, 16) and the gain sense lines (2, 15). These pins were chosen for symmetry, helping to desensitize the input circuit to thermal gradients. In addition, the user should also avoid air currents

Figure 36. Auto-Zero Circuit

over the circuitry since slowly fluctuating thermocouple voltages will appear as "flicker" noise. In SPGA applications relay contacts and CMOS mux leads are both potential sources of additional thermocouple errors.

The base emitter junction of an input transistor can rectify out of band signals (i.e., RF interference). When amplifying small signals, these rectified voltages act as small dc offset errors. The AD625 allows direct access to the input transistors' bases and emitters enabling the user to apply some first order filtering to these unwanted signals. In Figure 37, the RC time constant should be chosen for desired attenuation of the interfering signals. In the case of a resistive transducer, the capacitance alone working against the internal resistance of the transducer may suffice.

Figure 37. Circuit to Attenuate RF Interference

These capacitances may also be incorporated as part of the external input protection circuit (see section on input protection). As a general practice every effort should be made to match the extraneous capacitance at pins 15 and 2, and pins 1 and 16, to preserve high ac CMR.

SOFTWARE PROGRAMMABLE GAIN AMPLIFIER

An SPGA provides the ability to externally program precision gains from digital inputs. Historically, the problem in systems requiring electronic switching of gains has been the ON resistance (R_{ON}) of the multiplexer, which appears in series with the gain setting resistor R_G . This can result in substantial gain errors and gain drifts. The AD625 eliminates this problem by making the gain drive and gain sense pins available (pins 2, 15, 5, 12; see Figure 39). Consequently the multiplexer's ON resistance is removed from the signal current path. This transforms the ON resistance error into a small nullable offset error. To clarify this point, an error budget analysis has been performed in Table II based on the SPGA configuration shown in Figure 39.

Figure 38. SPGA in a Gain of 16

Figure 38 shows an AD625 based SPGA with possible gains of 1, 4, 16, 64. R_G equals the resistance between the gain sense lines (pins 2 and 15) of the AD625. In Figure 38, R_G equals the sum of the two 975 Ω resistors and the 650 Ω resistor, or 2600 Ω . R_F equals the resistance between the gain sense and the gain drive pins (pins 12 and 15, or pins 2 and 5), that is R_F equals the 15.6k Ω resistor plus the 3.9k Ω resistor, or 19.5k Ω . The gain, therefore equals:

$$\frac{2R_{\rm F}}{R_{\rm G}} + 1 = \frac{2(19.5k\Omega)}{(2.6k\Omega)} + 1 = 16$$

As the switches of the differential multiplexer proceed synchronously, R_G and R_F change, resulting in the various programmed gain settings.

Figure 39. SPGA with Multiplexer Error Sources

Figure 39 shows a complete SPGA feeding a 12-bit DAS with a 0–10V input range. This configuration was used in the error budget analysis shown in Table II. The gain used for the RTI calculations is set at 16. As the gain is changed, the ON resistance of the multiplexer and the feedback resistance will change, which will slightly alter the values in the table.

Spec AD625C	ification AD7502KN	Calculation	Voltage Offset Induced RTI
Gain Sense Offset Current 40nA	Switch Resistance 170Ω	40nA × 170Ω = 6.8µV	6.8µV
Gain Sense Current 60nA	Differential Switch Resistance 6.8Ω	$\begin{array}{l} 60nA \times 6.8\Omega = \\ 0.41 \mu V \end{array}$	0.41µV
Feedback Resistance 20kΩ ¹	Differential Leakage Current (I _S) ² + 0.2nA - 0.2nA	2(0.2nA×20kΩ) =8µV/16	0.5µV
Feedback Resistance 20kΩ ¹	Differential Leakage Current (I _{OUT}) ² + 1nA - 1nA	2(1nA×20kΩ) =40µV/16	2.5µV
	Spec AD625C Gain Sense Offset Current 40nA Gain Sense Current 60nA Feedback Resistance 20kΩ ¹	$\begin{array}{r c c c c } Specification \\ \hline AD62SC & AD7502KN \\\hline \hline AD62SC & Resistance \\\hline Current & 170\Omega \\\hline 40nA \\\hline \\ Gain Sense & Differential \\Current & Switch \\\hline 60nA & Resistance \\\hline 60nA & Resistance \\20k\Omega^1 & Leakage \\20k\Omega^1 & Leakage \\20k\Omega^1 & Leakage \\\hline Current (T_s)^2 \\\hline + 0.2nA \\\hline - 0.2nA \\\hline Feedback & Differential \\Resistance \\Leakage \\20k\Omega^1 & Current \\(T_{CUT})^2 \\\hline + 1nA \\\hline - 1nA \\\hline \end{array}$	$\begin{tabular}{ c c c c } \hline Specification \\ \hline AD625C & AD7502KN & Calculation \\ \hline Gain Sense & Switch & 40nA \times 170\Omega = \\ 0ffset & Resistance \\ Current & 170\Omega & 60nA \times 6.8\Omega = \\ 0.41 \mu V & 60nA & Resistance \\ 6.8\Omega & 60nA & Resistance \\ 6.8\Omega & 100000000000000000000000000000000000$

to an SPGA at 25°C

NOTES

¹The resistor for this calculation is the user provided feedback resistance (R_F). 20k Ω is recommended value (see resistor programmable gain amplifier section).

²The leakage currents (I_s and I_{OUT}) will induce an offset voltage, however, the offset will be determined by the difference between the leakages of each "half" of the differential multiplexer. The differential leakage current is multiplied by the feedback resistance (see Note 1), to determine offset voltage Because differential leakage current is not a parameter specified on multiplexer data sheets, the most extreme difference (one most positive and one most negative) was used for the calculations in Table II. Typical performance will be much better.

*The frequency response and settling will be affected by the ON resistance and internal capacitance of the multiplexer Figure 40 shows the settling time vs. ON resistance at different gain settings for an AD625 based SPGA.

**Switch resistance and leakage current errors can be reduced by using relays.

Table II. Errors Induced by Multiplexer to an SPGA

10.21µV

Figure 40. Settling Time to 0.01% of a 20V Step Input for SPGA with AD625

DETERMINING SPGA RESISTOR NETWORK VALUES

The individual resistors in the gain network can be calculated sequentially using the formula given below. The equation determines the resistors as labeled in Figure 41. The feedback resistors and the gain setting resistors are interactive, therefore; the formula must be a series where the present term is dependent on the preceding term(s). The formula

$$R_{F_{i+1}} = (20k\Omega - \sum_{i=0}^{1} R_{F_i})(1 - \frac{G_i}{G_{i+1}}) \qquad \begin{array}{c} G_0 = 1 \\ R_{F_0} = 0 \end{array}$$

can be used to calculate the necessary feedback resistors for any set of gains. This formula yields a network with a total resistance of $40k\Omega$. A dummy variable (j) serves as a counter to keep a running total of the preceding feedback resistors. To illustrate how the formula can be applied, an example similar to the calculation used for the resistor network in Figure 38 is examined below.

1) Unity gain is treated as a separate case. It is implemented with separate $20k\Omega$ feedback resistors as shown in Figure 41. It is then ignored in further calculations.

2) Before making any calculations it is advised to draw a resistor network similar to the network in Figure 41. The network will have $(2 \times M) + 1$ resistors, where M = number of gains. For Figure 38 M = 3 (4, 16, 64), therefore, the resistor string will have 7 resistors (plus the two 20k Ω "side" resistors for unity gain).

3) Begin all calculations with $G_0 = 1$ and $R_{F_0} = 0$. $R_{F_1} = (20k\Omega - R_{F_0}) (1 - 1/4)$: $R_{F_0} = 0 \therefore R_{F_1} = 15k\Omega$ $R_{F_2} = [20k\Omega - (R_{F_0} + R_{F_1})] (1 - 4/16)$: $R_{F_0} + R_{F_1} = 15k\Omega$.: $R_{F_2} = 3.75k\Omega$ $R_{F_3} = [20k\Omega - (R_{F_0} + R_{F_1} + R_{F_2})] (1 - 16/64)$: $R_{F_0} + R_{F_1} + R_{F_2} = 18.75k\Omega$.: $R_{F_3} = 937.5\Omega$

4) The center resistor (R_G of the highest gain setting), is determined last. Its value is the remaining resistance of the 40k Ω string, and can be calculated with the equation:

$$R_{G} = (40k\Omega - 2\sum_{j=0}^{M} R_{F_{j}})$$

$$R_{G} = 40k\Omega - 2(R_{F_{0}} + R_{F_{1}} + R_{F_{2}} + R_{F_{3}})$$

$$40k\Omega - 39.375k\Omega = 625\Omega$$

5) If different resistor values are desired, all the resistors in the network can be scaled by some convenient factor. However, raising the impedance will increase the RTO errors, lowering the total network resistance below $20k\Omega$ can result in amplifier instability. More information on this phenomenon is given in the RPGA section of the data sheet. The scale factor will not affect the unity gain feedback resistors. The resistor network in Figure 38 has a scaling factor of 650/625 = 1.04, if this factor is used on R_{F_1} , R_{F_2} , R_{F_3} , and R_G , then the resistor values will match exactly.

6) Round off errors can be cumulative, therefore, it is advised to carry as many significant digits as possible until all the values have been calculated.

Figure 41. Resistors for a Gain Setting Network

Isolation Amplifiers Contents

Page

Selection Guide
Orientation
AD202/204 – Low Cost, Miniature Isolation Amplifiers
AD210 - Precision, Wide Bandwidth, 3-Port Isolation Amplifier
AD295 – Precision Hybrid Isolation Amplifier
284J - Economy, High Performance, Self-Contained Isolation Amplifier
286J/281 - High CMV, High Performance, Synchronized Isolation Amplifiers
289 - Precision, Wide Bandwidth, Synchronized Isolation Amplifier
290A/292A - Low Cost, Single and Multichannel Isolation Amplifiers

4

-

5-2 ISOLATION AMPLIFIERS

Selection Guide Isolation Amplifiers

Model	CMV In/Out V pk	Gain Range V/V	Frequency Response kHz	Page	Notes
281 (Externa	al oscillator for 286	or 292A isolati	on amplifiers)	5 - 39	
284	2500	1-10	1	5 - 33	
286	2500	1-100	1	5 – 39	External oscillator (281)
289	2500	1-100	20	5 – 45	3-port isolation
290	1500	1-100	2.5	5 - 51	
292A	1500	1-100	2.5	5 - 51	External oscillator (281)
AD202	2000	1-100	1.5	5 – 7	
AD204	2000	1-100	5	5 – 7	External oscillator, uses AD246 clock
AD210	3500	1-100	20	5 - 19	3-port isolation
AD295	2500	1-1000	4.5	5 – 27	3-port isolation

Orientation Isolation Amplifiers

The *isolation amplifier* (or isolator) has an input circuit that is galvanically isolated from the power supply and the output circuit. In the basic *two-port* form, the output and power circuits are not isolated from one another; in *three-port* isolators (see the figure), the input circuits, output circuits, and power source are all isolated from one another. In some 3-port isolators, the power for the output stage must be furnished from the signal's destination; however, in the device shown in Figure 1, all internal power is furnished by its own power source; in addition, a modicum of auxiliary power is available to power external input *and output* circuitry.

Isolators are intended for applications requiring safe, accurate measurement of dc and low-frequency voltage or current in the presence of high common-mode voltage (to thousands of volts) with high CMR, line-receiving of signals transmitted at high impedance in noisy environments, and for safety in general-purpose measurements where dc and line-frequency leakage must be maintained at levels well below certain mandated minima.* Principal applications are in electrical environments of the kind associated with medical equipment conventional and nuclear power plants, automatic test equipment and industrial processcontrol systems.

Analog Devices Isolators described in this section (and in the *Signal Conditioner* section) use electromagnetically coupled high-frequency carrier techniques for communication of power to and signals from the input (and in some cases the *output*) circuit.

CHOOSING AN ISOLATOR

The choice of isolator depends on the desired *functional characteristics* and the required *specifications*. Functional characteristics include such considerations as number of channels in the system, range of output common-mode (output to power supply), nature of the front-end amplifier (amplification only or general op-amp functioning) and the availability of isolated power for additional external front-end (or back-end) circuitry. Key specifications include performance specs and "absolute max/min" mandated safety specifications. Definitions of specifications follow this section. In addition to the products listed here, which are recommended for new designs, a number of older products are still available; data sheets are available upon request. In addition to the useful applications information on the data sheets published here, an applications guide¹, available upon request, provides information useful to the circuit designer.

The devices described in this section are all voltage-output isolation amplifiers, useful in general-purpose circuit applications for instrumentation amplifiers or op amps where isolation is a necessity. In addition to these devices, there are a growing number of isolators available from Analog Devices that perform dedicated functions, for use where isolation is necessary or desirable. Some of their applications can be seen in the Signal Conditioner section of this book and the *Transducer Interfacing Handbook*². Power Supplies and DC-DC Converters, usually transformer-coupled, also provide isolation.

*Examples of such requirements may be found in UL STD 544 and SWC (Surge Withstand Capability) in IEEE Standard for Transient Voltage Protection 472-1974.

¹Analog Devices Applications Guide to Isolation Amplifiers and Signal Conditioners

²Sheingold, D.H., ed, *Transducer Interfacing Handbook – A guide to analog signal conditioning.* Norwood, MA 02062 (P.O. Box 796): Analog Devices, Inc., 1980, \$14.50

Figure 1. AD210 Block Diagram

Functional Characteristics: The figure shows the circuit architecture of a self-contained isolator, Model AD210. The various models differ, but their properties can be discussed in terms of the device shown. An isolator of this type requires power from a two-terminal dc supply. An internal oscillator converts the dc power to ac, which is transformer-coupled to the shielded input section, then converted to dc for the input stage and the auxiliary power output. The ac carrier is also modulated by the amplifier output, transformer-coupled to the output stage, demodulated by a phase-sensitive demodulator (using the carrier as the reference), filtered and buffered, using isolated dc power (also available for auxiliary circuitry) derived from the carrier.

The amplifier in this example is an uncommitted op amp, specified for programmable gains from 1 to 100V/V, as determined by its feedback circuitry. Since both input terminals are floating, the amplifier functions effectively as an instrumentation amplifier. Most of the other devices in this series require just a single external resistor to set the gain.

In the figure it can be seen that ac power is magnetically coupled from the oscillator to the output stage. This permits the output to operate at a dc common-mode potential with respect to power common. An isolator of this type is said to provide *three-port* isolation, because there are three isolated ports: input, power supply and output. Two-port devices are those in which there is a dc connection between the oscillator power supply and the output stage.

The AD210, as can be seen, is a completely self-contained device. There are applications for which a degree of "unbundling" can lead to economy and improved performance. For example, if there are many input channels to be isolated, economies can be realized by the use of a common oscillator. In addition, the common oscillator makes it possible to avoid the possibility of small errors due to beat frequencies developed by small amounts of crosstalk in older amplifier designs.

Several synchronized multichannel devices are available. Model 204 is essentially a 202A with a power converter instead of an oscillator. It requires a pair of leads for an oscillator input, which can be furnished by an AD246 clock.

SPECIFICATIONS

The illustration on the next page shows a typical specification block; the specifications of key interest are defined.

For an initial choice of data sheets to inspect for a given application, the Selection Guide permits comparison on the basis of these key characteristics: common-mode voltage, specified gain range and frequency response. The "Notes" column indicates which devices require external oscillators (for lower cost in many-channel applications) and identifies devices that are three-port isolated. Good starting points are: for high performance, the AD210; for lowest cost, the AD202 and AD204, depending on whether the application calls for few or many channels.

SPECIFICATIONS (typical @ + 25°C, & Vs = + 15V unless otherwise specified)

AD210AN MODE AD210BN NONLINEARITY - This is the CMV, INPUTS TO OUTPUTS -GAIN peak deviation from a best straight Voltage that may be safely applied Range 1 V/V = 100 V/Vline, expressed as a % of peak-to-Error + 2% max + 1% max to both inputs with respect to peak output. Should be considered vs Temperature (0 to + 70°C) ± 25ppm/°C max outputs or power common. Neces- $(-25^{\circ}C to + 85^{\circ}C)$ ± 50ppm/°C max when signal fidelity is of prime sarv consideration in applications vs Supply Voltage ±0 002%/V importance. Nonlinearity ±0 025% may with high CMV input or when ±0 012% max high voltage transients may occur INPUT VOLTAGE RATINGS Linear Differential Range ± 10V at the input. Maximum Safe Differential Input + 15V Max CMV Input-to-Output ac, 60Hz, Continuous 2500V rms CMR. INPUTS TO OUTPUTS -MAX SAFE DIFFERENTIAL dc, Continuous ± 3500V peak INPUT - Max voltage that can be Indicates ability to reject common-Common-Mode Rejection safely applied across input terminals. 60Hz, G = 100V/Vmode voltages between inputs R_S≤500Ω Impedance Imbalance 120dB Important to consider for fail-safe and outputs. Important when Leakage Current Input-to-Output processing small signals riding on designs in the presence of high (a 240Vrms, 60Hz 2µA rms max high common-mode voltages. voltages. INPUT IMPEDANCE $10^{12}\Omega$ Differential Common Mode 5GΩ∥5nF LEAKAGE CURRENT – Maxi-INPUT BIAS CURRENT Initial, $(a + 25^{\circ}C)$ 30pA typ (400pA max) mum input leakage current when vs Temperature (0 to + 70°C) 10nA max power-line voltage is impressed **INPUT NOISE** - Total noise, (-25°C to +85°C) 30nA max on inputs. Vital consideration referred to the input. Facilitates INPUT DIFFERENCE CURRENT for patient safety in medical Initial, (ii + 25°C 5pA typ (200pA max) comparison with expected signal vs Temperature (0 to + 70°C) applications. 2nA max input levels. (-25°C to +85°C) 10nA max INPUT NOISE Voltage(1kHz) $18 nV/\sqrt{H_7}$ (10Hz to 10kHz) Current (1kHz) 4µV rms 0 01pA/√Hz FREQUENCY RESPONSE Bandwidth (-3dB) G = 1V/V20kHz G = 100 V/V15kHz Settling Time (± 10mV, 20V Step) G = 1V/V150µs OFFSET VOLTAGE REFERRED **ISOLATED POWER OUTPUTS -**500µs G = 100 V/VTO INPUT - Total input drift is Slew Rate (G = 1V/V)Dual supply voltages, completely iso-1V/us composed of two sources (input OFFSET VOLTAGE (RTI)2 lated from the input power supply and output stage drifts) and is Initial, (a + 25°C $(\pm 15 \pm 45/G)$ mV max $(\pm 5 \pm 15/G)$ mV max terminals, provide the capability to vs Temperature (0 to + 70°C) $(\pm 10 \pm 30/G)\mu V/^{\circ}C$ gain (G) dependent. Referring excite floating input and output signal (-25°C to +85°C) $(\pm 10 \pm 50/G)\mu V/^{\circ}C$ offsets to the input allows them conditioners, front-end amplifiers, as RATED OUTPUT to be compared to signal levels. well as remote transducers. Voltage, 2kΩ Load ± 10V min Impedance $1\Omega \max$ Ripple, (Bandwidth = 100kHz) 10mV p-p max ISOLATED POWER OUTPUTS ± 15V Voltage, No Load ±10% Accuracy Current ± 5mA Regulation, No Load to Full Load See Text Ripple See Text POWER SUPPLY Voltage, Rated Performance + 15V dc ± 5% $+15V dc \pm 10\%$ Voltage, Operating Current, Quiescent 50mA Current, Full Load - Full Signal 80mA TEMPERATURE RANGE - 25°C to + 85°C Rated Performance Operating 40°C to + 85°C - 40°C to + 85°C Storage PACKAGE DIMENSIONS Inches $1.00 \times 2.10 \times 0.350$ Millimeters 25 4 × 53 3 × 8 9 NOTES

*Specifications same as AD210AN

Gain nonlinearity increases by $\pm 0.002\%/mA$ when the isolated power outputs are used 2RTI – Referred to Input

A reduced signal swing is recommended when both $\pm V_{155}$ and $\pm V_{OS5}$ supplies are fully loaded, due to supply voltage reduction

Specifications subject to change without notice

Figure 2. Typical Isolator Specifications

5-6 ISOLATION AMPLIFIERS

Low Cost, Miniature Isolation Amplifiers

AD202/AD204

FEATURES

Small Size: 4 Channels/Inch Low Power: 35mW (AD204) High Accuracy: ± 0.025% max Nonlinearity (K Grade) High CMR: 130dB (Gain = 100 V/V) Wide Bandwidth: 5kHz Full-Power (AD204) High CMV Isolation: ± 2000 V pk Continuous (K Grade) (Signal and Power) Isolated Power Outputs Uncommitted Input Amplifier

APPLICATIONS

Multichannel Data Acquisition Current Shunt Measurements Motor Controls Process Signal Isolation High Voltage Instrumentation Amplifier

GENERAL DESCRIPTION

The AD202 and AD204 are members of a new generation of low cost, high performance isolation amplifiers. A new circuit design, novel transformer construction, and the use of surfacemounted components in an automated assembly process result in remarkably compact, economical isolators whose performance in many ways exceeds that previously available from very expensive devices. The primary distinction between the AD202 and AD204 is that the AD202 is powered directly from + 15V dc while the AD204 is powered by an externally supplied clock (AD246).

The AD202 and AD204 employ transformer coupling and do not require the design compromises that must be made when optical isolators are used: each provides a complete isolation function, with both signal and power isolation internal to the module, and they exhibit no long-term parameter shifts under sustained common-mode stress. Power consumption, nonlinearity, and drift are each an order of magnitude lower than can be obtained from other isolation techniques, and these advantages are obtained without sacrifice of bandwidth or noise performance.

The design of the AD202 and AD204 emphasizes ease of use in a broad range of applications where signals must be measured or transmitted without a galvanic connection. In addition, the low cost and small size of these isolators makes component-level circuit applications of isolation practical for the first time.

PRODUCT HIGHLIGHTS

The AD202 and AD204 are full-featured isolators offering numerous benefits to the user:

Small Size: The AD202 and AD204 are available in SIP and DIP form packages. The SIP package is just 0.25" wide, giving the user a channel density of four channels per inch. The isolation barrier is positioned to maximize input to output spacing. For applications requiring a low profile, the DIP package provides a height of just 0.350".

AD202 FUNCTIONAL BLOCK DIAGRAM

High Accuracy: With a maximum nonlinearity of $\pm 0.025\%$ for the AD202K/AD204K ($\pm 0.05\%$ for the AD202J/AD204J) and low drift over temperature, the AD202 and AD204 provide high isolation without loss of signal integrity.

Low Power: Power consumption of 35mW (AD204) and 75mW (AD202) over the full signal range makes these isolators ideal for use in applications with large channel counts or tight power budgets.

Wide Bandwidth: The AD204's full-power bandwidth of 5kHz makes it useful for wideband signals. It is also effective in applications like control loops, where limited bandwidth could result in instability.

Excellent Common-Mode Performance: The AD202K/AD204K provide $\pm 2000V$ pk continuous common-mode isolation, while the AD202J/AD204J provide $\pm 1000V$ pk continuous common-mode isolation. All models have a total common-mode input capacitance of less than 5pF inclusive of power isolation. This results in CMR ranging from 130dB at a gain of 100 to 104dB (minimum at unity gain) and very low leakage current (2µ.A maximum).

Flexible Input: An uncommitted op amp is provided at the input of all models. This provides buffering and gain as required, and facilitates many alternative input functions including filtering, summing, high-voltage ranges, and current (transimpedance) input.

Isolated Power: The AD204 can supply isolated power of $\pm 7.5V$ at 2mA. This is sufficient to operate a low-drift input preamp, provide excitation to a semiconductor strain gage, or to power any of a wide range of user-supplied ancillary circuits. The AD202 can supply $\pm 7.5V$ at 0.4mA which is sufficient to operate adjustment networks or low-power references and op amps, or to provide an open-input alarm.

SPECIFICATIONS (typical @ $+25^{\circ}$ and V_s = $+15^{\circ}$ unless otherwise noted)

Model	AD2041	AD204K	AD2021	AD202K
GAIN				
Bange	11/1/1001/1/	*	l *	*
Ennon	± 0.59 true (± 49 man)		+	•
Lilloi	± 30 mm/s ± 45 mm/s ± 30 mm/s ± 30 mm/s ± 45 mm/s ± 30			
vs. Temperature	± 20 pm/ C typ(± 45 ppm/ C max)	1		
vs. Time	± 50ppm/1000 Hours	*	*	*
vs. Supply Voltage	±0.001%/V	$\pm 0.001\%/V$	±0.01%/V	± 0.01%/V
Nonlinearity $(G = 1V/V)^{1}$	$\pm 0.05\%$ max	± 0.025% max	±0.05% max	±0.025% max
INPUT VOLTAGE RATINGS				
Linear Differential Range	±5V	*	*	*
Max CMV Input to Output				
ac. 60Hz. Continuous	750V rms	1500V rms	750V rms	1500V rms
Continuous (do and ac)	+ 1000V peak	+ 2000V peak	+ 1000V peak	+ 2000V peak
Common Mode Paiestion (CMP) (2) 60Ur	2 1000 V peak	- 2000 V peak	2 TOOD V PCak	2000 V pcak
$\mathbf{P} = < 1000 \text{ (III & I O Instate)} = 1$	1104P	11048	105 JP	105 dP
$R_{\rm S} = \leq 10011$ (HI & LO inputs) $G = 1$	120JB	+	10508	10508
G=100	130dB			
$R_{S} = \leq 1k\Omega (\text{Input HI}, \text{LO}, \text{ or Both}) G = 1$	104dB min	104dB min	100dB min	100dB min
G = 100	110dB min	*	*	*
Leakage Current Input to Output	2 A mine men	.		
@240 v 11113; 00112	2µA 1115 114x			
INPUT IMPEDANCE				
Differential $(G = 1V/V)$	$10^{12}\Omega$		*	
Common Mode	2GΩ 4.5pF	*	*	*
INPUT BIAS CURRENT				
Initial, @+25°C	± 30pA	*	*	*
vs. Temperature (0 to + 70°C)	± 10nA	*	*	*
INPUT DIFFERENCE CURRENT				
Initial @+25%	+ 5nA	*	*	*
11111a1, @+25C we Temperature (0 to $\pm 70^{\circ}C$)	$\pm 3pn$	*	*	*
	± 211/1			
INPUT NOISE	4 11			
Voltage, 0.1 to 100Hz	4μV p-p			
t>200Hz	50nV/VHz	*	*	×
FREQUENCY RESPONSE				
Bandwidth ($V_0 \le 10V \text{ p-p}, G = 1-50V/V$)	5kHz	5kHz	2kHz	2kHz
Settling Time, to $\pm 10 \text{mV}(10 \text{V Step})$	lms	*	*	*
OFFSET VOLTAGE (BTI)				
Initial @ + 25°C Adjustable to Zero	(+15 + 15/G)mV may	(+5+5/G)mV max	(+15 + 15/G)mV max	(+5+5/G)mV max
mitial, @ + 25 Chujustaok to 2410			(=15=15,6)	() ()
vs. Temperature (0 to $+70^{\circ}$ C)	$\left(\pm 10\pm\frac{10}{G}\right)\mu V/^{\circ}C$	*	*	*
BATED OUTBUT				
KATED OUTPUT		+		
Voltage (Out HI to Out LO)	±SV	11	11	
Voltage at Out HI or Out LO (Ref. Pin 32)	±6.5V			
Output Resistance	3k0	3kΩ	7812	/к12
Output Ripple, 100kHz Bandwidth	10mV pk-pk	*		
5kHz Bandwidth	0.5mV rms	*	*	*
ISOLATED POWER OUTPUT ²				1
Voltage, No Load	±7.5V	*	*	*
Accuracy	±10%	*	*	*
Current	2mA (Either Output) ³	2mA (Either Output) ³	400µA Total	400µA Total
Regulation, No Load to Full Load	5%	*	*	*
Ripple	100mV pk-pk	*	*	*
OSCILLATOR DRIVE INPUT				
Input Voltage	15V pk-pk pominal	15V pk-pk nominal	N/A	N/A
Input Frequency	25kHz nominal	25kHz nominal	N/A	N/A
	2.5KTT2 Hommu	23/11/2 110/11/10/	,	
POWER SUPPLY (AD202 Only)				. 1637 . 60/
Voltage, Rated Performance	N/A	N/A	$+15V \pm 5\%$	$+15V \pm 5\%$
Voltage, Operating	N/A	N/A	$+15V \pm 10\%$	$+15V \pm 10\%$
Current, No Load ($V_s = +15V$)	N/A	N/A	5mA	5mA
TEMPERATURE RANGE				
Rated Performance	0 to + 70°C	*	*	*
Operating	- 40°C to + 85°C	*	*	*
Storage	-40°C to +85°C	*	*	*
DACK ACE DIMENSIONS				
SID Deskage (V)	2 09" ~ 0 250" ~ 0 625"	*	*	*
DIP Package (I)	2.00 ~ 0.230 ~ 0.023	*	*	*
DIF Fackage (N)	2.10 × 0.700 × 0.550		I	l

,

NOTES *Specifications same as AD204J. *Nonlinearity is specified as a % deviation from a best straight line. *1.0µF mm decoupling required (see text) *3mA with one supply loaded *Width is 0.25* typ, 0.26* max

Specifications subject to change without notice

PIN DESIGNATIONS

AD202/AD204 SIPPACKAGE

PIN	FUNCTION
1	+ INPUT
2	INPUT/VISO COMMON
3	- INPUT
4	INPUT FEEDBACK
5	
6	+ VISO OUTPUT
31	+ 15V POWER IN (AD202 ONLY)
32	CLOCK/POWER COMMON
33	CLOCK INPUT (AD204 ONLY)
37	OUTPUTLO
38	OUTPUT HI

AD202/AD204 DIPPACKAGE

PIN	FUNCTION
1	+ INPUT
2	INPUT/VISO COMMON
3	-INPUT
18	OUTPUTLO
19	OUTPUT HI
20	+ 15V POWER IN (AD202 ONLY)
21	CLOCK INPUT (AD204 ONLY)
22	CLOCK/POWER COMMON
36	+ V _{ISO} OUTPUT
37	
38	INPUT FEEDBACK

AD202/AD204 ORDERING GUIDE

Model	Package Option	Max Common- Mode Voltage (Peak)	Max Linearity
AD202JY	SIP	1000V	±0.05%
AD202KY	SIP	2000V	, ±0.025%
AD202JN	DIP	1000V	±0.05%
AD202KN	DIP	2000V	±0.025%
AD204JY	SIP	1000V	± 0.05%
AD204KY	SIP	2000V	±0.025%
AD204JN	DIP	1000V	±0.05%
AD204KN	DIP	2000V	±0.025%

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

AD202/AD204 SIPPACKAGE

AC1058 MATING SOCKET

AD202/AD204 DIP PACKAGE

SPECIFICATIONS

(typical @ $+25^{\circ}$ C and V_s = +15V unless otherwise noted)

Model	AD246JY	AD246JN
OUTPUT ¹		
Frequency	25kHz nominal	*
Voltage	15V p-p nominal	*
Fan-Out	32 max	*
POWER SUPPLY		
REQUIREMENTS		
Input Voltage	$+15V \pm 5\%$	*
Supply Current	<i>i</i>	
Unloaded	3.5mA	*
Each AD204 Adds	2.2mA	*
Each 1mA Load on AD204		
$+ V_{ISO} $ or $- V_{ISO} $ Adds	0.7mA	*

NOTES

*Specifications the same as the AD246JY. ¹The high current drive output will not support a short to ground. Specifications subject to change without notice.

DIFFERENCES BETWEEN THE AD202 AND AD204

The primary distinction between the AD202 and AD204 is in the method by which they are powered: the AD202 operates directly from + 15V dc while the AD204 is powered by a nonisolated externally-supplied clock (AD246) which can drive up to 32 AD204s. The main advantages of using the externally-clocked AD204 over the AD202 are reduced cost in multichannel applications, lower power consumption, and higher bandwidth. In

AD246 PIN DESIGNATIONS

PIN (Y)	PIN (N)	FUNCTION
1	12	+ 15V POWER IN
2	1	CLOCK OUTPUT
12	14	COMMON
13	24	COMMON

CAUTION

ESD (Electro-Static-Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

addition, the AD204 can supply substantially more isolated power than the AD202.

Of course, in a great many situations, especially where only one or a few isolators are used, the convenience of stand-alone operation provided by the AD202 will be more significant than any of the AD204's advantages. There may also be cases where it is desirable to accommodate either device interchangeably, so the pinouts of the two products have been designed to make that easy to do.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

AD246JN PACKAGE

Figure 1a. AD202 Functional Block Diagram

Figure 1b. AD204 Functional Block Diagram

INSIDE THE AD202 AND AD204

The AD202 and AD204 use an amplitude modulation technique to permit transformer coupling of signals down to dc (Figure 1a and 1b). Both models also contain an uncommitted input op amp and a power transformer which provides isolated power to the op amp, the modulator, and any external load. The power transformer primary is driven by a 25kHz, 15V p-p square wave which is generated internally in the case of the AD202, or supplied externally for the AD204.

Within the signal swing limits of approximately $\pm 5V$, the output voltage of the isolator is equal to the output voltage of the op amp; that is, the isolation barrier has unity gain. The output

signal is not internally buffered, so the user is free to interchange the output leads to get signal inversion. Additionally, in multichannel applications, the unbuffered outputs can be multiplexed with one buffer following the mux. This technique minimizes offset errors while reducing power consumption and cost. The output resistance of the isolator is typically $3k\Omega$ for the AD204 (7k Ω for AD202) and varies with signal level and temperature, so it should not be loaded (see Figure 2 for the effects of load upon nonlinearity and gain drift). In many cases a high-impedance load will be present or a following circuit such as an output filter can serve as a buffer, so that a separate buffer function will not often be needed.

Figure 2. Effects of Output Lo

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.) 5

USING THE AD202 AND AD204

Powering the AD202. The AD202 requires only a single + 15V power supply connected as shown in Figure 3a. A bypass capacitor is provided in the module.

AD202 (3) + 15V ± 5% (32) 15V RETURN

Figure 3a.

Powering the AD204. The AD204 gets its power from an externally supplied clock signal (a 15V p-p square wave with a nominal frequency of 25kHz) as shown in Figure 3b.

AD246 Clock Driver. The AD246 is a compact, inexpensive clock driver that can be used to obtain the required clock from a single 15V supply. Alternatively, the circuit shown in Figure 4 (essentially an AD246) can be used. In either case, one clock circuit can operate at least 32 AD204s at the rated minimum supply voltage of 14.25V and one additional isolator can be operated for each 40mV increase in supply voltage up to 15V. A supply bypass capacitor is included in the AD246, but if many AD204s are operated from a single AD246, an external bypass capacitor should be used with a value of at least 1 μ F for every five isolators used. Place the capacitor as close as possible to the clock driver.

Figure 4. Clock Driver

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.) Input Configurations. The AD202 and AD204 have been designed to be very easy to use in a wide range of applications. The basic connection for standard unity gain applications, useful for signals up to $\pm 5V$, is shown in Figure 5; some of the possible variations are described below. When smaller signals must be

Figure 5. Basic Unity-Gain Application

handled, Figure 6 shows how to get gain while preserving a very high input resistance. The value of feedback resistor R_F should be kept above 20k Ω for best results. Whenever a gain of more than five is taken, a 100pF capacitor from FB to IN COM is required. At lower gains this capacitor is unnecessary, but it will not adversely affect performance if used.

Figure 6. Input Connections for Gain > 1

The "noninverting" circuit of Figures 5 and 6 can also be used to advantage when a signal inversion is needed: just interchange either the input leads or the output leads to get inversion. This approach retains the high input resistance of the "noninverting" circuit, and at unity gain no gain-setting resistors are needed.

When the isolator is not powered, a negative input voltage of more than about 2V will cause an input current to flow. If the signal source can supply more than a few mA under such conditions, the $2k\Omega$ resistor shown in series with IN + should be used to limit current to a safe value. This is particularly important with the AD202, which may not start if a large input current is present. Figure 7 shows how to accommodate current inputs or sum currents or voltages. This circuit can also be used when the input signal is larger than the \pm 5V input range of the isolator; for example, a \pm 50V input span can be accommodated with $R_F = 20k$ and $R_S = 200k$. Once again, a capacitor from FB to IN COM is required for gains above 5.

Figure 7. Connections for Summing or Current Inputs

Adjustments. When gain and zero adjustments are needed, the circuit details will depend on whether adjustments are to be made at the isolator input or output, and (for input adjustments) on the input circuit used. Adjustments are usually best done on the input side, because it is better to null the zero ahead of the gain, and because gain adjustment is most easily done as part of the gain-setting network. Input adjustments are also to be preferred when the pots will be near the input of the isolator (to minimize common-mode strays). Adjustments on the output side might be used if pots on the input side would represent a hazard due to the presence of large common-mode voltages during adjustment.

Figure 8a shows the input-side adjustment connections for use with the "noninverting" connection of the input amplifier. The zero adjustment circuit injects a small adjustment voltage in series with the low side of the signal source. (This will not work if the source has another current path to input common or if current flows in the signal source LO lead). Since the adjustment voltage is injected ahead of the gain, the values shown will work for any gain. Keep the resistance in series with input LO below a few hundred ohms to avoid CMR degradation.

Figure 8a. Adjustments for Noninverting Connection of Op Amp

Also shown in Figure 8a is the preferred means of adjusting the gain-setting network. The circuit shown gives a nominal R_F of 50k Ω , and will work properly for gains of ten or greater. The adjustment becomes less effective at lower gains (its effect is halved at G = 2) so that the pot will have to be a larger fraction of the total R_F at low gain. At G = 1 (follower) the gain cannot be adjusted downward without compromising input resistance; it is better to adjust gain at the signal source or after the output.

Figure 8b shows adjustments for use with inverting input circuits. The zero adjustment nulls the voltage at the summing node. This method is preferable to current injection because it is less affected by subsequent gain adjustment. Gain adjustment is again done in the feedback; but in this case it will work all the way down to unity gain (and below) without alteration.

Figure 8b. Adjustments for Summing or Current Input

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.) Figure 9 shows how zero adjustment is done at the output by taking advantage of the semi-floating output port. The range of this adjustment will have to be increased at higher gains; if that is done, be sure to use a suitably stable supply voltage for the pot circuit.

There is no easy way to adjust gain at the output side of the isolator itself. If gain adjustment must be done on the output side, it will have to be in a following circuit such as an output buffer or filter.

Figure 9. Output-Side Zero Adjustment

Common-Mode Performance. Figures 10a and 10b show how the common-mode rejection of the AD202 and AD204 varies with frequency, gain, and source resistance. For these isolators, the significant resistance will normally be that the path from the source of the common-mode signal to IN COM. The AD202 and AD204 also perform well in applications requiring rejection of fast common-mode steps, as described in the Applications section.

Figure 10b. AD202

Dynamics and Noise. Frequency response plots for the AD202 and AD204 are given in Figure 11. Since neither isolator is slew-rate limited, the plots apply for both large and small signals. Capacitive loads of up to 470pF will not materially affect frequency response. When large signals beyond a few hundred Hz will be present, it is advisable to bypass $-V_{ISO}$ and $+V_{ISO}$ to IN COM with 1μ F tantalum capacitors even if the isolated supplies are not loaded.

At 50/60Hz, phase shift through the AD202/AD204 is typically 0.8° C (lagging). Typical unit – unit variation is $\pm 0.2^{\circ}$ C (lagging).

Figure 10a. AD204

Figure 11. Frequency Response at Several Gains

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.)

The step response of the AD204 for very fast input signals can be improved by the use of an input filter, as shown in Figure 12. The filter limits the bandwidth of the input (to about 5.3kHz) so that the isolator does not see fast, out-of-band input terms that can cause small amounts ($\pm 0.3\%$) of internal ringing. The AD204 will then settle to $\pm 0.1\%$ in about 300 microseconds for a 10V step.

Figure 12. Input Filter for Improved Step Response

Except at the highest useful gains, the noise seen at the output of the AD202 and AD204 will be almost entirely comprised of carrier ripple at multiples of 25kHz. The ripple is typically 2mV p-p near zero output and increases to about 7mV p-p for outputs of \pm 5V (1MHz measurement bandwidth). Adding a capacitor across the output will reduce ripple at the expense of bandwidth: for example, 0.05µ.F at the output of the AD204 will result in 1.5mV ripple at \pm 5V, but signal bandwidth will be down to 1kHz.

When the full isolator bandwidth is needed, the simple two-pole active filter shown in Figure 13 can be used. It will reduce ripple to 0.1mV p-p with no loss of signal bandwith, and also serves as an output buffer.

An output buffer or filter may sometimes show output spikes that do not appear at its input. This is usually due to clock noise appearing at the op amp's supply pins (since most op amps have little or no supply rejection at high frequencies). Another common source of carrier-related noise is the sharing of a ground track by both the output circuit and the power input. Figure 13 shows how to avoid these problems: the clock/supply port of the isolator does not share ground or 15V tracks with any signal circuits, and the op amp's supply pins are bypassed to signal common (note that the grounded filter capacitor goes here as well). Ideally, the output signal LO lead and the supply common meet where the isolator output is actually measured, e.g. at an A/D converter input. If that point is more than a few feet from the isolator, it may be useful to bypass output LO to supply common at the isolator with a 0.1μ F capacitor. In applications where more than a few AD204s are driven by a single clock driver, substantial current spikes will flow in the power return line and in whichever signal out lead returns to a low impedance point (usually output LO). Both of these tracks should be made large to minimize inductance and resistance; ideally, output LO should be directly connected to a ground plane which serves as measurement common.

Current spikes can be greatly reduced by connecting a small inductance $(68\mu$ H–100 μ H) in series with the clock pin of each AD204. Molded chokes such as the Dale IM-2 series, with dc resistance of about 5 Ω , are suitable.

Figure 13. Output Filter Circuit Showing Proper Grounding

Using Isolated Power. Both the AD202 and the AD204 provide $\pm 7.5V$ power outputs referenced to input common. These may be used to power various accessory circuits which must operate at the input common-mode level; the input zero adjustment pots described above are an example, and several other possible uses are shown in the section titled Application Examples.

The isolated power output of the AD202 (400μ A total from either or both outputs) is much more limited in current capacity than that of the AD204, but it is sufficient for operating micropower op amps, low power references (such as the AD589), adjustment circuits, and the like.

The AD204 gets its power from an external clock driver, and can handle loads on its isolated supply outputs of 2mA for each supply terminal (+7.5V and -7.5V) or 3mA for a single loaded output. Whenever the external load on either supply is more than about 200µA, a 1µF tantalum capacitor should be used to bypass each loaded supply pin to input common.

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.) Up to 32 AD204s can be driven from a single AD246 (or equivalent) clock driver when the isolated power outputs of the AD204s are loaded with less than 200 μ A each, at a worst-case supply voltage of 14.25V at the clock driver. The number of AD204s that can be driven by one clock driver is reduced by one AD204 per 3.5mA of isolated power load current at 7.5V, distributed in any way over the AD204's being supplied by that clock driver. Thus a load of 1.75mA from + V_{ISO} to - V_{ISO} would also count as one isolator because it spans 15V.

It is possible to increase clock fanout by increasing supply voltage above the 14.25V minimum required for 32 loads. One additional isolator (or 3.5mA unit load) can be driven for each 40mV of increase in supply voltage up to 15V. Therefore if the minimum supply voltage can be held to 15V – 1%, it is possible to operate 32 AD204's and 52mA of 7.5V loads. Figure 14 shows the allowable combinations of load current and channel count for various supply voltages.

Figure 14. AD246 Fanout Rules

Operation at Reduced Signal Swing. Although the nominal output signal swing for the AD202 and AD204 is $\pm 5V$, there may be cases where a smaller signal range may be desirable. When that is done, the fixed errors (principally offset terms and output noise) become a larger fraction of the signal, but nonlinearity is reduced. This is shown in Figure 15.

Figure 15. Nonlinearity vs. Signal Swing

PCB Layout for Multichannel Applications. The pinout of the AD204Y has been designed to make very dense packing possible in multichannel applications. Figure 16a shows the recommended printed circuit board (PCB) layout for the simple voltage-follower connection. When gain-setting resistors are present, 0.25" channel centers can still be achieved, as shown in Figure 16b.

Figure 16a.

Figure 16b.

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.) Synchronization. Since AD204's operate from a common clock, synchronization is inherent. AD202s will normally not interact to produce beat frequencies even when mounted on 0.25-inch centers. Interaction may occur in rare situations where a large number of long, unshielded input cables are bundled together and channel gains are high. In such cases, shielded cable may be required or AD204's can be used.

APPLICATIONS EXAMPLES

Low-Level Sensor Inputs. In applications where the output of low-level sensors such as thermocouples must be isolated, a lowdrift input amplifier can be used with an AD204, as shown in Figure 17. A three-pole active filter is included in the design to get normal-mode rejection of frequencies above a few Hz and to provide enhanced common-mode rejection at 60Hz. If offset adjustment is needed, it is best done at the trim pins of the OP-07 itself; gain adjustment can be done at the feedback resistor.

Figure 17. Input Amplifier & Filter for Sensor Signals

Note that the isolated supply current is large enough to mandate the use of 1μ F supply bypass capacitors. This circuit can be used with an AD202 if a low-power op amp is used instead of the OP-07.

Process Current Input with Offset. Figure 18 shows an isolator receiver which translates a 4-20mA process current signal into a 0 to +10V output. A 1V to 5V signal appears at the isolator's output, and a -1V reference applied to output LO provides the necessary level shift (in multichannel applications, the reference can be shared by all channels). This technique is often useful for getting offset with a follower-type output buffer.

Figure 18. Process Current Input Isolator with Offset

The circuit as shown requires a source compliance of at least 5V, but if necessary that can be reduced by using a lower value of current-sampling resistor and configuring the input amplifier for a small gain.

High-Compliance Current Source. In Figure 19, an isolator is used to sense the voltage across current-sensing resistor R to allow direct feedback control of a high-voltage transistor or FET used as a high-compliance current source. Since the isolator has virtually no response to dc common-mode voltage, the closed-loop current source has a static output resistance greater than $10^{14}\Omega$ even for output currents of several mA. The output current capability of the circuit is limited only by power dissipation in the source transistor.

Figure 19. High-Compliance Current Source

Motor Control Isolator. The AD202 and AD204 perform very well in applications where rejection of fast common-mode steps is important but bandwidth must not be compromised. Current sensing in a full-wave bridge motor driver (Figure 20) is one example of this class of application. For 200V common-mode steps (1 μ s rise time) and a gain of 50 as shown, the typical response at the isolator output will be spikes of \pm 5mV amplitude, decaying to zero in less than 100 μ s. Spike height can be reduced by a factor of four with output filtering just beyond the isolator's bandwidth.

Figure 20. Motor Control Current Sensing

Floating Current Source/Ohmmeter. When a small floating current is needed with a compliance range of up to $\pm 1000V$ dc, the AD204 can be used to both create and regulate the current. This can save considerable power, since the controlled current does not have to return to ground. In Figure 21, an AD589 reference is used to force a small fixed voltage across R. That sets the current which the input op amp will have to return through the load to zero its input. Note that the isolator's output isn't needed at all in this application; the whole job is done by the input section. However, the signal at the output could be useful: it's the voltage across the load, referenced to ground. Since the load current is known, the output voltage is proportional to load resistance.

Figure 21. Floating Current Source

Photodiode Amplifier. Figure 22 shows a transresistance connection used to isolate and amplify the output of a photodiode. The photodiode operates at zero bias, and its output current is scaled by R_F to give a +5V full-scale output.

Figure 22. Photodiode Amplifier

(Circuit figures shown on this page are for SIP style packages. Refer to third page of this data sheet for proper DIP package pin-out.)

Precision, Wide Bandwidth, 3-Port Isolation Amplifier

AD210

FEATURES

High CMV Isolation: 2500V rms Continuous \pm 3500V peak Continuous Small Size: 1.00" × 2.10" × 0.350" Three-Port Isolation: Input, Output, and Power Low Nonlinearity: \pm 0.012% max Wide Bandwidth: 20kHz Full-Power (-3dB) Low Gain Drift: \pm 25ppm/°C max High CMR: 120dB (G = 100V/V) Isolated Power: \pm 15V @ \pm 5mA Uncommitted Input Amplifier

APPLICATIONS

Multi-Channel Data Acquisition High Voltage Instrumentation Amplifier Current Shunt Measurements Process Signal Isolation

GENERAL DESCRIPTION

The AD210* is the latest member of a new generation of low cost, high performance isolation amplifiers. This three-port, wide bandwidth isolation amplifier is manufactured with surfacemounted components in an automated assembly process. The AD210 combines design expertise with state-of-the-art manufacturing technology to produce an extremely compact and economical isolator whose performance and abundant user features far exceed those offered in more expensive devices.

The AD210 provides a complete isolation function with both signal and power isolation supplied via transformer coupling internal to the module. The AD210's functionally complete design, powered by a single + 15V supply, eliminates the need for an external DC/DC converter, unlike optically coupled isolation devices. The true three-port design structure permits the AD210 to be applied as an input or output isolator, in single or multi-channel applications. The AD210 will maintain its high performance under sustained common-mode stress.

Providing high accuracy and complete galvanic isolation, the AD210 interrupts ground loops and leakage paths, and rejects common-mode voltage and noise that may otherwise degrade measurement accuracy. In addition, the AD210 provides protection from fault conditions that may cause damage to other sections of a measurement system.

PRODUCT HIGHLIGHTS

The AD210 is a full-featured isolator providing numerous user benefits including:

High Common-Mode Performance: The AD210 provides 2500V rms (Continuous) and $\pm 3500V$ peak (Continuous) common-mode voltage isolation between any two ports. Low input

***Patent Pending**

AD210 FUNCTIONAL BLOCK DIAGRAM

capacitance of 5pF results in a 120dB CMR at a gain of 100, and a low leakage current (2µA rms max @ 240V rms, 60Hz).

High Accuracy: With maximum nonlinearity of $\pm 0.012\%$ (B Grade), gain drift of ± 25 ppm/°C max and input offset drift of ($\pm 10 \pm 30/G$) μ V/°C, the AD210 assures signal integrity while providing high level isolation.

Wide Bandwidth: The AD210's full-power bandwidth of 20kHz makes it useful for wideband signals. It is also effective in applications like control loops, where limited bandwidth could result in instability.

Small Size: The AD210 provides a complete isolation function in a small DIP package just $1.00'' \times 2.10'' \times 0.350''$. The low profile DIP package allows application in 0.5'' card racks and assemblies. The pinout is optimized to facilitate board layout while maintaining isolation spacing between ports.

Three-Port Design: The AD210's three-port design structure allows each port (Input, Output, and Power) to remain independent. This three-port design permits the AD210 to be used as an input or output isolator. It also provides additional system protection should a fault occur in the power source.

Isolated Power: $\pm 15V @ 5mA$ is available at the input and output sections of the isolator. This feature permits the AD210 to excite floating signal conditioners, front-end amplifiers and remote transducers at the input as well as other circuitry at the output.

Flexible Input: An uncommitted operational amplifier is provided at the input. This amplifier provides buffering and gain as required, and facilitates many alternative input functions as required by the user.

SPECIFICATIONS (typical @ + 25°C; & Vs = + 15V unless otherwise specified)

MODEL	AD210AN	AD210BN
GAIN		
Range	1V/V - 100V/V	*
Error	± 2% max	± 1% max
vs. Temperature (0 to + 70°C)	±25ppm/°C max	*
$(-25^{\circ}C \text{ to } + 85^{\circ}C)$	± 50ppm/°C max	*
vs. Supply Voltage	±0.002%/V	*
Nonlinearity	± 0.025% max	$\pm 0.012\%$ max
INPUT VOLTAGE RATINGS		
Linear Differential Range	± 10V	*
Maximum Safe Differential Input	± 15V	*
Max. CMV Input-to-Output	2001	
ac, 60Hz, Continuous	2500V rms	*
dc, Continuous	± 3500 v peak	•
$60H_{\pi}$ C = 100V/V		
$R_{-} \leq 500\Omega$ Impedance Imbalance	120dB	*
Leskage Current Input-to-Output	12000	
@ 240Vrms. 60Hz	2 A rms max	*
		· · · · · · · · · · · · · · · · · · ·
Differential	10120	•
Common Mode	SCOllSpE	*
Common Mode	Juniobr	
INPUT BIAS CURRENT		
Initial, @ +25°C	30pA typ (400pA max)	*
vs. Temperature (0 to + 70°C)	10nA max	*
(-25°C to +85°C)	30nA max	*
INPUT DIFFERENCE CURRENT		
Initial, @ +25°C	5pA typ (200pA max)	*
vs. Temperature (0 to + 70°C)	2nA max	*
$(-25^{\circ}C to + 85^{\circ}C)$	10nA max	*
INPUT NOISE		
Voltage(1kHz)	$18nV/\sqrt{Hz}$	*
(10Hz to 10kHz)	4µV rms	*
Current (1kHz)	$0.01 \text{pA}/\sqrt{\text{Hz}}$	*
FREQUENCY RESPONSE		
Bandwidth $(-3dB)$		
G = 1V/V	20kHz	*
G = 100 V/V	15kHz	*
Settling Time(±10mV, 20V Step)		
G = 1V/V	150µs	*
G = 100 V/V	500µs	*
Slew Rate (G = $1V/V$)	1V/μs	*
OFFSET VOLTAGE (RTI) ²		
Initial, @ +25°C	$(\pm 15 \pm 45/G)$ mV max	$(\pm 5 \pm 15/G)$ mV max
vs. Temperature (0 to + 70°C)	$(\pm 10 \pm 30/G)\mu V/^{\circ}C$	* .
(-25°C to +85°C)	$(\pm 10 \pm 50/G)\mu V/^{\circ}C$	*
RATED OUTPUT ³		
Voltage, $2k\Omega$ Load	± 10V mm	*
Impedance	1Ω max	*
Ripple, (Bandwidth = 100kHz)	10mV p-p max	*
ISOLATED POWER OUTPUTS4	an a	
Voltage, No Load	+ 15V	*
Accuracy	± 10%	*
Current	± 5mA	*
Regulation, No Load to Full Load	See Text	*
Ripple	See Text	*
POWER SUPPLY		
Voltage Rated Performance	+15V dc + 5%	*
Voltage, Operating	$+15V dc \pm 10\%$	*
Current, Quiescent	50mA	*
Current, Full Load - Full Signal	80mA	*
TEMPERATURE	-	
Pated Performance	- 25°C to + 85°C	*
Operating	-40° C to $\pm 85^{\circ}$ C	*
Storage	-40° C to $+85^{\circ}$ C	*
PACKAGE DIMENSIONS		
Inches	1 00 0 2 10 0 250	•
Millimotoro	1.00 × 2.10 × 0.550	•
minimeters	23.4 × 33.3 × 8.9	

NOTES

NOTES "Specifications same as AD210AN. "Gain nonlinearity increases by $\pm 0.002\%/mA$ when the isolated power outputs are used. "RTI - Referent to Input "A reduced signal swing is recommended when both $\pm V_{155}$ and $\pm V_{055}$ supplies are fully loaded, due to supply voltage reduction. "See text for detailed information.

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

AC1059 MATING SOCKET

AD210 PIN DESIGNATIONS

PIN	DESIGNATION	FUNCTION
1	Vo	Output
2	О _{сом}	Output Common
3	+V _{oss}	+ Isolated Power @ Output
4	-V _{oss}	- Isolated Power @ Output
14	+V _{ISS}	+ Isolated Power @ Input
15	-V _{ISS}	- isolated Power @ input
16	FB	Input Feedback
17	-IN	– Input
18	I _{COM}	Input Common
19	+IN	+ Input
29	Pwr Com	Power Common
30	Pwr	Power input

CAUTION

ESD (Electro-Static-Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

INSIDE THE AD210

The AD210 basic block diagram is illustrated in Figure 1. A +15V supply is connected to the power port, and $\pm 15V$ isolated power is supplied to both the input and output ports via a 50kHz carrier frequency. The uncommitted input amplifier can be used to supply gain or buffering of input signals to the AD210. The fullwave modulator transformer T1. The synchronous demodulator in the output port reconstructs the input signal. A 20kHz, three-pole filter is employed to minimize output noise and ripple. Finally, an output buffer provides a low impedance output capable of driving a $2k\Omega$ load.

Figure 1. AD210 Block Diagram

USING THE AD210

The AD210 is very simple to apply in a wide range of applications. Powered by a single + 15V power supply, the AD210 will provide outstanding performance when used as an input or output isolator, in single and multichannel configurations.

Input Configurations: The basic unity gain configuration for signals up to $\pm 10V$ is shown in Figure 2. Additional input amplifier variations are shown in the following figures. For smaller signal levels Figure 3 shows how to obtain gain while maintaining a very high input impedance.

Figure 2. Basic Unity Gain Configuration

The high input impedance of the circuits in Figures 2 and 3 can be maintained in an inverting application. Since the AD210 is a three-port isolator, either the input leads or the output leads may be interchanged to create the signal inversion.

Figure 3. Input Configuration for G>1

Figure 4 shows how to accommodate current inputs or sum currents or voltages. This circuit configuration can also be used for signals greater than $\pm 10V$. For example, a $\pm 100V$ input span can be handled with $R_F = 20k\Omega$ and $R_{S1} = 200k\Omega$.

Figure 4. Summing or Current Input Configuration

Adjustments

When gain and offset adjustments are required, the actual circuit adjustment components will depend on the choice of input configuration and whether the adjustments are to be made at the isolator's input or output. Adjustments on the output side might be used when potentiometers on the input side would represent a hazard due to the presence of high common-mode voltage during adjustment. Offset adjustments are best done at the input side, as it is better to null the offset ahead of the gain.

Figure 5 shows the input adjustment circuit for use when the input amplifier is configured in the noninverting mode. This offset adjustment circuit injects a small voltage in series with the

Figure 5. Adjustments for Noninverting Input

5

low side of the signal source. This will not work if the source has another current path to input common or if current flows in the signal source LO lead. To minimize CMR degradation, keep the resistor in series with the input LO below a few hundred ohms.

Figure 5 also shows the preferred gain adjustment circuit. The circuit shows R_F of $50k\Omega$, and will work for gains of ten or greater. The adjustment becomes less effective at lower gains (its effect is halved at G = 2) so that the pot will have to be a larger fraction of the total R_F at low gain. At G = 1 (follower) the gain cannot be adjusted downward without compromising input impedance; it is better to adjust gain at the signal source or after the output.

Figure 6 shows the input adjustment circuit for use when the input amplifier is configured in the inverting mode. The offset adjustment nulls the voltage at the summing node. This is preferable to current injection because it is less affected by subsequent gain adjustment. Gain adjustment is made in the feedback and will work for gains from 1 to 100V/V.

Figure 6. Adjustments for Inverting Input

Figure 7 shows how offset adjustments can be made at the output, by offsetting the floating output port. In this circuit, $\pm 15V$ would be supplied by a separate source. The AD210's output amplifier is fixed at unity, therefore, output gain must be made in a subsequent stage.

Figure 7. Output-Side Offset Adjustment

PCB Layout for Multichannel Applications: The unique pinout positioning minimizes board space constraints for multichannel applications. Figure 8 shows the recommended printed circuit board layout for a noninverting input configuration with gain.

Figure 8. PCB Layout for Multichannel Applications with Gain

Synchronization: The AD210 is insensitive to the clock of an adjacent unit, eliminating the need to synchronize the clocks. However, in rare instances channel to channel pick-up may occur if input signal wires are bundled together. If this happens, shielded input cables are recommended.

PERFORMANCE CHARACTERISTICS

Common-Mode Rejection: Figure 9 shows the common-mode rejection of the AD210 versus frequency, gain and input source resistance. For maximum common-mode rejection of unwanted signals, keep the input source resistance low and carefully lay out the input, avoiding excessive stray capacitance at the input terminals.

Figure 9. Common-Mode Rejection vs. Frequency

Phase Shift: Figure 10 illustrates the AD210's low phase shift and gain versus frequency. The AD210's phase shift and wide bandwidth performance make it well suited for applications like power monitors and controls systems.

Figure 10. Phase Shift and Gain vs. Frequency

Input Noise vs. Frequency: Voltage noise referred to the input is dependent on gain and signal bandwidth. Figure 11 illustrates the typical input noise in nV/\sqrt{Hz} of the AD210 for a frequency range from 10 to 10kHz.

Figure 11. Input Noise vs. Frequency

Gain Nonlinearity vs. Output: Gain Nonlinearity is defined as the deviation of the output voltage from the best straight line, and is specified as % peak-to-peak of output span. The AD210B provides guaranteed maximum nonlinearity of $\pm 0.012\%$ with an output span of $\pm 10V$. The AD210's nonlinearity performance is shown in Figure 12.

Gain Nonlinearity vs. Output Swing: The gain nonlinearity of the AD210 varies as a function of total signal swing. When the output swing is less than 20 volts, the gain nonlinearity as a fraction of signal swing improves. The shape of the nonlinearity remains constant. Figure 13 shows the gain nonlinearity of the AD210 as a function of total signal swing.

Figure 12. Gain Nonlinearity Error vs. Output

Figure 13. Gain Nonlinearity vs. Output Swing

Gain vs. Temperature: Figure 14 illustrates the AD210's gain vs. temperature performance. The gain versus temperature performance illustrated is for an AD210 configured as a unity gain amplifier.

Figure 14. Gain vs. Temperature

Isolated Power: The AD210 provides isolated power at the input and output ports. This power is useful for various signal conditioning tasks. Both ports are rated at a nominal $\pm 15V$ at 5mA.

The load characteristics of the isolated power supplies are shown in Figure 15. For example, when measuring the load rejection of the input isolated supplies V_{ISS} , the load is placed between + V_{ISS} and $-V_{ISS}$. The curves labeled V_{ISS} and V_{OSS} are the individual load rejection characteristics of the input and the output supplies, respectively.

There is also some effect on either isolated supply when loading the other supply. The curve labeled CROSSLOAD indicates the sensitivity of either the input or output supplies as a function of the load on the opposite supply.

Figure 15. Isolated Power Supplies vs. Load

Lastly, the curves labeled V_{OSS} simultaneous and V_{ISS} simultaneous indicate the load characteristics of the isolated power supplies when an equal load is placed on both supplies.

The AD210 provides short circuit protection for its isolated power supplies. When either the input supplies or the output supplies are shorted to input common or output common, respectively, no damage will be incurred, even under continuous application of the short. However, the AD210 may be damaged if the input and output supplies are shorted simultaneously.

Figure 16a. Isolated Supply Ripple vs. Load (External 4.7µF Bypass)

Under any circumstances, care should be taken to ensure that the power supplies do not accidentally become shorted.

The isolated power supplies exhibit some ripple which varies as a function of load. Figure 16a shows this relationship. The AD210 has internal bypass capacitance to reduce the ripple to a point where performance is not affected, even under full load. Since the internal circuitry is more sensitive to noise on the negative supplies, these supplies have been filtered more heavily. Should a specific application require more bypassing on the isolated power supplies, there is no problem with adding external capacitors. Figure 16b depicts supply ripple as a function of external bypass capacitance under full load.

Figure 16b. Isolated Power Supply Ripple vs. Bypass Capacitance (Volts p-p, 1MHz Bandwidth, 5mA Load)

APPLICATIONS EXAMPLES

Noise Reduction in Data Acquisition Systems: Transformer coupled isolation amplifiers must have a carrier to pass both ac and dc signals through their signal transformers. Therefore, some carrier ripple is inevitably passed through to the isolator output. As the bandwidth of the isolator is increased more of the carrier signal will be present at the output. In most cases, the ripple at the AD210's output will be insigificant when compared to the measured signal. However, in some applications, particularly when a fast analog-to-digital converter is used following the isolator, it may be desirable to add filtering; otherwise ripple may cause inaccurate measurements. Figure 17 shows a circuit that will limit the isolator's bandwidth, thereby reducing the carrier ripple.

Figure 17. 2-Pole, Output Filter

Self-Powered Current Source

The output circuit shown in Figure 18 can be used to create a self-powered output current source using the AD210. The $2k\Omega$ resistor converts the voltage output of the AD210 to an equivalent current $V_{OUT}/2k\Omega$. This resistor directly affects the output gain temperature coefficient, and must be of suitable stability for the application. The external low power op amp, powered by $+V_{OSS}$ and $-V_{OSS}$, maintains its summing junction at output common. All the current flowing through the $2k\Omega$ resistor flows through the output Darlington pass devices. A Darlington configuration is used to minimize loss of output current to the base. The low leakage diode is used to protect the base-emitter junction against reverse bias voltages. Using -V_{OSS} as a current return allows more than 10V of compliance. Offset and gain control may be done at the input of the AD210 or by varying the $2k\Omega$ resistor and summing a small correction current directly into the summing node. A nominal range of 1-5mA is recommended since the current output cannot reach zero due to reverse bias and leakage currents. If the AD210 is powered from the input potential, this circuit provides a fully isolated, wide bandwidth current output. This configuration is limited to 5mA output current.

Figure 18. Self-Powered Isolated Current Source

Isolated V-to-I Converter

Illustrated in Figure 19, the AD210 is used to convert a 0 to +10V input signal to an isolated 4-20mA output current. The AD210 isolates the 0 to +10V input signal and provides a proportional voltage at the isolator's output. The output circuit converts the input voltage to a 4-20mA output current, which in turn is applied to the loop load R_{LOAD} .

Figure 19. Isolated Voltage-to-Current Loop Converter

Isolated Thermocouple Amplifier

The AD210 application shown in Figure 20 provides amplification, isolation and cold-junction compensation for a standard J type thermocouple. The AD590 temperature sensor accurately monitors the input terminal (cold-junction). Ambient temperature changes from 0 to $+40^{\circ}$ C sensed by the AD590, are cancelled out at the cold junction. Total circuit gain equals 183; 100 and 1.83, from A1 and the AD210 respectively. Calibration is performed by replacing the thermocouple junction with plain thermocouple wire and a millivolt source set at 0.0000V (0°C) and adjusting R_O for E_{OUT} equal to 0.000V. Set the millivolt source to +0.02185V (400°C) and adjust R_G for V_{OUT} equal to +4.000V. This application circuit will produce a nonlinearized output of about $+10mV/^{\circ}$ C for a 0 to $+400^{\circ}$ C range.

Figure 20. Isolated Thermocouple Amplifier

Precision Floating Programmable Reference

The AD210, when combined with a digital-to-analog converter, can be used to create a fully floating voltage output. Figure 21 shows one possible implementation.

The digital inputs of the AD7541 are TTL or CMOS compatible. Both the AD7541 and AD581 voltage reference are powered by the isolated power supply $+ V_{ISS}$. I_{COM} should be tied to input digital common to provide a digital ground reference for the inputs.

The AD7541 is a current output DAC and, as such, requires an external output amplifier. The uncommitted input amplifier internal to the AD210 may be used for this purpose. For best results, its input offset voltage must be trimmed as shown.

The output voltage of the AD210 will go from 0V to -10V for digital inputs of 0 and full scale, respectively. However, since the output port is truly isolated, V_{OUT} and O_{COM} may be freely interchanged to get 0 to +10V.

This circuit provides a precision 0–10V programmable reference with a $\pm 3500V$ common-mode range.

Figure 21. Precision Floating Programmable Reference ISOLATION AMPLIFIERS 5–25

Figure 22. Multichannel Data Acquisition Front-End

MULTICHANNEL DATA ACQUISITION FRONT-END

Illustrated in Figure 22 is a four-channel data acquisition front-end used to condition and isolate several common input signals found in various process applications. In this application, each AD210 will provide complete isolation from input to output as well as channel to channel. By using an isolator per channel, maximum protection and rejection of unwanted signals is obtained. The three-port design allows the AD210 to be configured as an input or output isolator. In this application the isolators are configured as input devices with the power port providing additional protection from possible power source faults.

Channel 1: The AD210 is used to convert a 4-20mA current loop input signal into a 0-10V input. The 25Ω shunt resistor converts the 4-20mA current into a + 100 to + 500mV signal. The signal is offset by -100mV via R_O to produce a 0 to + 400mV input. This signal is amplified by a gain of 25 to produce the desired 0 to + 10V output. With an open circuit, the AD210 will show -2.5V at the output.

Channel 2: In this channel, the AD210 is used to condition and isolate a current output temperature transducer, Model AD590. At $+25^{\circ}$ C, the AD590 produces a nominal current of 298.2 μ A. This level of current will change at a rate of 1 μ A/°C. At -17.8° C (0°F), The AD590 current will be reduced by 42.8 μ A to $+255.4\mu$ A. The AD580 reference circuit provides an equal but

opposite current, resulting in a zero net current flow, producing a 0V output from the AD210. At +100°C (+212°F), the AD590 current output will be 373.2 μ A minus the 255.4 μ A offsetting current from the AD580 circuit to yield a +117.8 μ A input current. This current is converted to a voltage via R_F and R_G to produce an output of +2.12V. Channel 2 will produce an output of +10mV/°F over a 0 to +212°F span.

Channel 3: Channel 3 is a low level input channel configured with a high gain amplifier used to condition millivolt signals. With the AD210's input set to unity and the input amplifier set for a gain of 1000, a ± 10 mV input will produce a ± 10 V at the AD210's output.

Channel 4: Channel 4 illustrates one possible configuration for conditioning a bridge circuit. The AD584 produces a + 10V excitation voltage, while A1 inverts the voltage, producing negative excitation. A2 provides a gain of 1000V/V to amplify the low level bridge signal. Additional gain can be obtained by reconfiguration of the AD210's input amplifier. $\pm V_{\rm ISS}$ provides the complete power for this circuit, eliminating the need for a separate isolated excitation source.

Each channel is individually addressed by the multiplexer's channel select. Additional filtering or signal conditioning should follow the multiplexer, prior to an analog-to-digital conversion stage.

Precision Hybrid Isolation Amplifier

AD295

FEATURES

Low Nonlinearity: ±0.012% max (AD295C) Low Gain Drift: ±60ppm/°C max Floating Input and Output Power: ±15V dc @ 5mA 3-Port Isolation: ±2500V CMV (Input to Output) Complies with NEMA ICS1-111 Gain Adjustable: 1V/V to 1000V/V User Configurable Input Amplifier

APPLICATIONS

Motor Controls Process Signal Isolator High Voltage Instrumentation Amplifier Multi-Channel Data Acquisition Systems Off Ground Signal Measurements

GENERAL DESCRIPTION

The AD295 is a high accuracy, high reliability hybrid isolation amplifier designed for industrial, instrumentation and medical applications. Three performance versions are available offering guaranteed nonlinearity error at 10V p-p output: $\pm 0.05\%$ max (AD295A), $\pm 0.025\%$ max (AD295B), $\pm 0.012\%$ max (AD295C). Using a pulse width modulation technique the AD295 provides 3-port isolation between input, output and power supply ports. Using this technique, the AD295 interrupts ground loops and leakage paths and minimizes the effect of high voltage transients. Additionally, floating (isolated) power $\pm 15V$ dc @ 5mA is available at both the input and output. The AD295's gain can be programmed at the input, output or both sections allowing for user flexibility. An uncommitted input amplifier allows configuration as a buffer, inverter, subtractor or differential amplifier.

The AD295 is provided in an epoxy sealed ceramic 40-pin package that insures quality performance, high stability and accuracy. Input/output pin spacing complies with NEMA (ICS1-111) separation specifications required for many industrial applications.

WHERE TO USE THE MODEL AD295

Industrial: The AD295 is designed for measuring signals in harsh industrial environments. The AD295 provides high accuracy with complete galvanic isolation and protection from transients or where ground fault currents or high common-mode voltages are present. The AD295 can be applied in process controllers, current loop receivers, motor controls and weighing systems.

Instrumentation: In data acquisition systems the AD295 provides common-mode rejection for conditioning thermocouples, strain gauges or other low-level signals where high performance and system protection is required.

AD295 FUNCTIONAL BLOCK DIAGRAM

Medical: In biomedical and patient monitoring equipment like diagnostic systems and blood pressure monitors, the AD295 provides protection from lethal ground fault currents. Low level signal recording and monitoring is achieved with the AD295's low input noise $(2\mu V p-p @ G=1000V/V)$ and high CMR (106dB @ 60Hz).

DESIGN FEATURES AND USER BENEFITS

Isolated Power: Isolated power supply sections at the input and output provide $\pm 15V \text{ dc} @ 5\text{mA}$. Isolated power is load regulated to 4%. This feature permits the AD295 to excite floating signal conditioners, front-end buffer amplifiers and remote transducers at the input and external circuitry at the output. This eliminates the need for a separate dc/dc converter.

Input Amplifier: The uncommitted input amplifier allows the user to configure the input as a buffer, inverter, subtractor or differential amplifier to meet the application need.

Adjustable Gain: Gain can be selected at the input, output or both. Thus, circuit response can be tailored to the user's application. The AD295 provides the user with flexibility for circuit optimization without requiring external active components.

Three-Port Isolation: Provides true galvanic isolation between input, output and power supply ports. Eliminates the need for power supply and output ports being returned through a common ground.

Wide Operating Temperature: The AD295 is designed to operate over the -40° C to $+100^{\circ}$ C temperature range with rated performance over -25° C to $+85^{\circ}$ C.

Leakage: The low coupling capacitance between input and output yields a ground leakage current of less than $2\mu A$ rms at 115V ac, 60Hz. The AD295 meets standards established by UL STD 544.

SPECIFICATIONS (typical $@ +25^{\circ}$ C, & V_s = +15V unless otherwise noted)

MODEL	AD295A	AD295B	AD295C
GAIN			
Range	1V/V to 1000V/V	*	*
Open Loop Accurracy $G = 1VAV$	100dB + 1 5%	*	*
vs Temperature $(-25^{\circ}C \text{ to } + 85^{\circ}C)$	1.576		
G = 1V/V to 100V/V	± 60ppm/°C max	*	*
Nonlinearity (±5V Swing) G = 1V-100V/V	± 0.05% max	±0 025% max	±0.012% max
INPUT VOLTAGE RATINGS		\	
Linear Differential Range	± 10V min	*	*
Max Safe Differential Input	±15V	*	×
Continuous ac or dc	+ 2500V neak	*	*
ac, 60Hz, 1 Minute Duration	2500V rms	*	*
Max CMV (Input to Power Common/Output to Power	er Common)		
Continuous ac or dc	± 2000V peak	*	*
CMP Input to Output 60Hz G = 1V/V	2000 V rms	•	•
$R_s \leq 1k\Omega$ Balanced Source Impedance	106dB	*	*
$R_s \le 1k$ Source Impedance Imbalance	103dB min	*	*
Max Leakage Current, Input to Output			
(@ 115V ac, 60Hz	2µA rms max	*	*
INPUT IMPEDANCE	.		
Differential	5×10'Ω 33pF	*	*
Common Mode	10°12 20pF	·	×
INPUT BIAS CURRENT	Sa A may	•	•
Initial, $(\omega + 25 \degree \text{C})$ vs. Temperature ($-25\degree \text{C}$ to $+85\degree \text{C}$)	on∧ max - 25nA/℃ max	*	*
INPUT DIFFEDENCE CURPENIT	Lopin Ginax		
INFO I DIFFERENCE CUKKEN I Initial. $(a) + 25^{\circ}$ C	+ 2nA may	*	*
vs. Temperature $(-25^{\circ}C \text{ to } + 85^{\circ}C)$	± 5pA/°C max	*	*
INPUT NOISE (Gain = $1000V/V$)			
Voltage			
0 01Hz to 10Hz	2µV p-p	*	*
10Hz to 1kHz	1µV rms	*	*
Current	10-1	•	
0 01Hz to 10Hz	ТорА р-р		*
FREQUENCY RESPONSE			
Small Signal $(-30B)$ G = $1V/V$ to $100V/V$	4 51-112	*	*
G = 1000V/V	600Hz	*	*
Full Power, 20V p-p Output			
G = 1V/V to 100V/V	1 4kHz	*	*
G = 1000V/V	200Hz	*	*
Siew Rate G = $1V/V$ to $100V/V$ Settling Time G = $1V/V$	0 IV/µs	*	*
$(to \pm 0.1\% \text{ for } 10V \text{ Step})$	550u.s	*	*
$(to \pm 0.1\% \text{ for } 20V \text{ Step})$	700µs	*	*
OFFSET VOLTAGE, REFERRED TO INPUT			
Initial @ + 25°C (Adjustable to Zero)	$\left(\pm 3\pm\frac{15}{2}\right)$ mV may	•	*
minual (@ +23 C(Aujustable to Zero)	$\left(\frac{\pm 5 \pm G_{\rm IN}}{G_{\rm IN}}\right)^{\rm mv max}$		n
T	(((150)
vs. Temperature $(-25^{\circ}\text{C to} + 85^{\circ}\text{C})$	$\left(\pm 10 \pm \frac{10}{G_{IN}}\right) \frac{\mu V}{max}$	$\left(\pm 3 \pm \frac{1}{G_{IN}}\right) \frac{\mu V}{max}$	$\left(\pm 15 \pm \frac{150}{G_{IN}}\right) \mu V/^{\circ}C$
	(200)		
vs Supply	$\left(\pm 1\pm\frac{200}{\text{Grav}}\right)\mu V/\%$	*	*
	\ ~1N/		
RATED OUTPUT	101/	•	
Voltage, 2K11 Load	$\pm 10V \text{ min}$	*	*
Output Impedance Output Ripple (10Hz to 10kHz)	6mV n-n	*	*
(10Hz to 100kHz)	40mV p-p	*	*
ISOLATED POWER SUPPLIES ¹ (Vico) & Vico)			
Voltage	± 15V dc	*	*
Accuracy	± 5%	*	*
Current ²	± 5mA max	*	*
Load Regulation (No Load to Full Load)	- 4%	*	* /
	12mv p-p		
FOWER SUPPLY (+V _S) Voltage Bated Performance	$\pm 15V dc \pm 20\%$	*	*
Voltage, Operating	$+ 13 v dc \pm 3\%$ + 12V dc to + 16V dc	*	*
Current, Quiescent ($V_S = +15V$)	40mA	*	*
With Viso Loaded	45mA	*	*
TEMPERATURE RANGE			
Pated Parformance	- 25°C to + 85°C	*	*
Rated Ferformance	- 40°C to + 100°C	*	*
Operating	-40 C to $+100$ C		
Operating Storage	-40° C to $+100^{\circ}$ C	*	*

Dimensions shown in inches and (mm).

RECOMMENDED MATING SOCKET AC1220

PIN DESIGNATIONS

PIN	FUNCTION	PIN	FUNCTION
1	+ 15V (+ V _{ISO1})	40	INPUT FEEDBACK
2	VISO1 COM	39	+ INPUT
3	– 15V (– V _{ISO1})	38	- INPUT
		37	INPUT COM
5	NO CONNECTION	36	NO CONNECTION
16	+ V _s	25	OUTPUT COM/
			VISO2 COM
17	POWER COMMON	24	FILTER
		23	OUTPUT FEEDBACK
19	+ 15V (+ V _{ISO2})	22	OUTPUT
20	- 15V (+ V _{ISO2})	21	OUTPUT OFFSET TRIM

ţ

Understanding the Isolation Amplifier Performance

INTERCONNECTIONS AND SHIELDING TECHNIQUE

To preserve the high CMR performance of the AD295, care must be taken to keep the capacitance balanced about the input terminals. Use twisted shielded cable for the input signal to reduce inductive and capacitive pick-up. During circuit layout or interassembly connections, twisted wire pairs are recommended for power input and signal output. For basic isolator connections, see Figure 1. Capacitors C1-C5 are required in all applications to achieve the low noise rating and provide adequate filtering of the power supply.

Figure 1. Basic Isolator Interconnection

THEORY OF OPERATION

The AD295 obtains its outstanding performance from a pulse width modulation technique using transformer coupling. This technique permits both signal and power transfer from input to the output stage of the isolator. Additionally, this technique provides higher noise immunity and lower nonlinearity than obtained from optically coupled or amplitude modulated transformer coupled techniques.

The three basic sections of the AD295 are shown in Figure 2. The power section 80kHz oscillator signal is transferred to the input and output sections via T2. The signal is then rectified and filtered providing dc power for that section's circuitry and for external application use. The input section consists of input amplifier A1 and the input modulator attenuator circuit. A triangular waveform derived from the 80kHz oscillator is sent to

Figure 2. Basic Block Diagram

the modulator. If the input signal of A1 is zero, the triangle wave remains symmetrical. If A1 moves away from zero, the triangle wave moves positive or negative becoming asymmetrical. These modulated signals are converted to a pulsed waveform and transferred to the output section via T1. In the output section the signals are demodulated and filtered. The output amplifier A2 provides gain and additional filtering.

INTERELECTRODE CAPACITANCE AND TERMINAL RATINGS

Capacitance: Interelectrode terminal capacitance arises from stray coupling capacitance effects between the input terminals and signal output terminals. Each are shunted by leakage resistance values exceeding $50G\Omega$. Figure 3 illustrates the AD295's capacitance between terminals.

Terminal Ratings: CMV performance is given in both continuous ac, or dc peak ratings. Continuous peak ratings apply from dc up to the normal full power response frequency. Figure 3 illustrates the AD295's ratings between terminals. Note that for the \pm 2500V rating between the input and output terminals to apply, the AD295 must be used in a three port configuration. If the output common is tied to the power common, the input to output CMV rating is \pm 2000V.

5

Figure 3. Interelectrode Capacitance and Terminal Ratings

OFFSET AND GAIN ADJUSTMENT PROCEDURE

The calibration procedure, illustrated in Circuits 1 and 2, shows the recommended techniques that can be used to minimize output error. In this example, the output span is -10V to +10V.

Offset Adjustment

- 1. Configure the AD295 as shown in Circuit 1. G = 1.
- 2. Apply $E_{IN} = 0V$ dc and adjust R_O for $E_O = 0$ volts.
- 3. Configure the AD295 as shown in Circuit 2. G = 100.
- 4. Apply $E_{IN} = 0V$ dc and adjust R_I for $E_O = 0$ volts.
- 5. Repeat steps 1-4 if necessary.

Gain Adjust

- 6. Apply $E_{IN} = +0.1V$ dc adjust R_G for $E_0 = +10.000V$ dc.
- 7. Apply $E_{IN} = -0.1V$ dc and measure the output error (see Curve a.)

- 8. Adjust R_G until the output error is one half that measured in step 6 (see Curve b).
- 9. Apply $E_{IN} = +0.1V$ dc and adjust R_0 until the output error is one half that measured in step 7 (see Curve c).
- 10. Repeat steps 6-9 if necessary.

SELECTING GAIN

The AD295 basic gain is unity from input to output. All input signals are attenuated by 2.5 at the input modulator/attenuator then amplified at the output (see Figure 2).

The AD295 contains both input and output amplifiers, the gains of which can be set independently. Figure 4 illustrates the basic gain configurations. Taking input gain helps dilute output stage offset drift and is recommended where offset drift is to be minimized since taking output gain multiplies output drift by the gain taken. Output gain can be used for improved linearity and frequency response at the expense of higher offset drift.

Figure 4a illustrates the basic unity gain configuration. With the uncommitted input amplifier configured as a buffer and pins 22 and 23 of the output amplifier jumpered, $e_0 = e_s$.

a. Basic Unity Gain Configuration

Input to output gain greater than unity can be independently set at the input, output, or both. For input gain configuration see Figures 4b and 4c. Output gain configuration is shown in Figure 4d.

b. Basic Gain Noninverting Configuration

c. Input Gain Inverting Configuration

d. Output Gain Noninverting Configuration Figure 4. Input/Output Gain Configurations

PERFORMANCE CHARACTERISTICS Phase Shift vs. Frequency: The phase shift vs. frequency response, for the AD295 is shown in Figure 5.

Figure 5. Typical AD295 – Phase Shift vs. Frequency

CMR vs. Frequency: Input-to-output CMR is dependent on source impedance imbalance, input signal frequency and amplifier gain. CMR is rated at 60Hz and 1k Ω source impedance imbalance at a gain of 1V/V. Figure 6 illustrates the CMR vs. frequency for the AD295. CMR approaches 120dB at dc with a source impedance imbalance of 1k Ω .

Figure 6. Typical AD295 - CMR vs. Frequency

Input Voltage Noise vs. Bandwidth: Voltage noise referred to the input is dependent on gain and bandwidth. Figure 7 illustrates the typical input noise in μV peak-to-peak in a 10Hz to 10kHz frequency range.

Figure 7. Typical AD295 – Input Voltage Noise vs. Bandwidth

Output Voltage Noise vs. Bandwidth: Voltage noise referred to the output is dependent on gain, bandwidth, input and output noise contributions. Figure 8 illustrates the typical output noise in mV peak-to-peak in a 10Hz to 10kHz frequency range.

Figure 8. Typical AD295 – Output Voltage Noise vs. Bandwidth

Gain Nonlinearity vs. Output Swing: Linearity error is defined as the deviation of the output voltage from the best straight line and is specified as % peak-to-peak of output voltage span, e.g., nonlinearity of model AD295A operating at an output span of 10V peak-to-peak (\pm 5V) is \pm 0.05% or \pm 5mV. Figure 9 illustrates the gain nonlinearity for output swing up to \pm 10V (20V peak-topeak).

Figure 9. Typical AD295 - Gain Nonlinearity vs. Output Swing

Full Power Bandwidth vs. Gain: Figure 10 illustrates the full power bandwidth vs. gain for the AD295. A 1.4kHz full power response is possible with gain up to 100V/V.

Figure 10. Typical AD295 – Full Power Bandwidth vs. Gain Small Signal Bandwidth vs. Gain: Figure 11 illustrates the small signal bandwidth vs. gain for the AD295. The small signal response remains at 4.5kHz for gain up to 100V/V.

Figure 11. Typical AD295 - Small Signal Bandwidth vs. Gain

Figure 12. Typical AD295 - Gain Nonlinearity vs. Gain

ISOLATION AMPLIFIERS 5-31
Isolated Strain Gauge Using Front End of AD295

The AD295 can be used to condition and isolate differential signal sources like those present with strain gauge measurements. Figure 13 illustrates one possible configuration for conditioning a strain gauge. Amplifiers A1 and A2 are powered by the AD295's input isolated power supply. This eliminates the need for a separate dc/dc converter and provides a completely floated differential input. Input gain is selected via R_G and determined by the input gain formula.

Figure 13. Isolated Strain Gauge Using Front End of AD295

Isolated Temperature Measurement with Cold Junction Compensation

The AD295 can be used to condition, isolate and provide cold junction compensation of thermocouples in temperature measurement applications. With the circuit shown in Figure 14, the AD590 must be thermally connected to the cold junction terminal for an accurate temperature measurement of the terminals. Using this circuit, accurate temperature measurements using the industry's popular J type thermocouple can be made.

Figure 14. Isolated Temperature Measurement with Cold Junction Compensation

Isolated Voltage-to-Current Loop Converter

Illustrated in Figure 15, the AD295 is used to convert a 0 to +10V input signal to a standard 4-to-20mA current. Here high common-mode rejection and high common-mode voltage suppression are easily obtained with the AD295. The AD295 conditions the 0 to +10V input signal and provides a proportional voltage at the isolator's output. This output signal is converted to a 4-to-20mA current, which in turn is applied to the loop load $R_{\rm LOAD}$.

Figure 15. Isolated Voltage-to-Current Loop Converter

Noise Reduction in Data Acquisition Systems

In critical low noise applications like when an isolation amplifier precedes an analog to-digital converter, it may be desirable to add filtration, otherwise output ripple may cause inaccurate conversions. The 2-pole low-pass active filter shown in Figure 16 limits isolator bandwidth of the AD295. The filter will reduce output ripple and provide smoothing of discontinuous high frequency waveforms.

Figure 16. 2-Pole, 2kHz Active Filter

Economy, High Performance, Self-Contained Isolation Amplifier

Model 284J

FEATURES

Low Cost

Low Nonlinearity: $\pm 0.05\%$ @ 10V pk-pk Output High Gain Stability: $\pm 0.0075\%^{\circ}$ C, $\pm 0.001\%/1000$ hours Isolated Power Supply: $\pm 8.5V$ dc @ $\pm 5mA$ High CMR: 110dB min with $5k\Omega$ Imbalance High CMV: $\pm 5000V_{pk}$, 10ms Pulse; $\pm 2500V$ dc continuous Small Size: $1.5'' \times 1.5'' \times 0.6'''$ Adjustable Gain: 1 to 10V/V; Single Resistor Adjust Meets IEEE Std 472: Transient Protection (SWC) Meets UL Std 544 Leakage: $2.0\mu A$ max @ 115V ac, 60Hz

APPLICATIONS

Biomedical and Patient Monitoring Instrumentation Ground Loop Elimination in Industrial Control Off-Ground Signal Measurements 4-20mA Isolated Current Loop Receiver

GENERAL DESCRIPTION

Model 284J is a low cost isolation amplifier featuring isolated power, $\pm 8.5V$ dc @ ± 5 mA loads, $\pm 2500V$ dc off-ground isolation (CMV) and 110dB minimum CMR at 60H2, $5k\Omega$ source imbalance, in a compact $1.5'' \times 1.5'' \times 0.6''$ epoxy encapsulated package. This improved design achieves low nonlinearity of $\pm 0.05\%$ @ 10V pk-pk output, gain stability of $\pm 0.0075\%^{\circ}C$ and input offset drift of $\pm 30\mu V/^{\circ}C$ at G = 10V/V. Using modulation techniques with reliable transformer isolation, model 284J will interrupt ground loops, leakage paths and high voltage transients to $\pm 5kV_{pk}$ (10ms pulse) providing dc to 1kHz (-3dB) response over an adjustable gain range of 1V/V to 10V/V. Model 284J 's fully floating guarded input stage and floating isolated power for external input circuitry, offers versatility for both medical and industrial OEM applications.

WHERE TO USE MODEL 284J

Medical Applications: In all biomedical and patient monitoring equipment such as multi-lead ECG recorders and portable diagnostic designs, model 284J offers protection from lethal ground fault currents as well as 5kV defibrillator pulse inputs. Low level bioelectric signal recording is achieved with model 284J's low input noise ($8\mu V$ p-p) and high CMR (110dB, min).

Industrial Applications: In computer interface systems, process signal isolators and high CMV instrumentation, model 284J offers complete galvanic isolation and protection against damage from transients and fault voltages. High level transducer interface is afforded with model 284J's 10V pk-pk input signal capability at a gain of 1V/V operation. In portable field designs, model 284J's single supply, low power drain of 85mW @ +12V operation offers long battery operation.

284J FUNCTIONAL BLOCK DIAGRAM

DESIGN FEATURES AND USER BENEFITS

Isolated Power: Dual $\pm 8.5V$ dc @ $\pm 5mA$, completely isolated from the input power terminals ($\pm 2500V$ dc isolation), provides the capability to excite floating signal conditioners, front end buffer amplifiers and remote transducers such as thermistors or bridges.

Adjustable Gain: Model 284J's adjustable gain combined with its 10V pk-pk output signal dynamic range offers compatibility with a wide class of input signals. A single external resistor enables gain adjustment from 1V/V to 10V/V providing the flexibility of applying model 284J in both high level transducer interfacing as well as low level sensor measurements.

Floating, Guarded Front-End: The input stage of model 284J can directly accept floating differential signals, such as ECG biomedical signals, or it may be configured as a high performance instrumentation front-end to accept signals having CMV with respect to input power common.

High Reliability: Model 284J is a conservatively designed, compact module, capable of reliable operation in harsh environments. Model 284J has a calculated MTBF of over 400,000 hours and is designed to meet MIL-STD-202E environmental testing as well as the IEEE Standard for Transient Voltage Protection (472-1974: Surge Withstand Capability). As an additional assurance of reliability, every model 284J is factory tested for CMV and input ratings by application of 5kV pk, 10ms pulses, between input terminals as well as input/output terminals.

SPECIFICATIONS (typical $@ + 25^{\circ}C$ and $V_s = +15V$ unless otherwise noted)

GAIN (NON-INVERTING) Range (50k Ω Load)I to 10V/V Gain = [1 + $\frac{100 k \Omega}{107 k \Omega + R_i (k \Omega)}$ Pormula $\frac{23\%}{23\%}$ ws. Time $001\%/1000$ Hoursws. Time $001\%/1000$ Hoursws. Time $001\%/1000$ HoursMDPUT VOLTAGE RATINGS $100075\%/C$ Linear Differential Range, G = $1V/V$ $\pm 5000^{7} g_h$ maxMax Safe Differential Input $2600^{7} g_h$ maxContinuous $240V_{mas}$ Pulse, 10m sduration, 1 pulse/10 sec $\pm 25000V_{ph}$ maxAC, 60Hz, 1 munic duration $2500V_{ph}$ maxContinuous, ac or de $\pm 25000V_{ph}$ maxWith 510k\Omega in series with Guard $\pm 55000V_{ph}$ maxContinuous, ac or de $\pm 25000V_{ph}$ maxSkaD Source Impedance114dBSkaD Source Impedance Imbalance114dBMax Leakage Current, Inputs to Power Common $0115Vac$, $601t2$ Differential $10^6 \Omega l70pF$ Overload $300k\Omega$ Common Mode $5x10^{16} \Omega l20pF$ NPUT INEPANCE $001k^2$ 100 MinDifferential $0^6 \Omega l70pF$ Overload $300k\Omega$ Common Mode $5x10^{16} \Omega l20pF$ INPUT NOISE $5pA pp$ Volage, G = $10V/V$ $200Hz$ $0.05Hz$ to $100Hz$ $5pA pp$ FREQUENCY RESPONSESmall square, $-35K$ GSmall square, $-34K$ G = $1V/V$ to $10V/V$ $0.05Hz$ to $100Hz$ $5pA pp$ FRED OUTPUT $t50M_{2} A_{2} CompW/P$ Voltage, 65M Load $-55V$ dc $0.05Hz$ to $100VV$ fifter taplicationof	MODEL	284J
Range (50kΩ Load)1 to 10V/V Gam = [1 + $\frac{100 k\Omega}{107 k\Omega + R(k\Omega)}$ Deviation from Formula±3%ws. Time±0001%/1000 Hoursws. Time±0001%/1000 Hoursws. Temperature (0 to +70°C) ¹ ±0.0075%/CNPUT VOLTAGE RATINGS±5V minLinear Differential Range, G = 1V/V±5V minMax Safe Differential Input240V _{rms} Continuous240V _{rms} Pulse, 10ms duration, 1 pulse/10 sec±5500V _{pk} maxMax CMV, Inputs to Outputs2500V _{pk} maxAC, 60Hz, 1 muute duration±5500V _{pk} maxOttimus, a cor de±2500V _{pk} maxWith 510kΩ in series with Guard±5000V _{pk} maxSkΩ Source Impedance Imbalance110dB minCMR, Inputs to Outputs, 60Hz, R§ ≤ 5kΩ114dBBalanced Source Impedance Imbalance78dBMax Leakage Current, Inputs to Power Common2.0µA rms maxDifferential10° Ω[170pFOverload300kΩCommon Mode5x10 ¹⁰ Ω[20pFINPUT IMPEDANCE±0/11 MaxUNPUT NOISE±0.11A.A°CVoltage, G = 10VV0.05Hz to 100Hz0.05Hz to 100Hz5pA ppFREQUENCY RESPONSE200HzSmall Signal, -3dB, G = 1/V to 10V/V1kHzSlew Rate25m VµsOutput Gan = 1/V200HzGan = 1/V700HzGan = 1/V200HzGan = 1/Y200HzGan = 1/Y100V/YSupply Voltage±1mV%RATED OUTPUTths12 + 150(G)µV ⁰ CVoltage, StML Load<	GAIN (NON-INVERTING)	-
FormulaGain = $[1 + \frac{10}{10}$ T _k Ω + R _i (kΩ)Deviation from Formula±3%ws. Time±3%to Ool S//1000 Hoursto	Range (50k Ω Load)	1 to 10V/V 100kΩ
Devalue from Formula±3%t. H. M. 1940w. Time±0 001%/1000 Hours±0.0075%/°CNonlinearry, G = 1/V/ to 10/V/2±0.05%Linear Differental Range, G = 1/V/±5V minMax Safe Differental Input±6500Vpk maxOutmuous240VpmPulse, 10ms duration, 1 pulse/10 sec±500Vpk maxMax CMV, Inputs to Outputs2500Vpk maxAC, 60ftz, 1 mnute duration±5500Vpk maxWith 510k2 in series with Guard±5000Vpk maxOttimuous, ac or de±2500Vpk maxBalanced Source Impedance114dBSk12 Source Impedance Imbalance110dB minCMR, Inputs to Guard, 60Hz114dBIkt2 Source Impedance Imbalance78dBMax Leakage Current, Inputs to Power Common $= 115V$ ac, 60HzUPUT DIFFERENCE CURRENT10 ⁴ Ω170pFIntual, @ +25°C±7nA maxvs. Temperature (0 to +70°C)±0.1nA/°CINPUT NOISE5pA ppVoltage, G = 10/V00Hz0.05Hz to 100Hz5pA ppFREQUENCY RESPONSE200HzSmall Signal, -3dB, G = 1V/V to 10V/V1kHzGan = 10/V200HzGan = 10/V200HzRATED OTPUTth162Voltage, ShGL Load±5.V deAccuracy±5.V deAccuracy±5.V deAccuracy±5.V deAccuracy±5.V deOutput Impedance1kΩOutput Impedance±6.5.V deAccuracy±5.V deAccuracy±5.V deAccuracy±6.	Formula	$Gain = \left[1 + 1000000000000000000000000000000000000$
vs. Time ±0 001%/1000 Hours vs. Temperature (0 to +70°C) ¹ ±0.0075%/°C NNPUT VOLTAGE RATINGS ±5V min Linear Differential Input 240V _{mis} Continuous 240V _{mis} Pulse, 10ms duration, 1 pulse/10 sec ±5500V _{pk} max Max CMV, Inputs to Outputs 2500V _{pk} max AC, 60Hz, 1 minute duration ±2500V _{pk} max Oontinuous, ac or dc ±2500V _{pk} max Continuous, ac or dc ±2500V _{pk} max Continuous, ac or dc 114dB SkL Source Impedance 114dB SkL Source Impedance 114dB SkL Source Impedance 78dB Max Leakage Current, Inputs to Power Common 2.0µA rms max UNPUT IMFEDANCE 10 ⁶ Ω170pF Differential 10 ⁶ Ω170pF Overload 300kΩ Common Mode 5x10 ¹⁰ Ω120pF INPUT IMFERENCE CURRENT 11ntal, θ: 25°C Intal, θ: 25°C ±7nA max vs. Temperature (0 to +70°C) ±0.1nA/°C INPUT NOISE 5pA p:p FREQUENCY RESPONSE Small Signal, -3dB, G = 1/VV to 10V/V Silew Rate	Deviation from Formula	±3%
vs Temperature (0 to +70° C)* ±0.0075%/ C Nonlinearly, G = 1/V/ to 10V/V ² ±0.05% INPUT VOLTAGE RATINGS Linear Differential Range, G = 1/V/ ±5V min Max Safe Differential Input Continuous Pulse, 10ms duration, 1 pulse/10 sec ±6500V _{pk} max Max CMV, Inputs to Outputs AC, 60Hz, 1 munuc duration 2500V _{pk} max With 510k2 in series with Guard ±5000V _{pk} max Continuous, ac of deta Balanced Source Impedance 1144B SkQ Source Impedance mbalance 78dB Max Leakage Current, Inputs to Power Common @ 115V ac, 60Hz IkQ Source Impedance Inbalance 78dB Max Leakage Current, Inputs to Power Common @ 115V ac, 60Hz IkQ Source Inpedance Common @ 115V ac, 60Hz IkQ Source Inpedance Common @ 115V ac, 60Hz IkQ Source Inpedance State Inferiential 10 ⁶ Ωl70pF Overload 300kΩ Common Mode 5x10 ¹⁰ Ωl20pF INPUT INFERENCE CURRENT Intral, @ +25°C ±7nA max vs. Temperature (0 to +70°C) ±0.1nA°C INPUT NOISE Voltage, G = 10V/V 0.05Hz to 100Hz 8µV pp 10Hz to 1kHz 10µV ms Current 0.05Hz to 100Hz 5pA pp FREQUENCY RESPONSE Small Signal, -3dB, G = 1V/V to 10V/V 1kHz Slew Rate 200ms OFFSET VOLTAGE REFERENDE 100HZ Gain = 1V/V 700Hz Gain = 1V/V 700Hz Gain = 1V/V 700Hz Cain = 10V/V 200Hz Recovery Time, to 5100µV after Application of ±5500V _{pk} Differential Input Pulse 200ms OFFSET VOLTAGE REFERENDE 10 INPUT Initial, @ +25°C, ±150/CjµV ⁰ C vs. Temperature (0 to +70°C) ±(5 + 20/G)mV vs. Temperature (0 to +70°C) ±(5 + 20/G)mV voltage, 55mA Load ±8,5V dc 200ms OUTPUT Voltage, 55mA Load ±8,5V dc 200ms Output Ripple, 1MHz Bandwidth 5mV pk-pk ISOLATED POWER OUTPUTS Voltage, 51mA Load ±8,5V dc 200ms Ot +70°C POWER SUP	vs. Time	±0 001%/1000 Hours
Nonlinearty, G = 1V/V to 10V/V10.3%INPUT VOLTAGE RATINGS15V minLinear Differential Input240V _{ms} Continuous240V _{ms} Pulse, 10ms duration, 1 pulse/10 sec $\pm 5000V_{pk}$ maxMax CMV, Inputs to Outputs2500V _{pk} maxAC, 60Hz, 1 minute duration $2500V_{pk}$ maxWith 510k2 m series with Guard $\pm 5000V_{pk}$ maxContinuous, ac of de $\pm 2250V_{pk}$ maxContinuous, ac of de $\pm 2500V_{pk}$ maxContinuous, ac of de $\pm 2500V_{pk}$ maxMax CMV, Inputs to Outputs, 60Hz, Rs $\leq 5k\Omega$ 10dB minCMR, Inputs to Guard, 60Hz11d4BIkQ Source Impedance Imbalance10dB minQ 1170pF0.0µA mis maxOverload300k3Common Mode $5x10^{10}\Omega 170pF$ Overload300k3Common Mode $5x10^{10}\Omega 2120pF$ INPUT DIFFERENCE CURRENT10nA/*CInitial, 0+25°C $\pm 7nA$ maxvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm 0.1nA/*C$ INPUT NOISEVoltage, G = 10V/VVoltage, G = 10V/V200Hz0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSESmall Signal, $\pm 34B$, G = 1V/V to 10V/VSlew Rate200msOFFET VOLTAGE REFERRED TO INPUTInitial, 0 $\pm 25^{\circ}$ C, Ajuzable to Zerotifs = 200V_k200HzRecovery Time, to $\pm 1004V$ after Applicationof $\pm 6500V_{pk}$ Differential Input Pulse200msOFFET VOLTAGE REFERRED TO INPUTInitial, 0 $\pm 25^{\circ}$ C, Ajuzable to Zerotifs =	vs Temperature (0 to +70°C) ¹	±0.0075%/°C
INPUT VOLTAGE RATINGS±5V minLinear Differential Input240V msContinuous240V msPulse, 10ms duration, 1 pulse/10 sec±6500V pk maxMax CMV, Inputs to Outputs2500V pk maxAC, 60Hz, 1 minute duration±2300V pk maxContinuous, ac or de±2300V pk maxCMR, Inputs to Outputs, 60Hz, Rş < \$kΩ	Nonlinearity, G = 1 V/V to 10 V/V	10.03%
Linear Differential Paules, G = 1/V Continuous 240V _{ms} = 240V _{ms} = 4500V _{pk} max Max Safe Differential Input Continuous, action of pulse/10 sec = 4500V _{pk} max Ac, 60Hz, 1 munte duration = 2500V _{pk} max With 510k3 in series with Guard = 2500V _{pk} max Continuous, action of explose = 42200V _{pk} max Continuous, action of explose = 2200V _{pk} max Continuous, action of explose = 114dB =	INPUT VOLTAGE RATINGS	+5V min
Continuous240V _{ms} Puise, 10ms duration, 1 pulse/10 sec $\pm 6500V_{pk}$ maxMax CMV, Inputs to Outputs $2500V_{pk}$ maxAC, 60Hz, 1 minute duration $2500V_{pk}$ maxPuise, 10ms duration, 1 pulse/10 sec $\pm 2500V_{pk}$ maxWith 510kS2 m series with Guard $\pm 5000V_{pk}$ maxContinuous, ac of de $\pm 2500V_{pk}$ maxSk12 Source Impedance114dBSk12 Source Impedance Imbalance78dBMax CMV, Inputs to Guard, 60Hz10 ⁶ Ω Il70pFOutree Impedance Imbalance78dBMax Leakage Current, Inputs to Power Common $2.0\muA$ mis maxINPUT IMFEDANCE $10^6 \Omega Il70pF$ Differential $10^6 \Omega Il70pF$ Overload300kΩCommon Mode $5x10^{10} \Omega Il20pF$ INPUT INFERENCE CURRENTIntral, $0 + 25^{\circ}$ CIntral, $0 + 25^{\circ}$ C $\pm 7nA$ maxvs. Temperature (0 to $+70^{\circ}$ C) $\pm 0.1nA^{\circ}$ CVoltage, C = 10V/V $0.05Hz$ to 100Hz0.05Hz to 100Hz $8\muV$ p-p10Hz to 1kHz10µV rmsCurrent $0.05Hz$ to 100HzGain = 1V/V700HzGain = 10/V200HzGain = 10/V200HzRecevery Time, to ±100µV after Application $5mV pc, pk$ of 5500V _{pk} Voltge $\pm 15V dc$ Voltage, 550AL Load $\pm 8.5V$ dcAccuracy $\pm 55^{\circ}$ Current $\pm 150/GOLyV^{0}C$ voltage, 550AL Load $\pm 55^{\circ}$ current $\pm 150/GOLyV^{0}C$ voltage, 50AL Load $\pm 5V$ minOutpu	Max Safe Differential Input	-5 V MM
Pulse, 10ms duration, 1 pulse/10 sec $\pm 6500V_{pk}$ maxMax CMV, Inputs to Outputs $2500V_{pk}$ maxPulse, 10ms duration, 1 pulse/10 sec $\pm 2500V_{pk}$ maxWith 510k2 m series with Guard $\pm 2500V_{pk}$ maxContinuous, ac or de $\pm 2500V_{pk}$ maxCMR, Inputs to Outputs, 60Hz, Rg $\leq 5k\Omega$ Balanced Source ImpedanceBalanced Source Impedance114dBSkΩ Source Impedance Imbalance78dBMax Leakge Current, Inputs to Power Common $2.0\muA$ mms maxINPUT IMPEDANCE $10^6 \Omega I/70pF$ Overload $300k\Omega$ Common Mode $5x10^{10} \Omega I/20pF$ INPUT IMPEDANCE $17\pi A$ maxIntual, @ +25°C $\pm 7\pi A$ maxvs. Temperature (0 to +70°C) $\pm 0.1nA^2C$ INPUT NOISEVoltage, G = 10V/VVoltage, G = 10V/V $0.05Hz$ to 100Hz0.05Hz to 100Hz $5pA$ P-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VSlew Rate $25mV/\mus$ Gain = 10/V $200ms$ OFFSET VOLTAGE REFERED TO INPUT $163 + 150/G)\muV^2$ Cws. Temperature (0 + 70°C) $\pm (5 + 20/G)mV$ vs. Temperature (0 + 70°C) $\pm (5 + 20/G)mV$ read $5mV pkp$ Slew Rate $25mV/\mus$ Full Power, 10V pr Output $200ms$ OFFSET VOLTAGE REFERED TO INPUT $165 + 20/G)mV$ Initial, @ +25°C, dugitable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to +70°C) $\pm (5 + 20/G)mV$ voltage, 50AL Load $\pm 55\%$ Current $\pm 8.5V$ deVoltage, 50AL	Continuous	240V _{rms}
Max CMV, Inputs to Outputs2500V msAC, 60Hz, 1 munute duration2500V pk maxPulse, 10ms duration, 1 pulse/10 sec2500V pk maxWith \$10kΩ in series with Guard5000V pk maxCMR, Inputs to Outputs, 60Hz, Rg \leq \$kΩBalanced Source Impedance ImbalanceIMASource Impedance Imbalance114dBSkΩ Source Impedance Imbalance78dBMax Leakage Current, Inputs to Power Common 2.0μ A rms maxPUTS ac, 60Hz2.0µA rms maxDifferential10 ⁶ Ω170pFOverload300kΩCommon Mode 5×10^{10} Ω120pFINPUT IMFEDANCE17nA maxUNPUT NOISE 40×10^{2} CVoltage, G = 10V/V0.05Hz to 100Hz0.05Hz to 100Hz5pA ppFREQUENCY RESPONSESmall Sgnal, -34B, G = 1V/V to 10V/VSlamal Sgnal, -34B, G = 1V/V to 10V/V1kHzGain = 10V/V200HzGain = 10V/V200HzGain = 10V/V200HzGain = 10V/V200HzGain = 10V/V1(15 + 20/G)mVvs. Supply Voltage±1mV/%RATED OUTPUT1(5 + 20/G)mVVoltage, SikΩ Load±5V minOutput Impedance1kΩOutput Ripple, 10MHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTS48.5V dcVoltage, 45.5M Load±8.5V dcAccuracy±5%Current±5mA minRegulation, No Load to Full Load±0, -15%Rupple, 10MHz Bandwidth100mV ppPOWER SUPLY, NINCLE POLARITY ³ Voltage, 75.5M	Pulse, 10ms duration, 1 pulse/10 sec	±6500V _{pk} max
AC, 60Hz, 1 minute duration2300V ms 2300V pk maxPulse, 10ms duration, 1 pulse 10 sec12500V pk maxWith 510kΩ m series with Guard25000V pk maxContinuous, ac ord c114dBBalanced Source Impedance114dBSkΩ Source Impedance Imbalance110dB minCMR, Inputs to Guard, 60Hz116dB minMax Leakage Current, Inputs to Power Common2.0µA rms max $@$ 115V ac, 60Hz2.0µA rms maxINPUT IMPEDANCE0 ⁴ Ωl70pFDifferential10 ⁴ Ωl70pFOverload300kΩCommon Mode5x10 ¹⁰ Ωl20pFINPUT MIPEDANCE10.1nA/ ² CINPUT NOISE10.1nA/ ² CVoltage, G = 10V/V0.05Hz to 100Hz0.05Hz to 100Hz5pA p.p10Hz to 1kHz10µV rmsCurrent0.05Hz to 100HzGain = 10V/V200HzGain = 10V/V200HzGain = 10V/V200Hzcare = 10V/V200Hzvs. Stemperature (0 to +70°C)±(5 + 20/G)mVws. Temperature (0 to +70°C)±(5 + 150/G)µV/°Cws. Supply Voltage±mV/%RATED OUTPUTVoltage, 55°C Adjustable to ZeroVolta	Max CMV, Inputs to Outputs	25001
The formation of the set o	AC, 60Hz, 1 minute duration Bulse, 10ms duration, 1 mulse (10 sec	2500V _{ms} +2500V ₋₁ max
Continuous, ac or de±2500V _{pk} maxCMR, Inputs to Outputs, 60Hz, R _S ≤ 5kΩ114dBBalanced Source Impedance Imbalance110dB minCMR, Inputs to Guard, 60Hz110dB minCMR, Inputs to Guard, 60Hz2.0µA rms maxMax Leakage Current, Inputs to Power Common2.10½ Ac. 60HzQ 115 Vac, 60Hz2.0µA rms maxINPUT IMPEDANCE10 ⁸ Ωl70pFDifferential10 ⁸ Ωl70pFOverload300kΩCommon Mode5x10 ¹⁰ Ωl20pFINPUT DIFFERENCE CURRENT1nital, θ·25°CInital, θ·25°C±7nA maxvs. Temperature (0 to +70°C)±0.1nA/°CVoltage, G = 10V/V0.05Hz to 100Hz0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VSmall Signal, -3dB, G = 1V/V to 10V/V1kHzSlew Rate25mV/µsFull Power, 10V p-p OutputGam = 10//VGam = 10V/V200HzCorrent±0.52°Cvs. Temperature (0 to +70°C)±(5 + 20/G)mVvs. Temperature (0 to +70°C)±(5 + 20/G)mVvoltage, 50kΩ Load±5V minOutput Impela, IMHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTS±8.5V dcVoltage, 5tmA Load±5%Current±8.5V dc <td>With 510kΩ in series with Guard</td> <td>$\pm 5000 V_{pk}$ max</td>	With 510k Ω in series with Guard	$\pm 5000 V_{pk}$ max
CMR, Inputs to Outputs, 60Hz, R5 ≤ 5kΩBalanced Source Impedance Imbalance114dBSkQ Source Impedance Imbalance78dBMax Leakage Current, Inputs to Power Common2.0µA rms maxPUT IMPEDANCE10 ⁶ Ωl70pFDifferential10 ⁶ Ωl70pFOverload300kΩCommon Mode5x10 ¹⁰ Ωl20pFINPUT IMPEDANCE10 ⁸ Ωl70pFINPUT MEDEDANCE10 ⁸ Ωl70pFOverload300kΩCommon Mode5x10 ¹⁰ Ωl20pFINPUT DIFFERENCE CURRENT11ntal, @ +25°CInital, @ +25°C±7nA maxvs. Temperature (0 to +70°C)±0.1nA/°CINPUT NOISEVoltage, G = 10V/V0.05Hz to 100Hz8µV p-p10Hz to 1kHz10µV rmsCurrent0.05Hz to 100Hz0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSESmall Sgnal, -34B, G = 1V/V to 10V/VSlew Rate200msOFFSET VOLTAGE REFERED TO INPUT10HzInital, @ +25°C, Adjustable to Zero±(5 + 20/G)mVvs. Temperature (0 to +70°C)±(15 + 150/G)µV/°Cvs. Temperature (0 to +70°C)±(15 + 150/G)µV/°Cvs. Temperature (0 to +70°C)±(15 + 150/G)µV/°Cvs. Temperature (0 to +70°C)±1mV/%RATED OUTPUTVoltage, S0kΩ Load±5V mnOutgut Impedance1kΩOutgut Impedance1kΩOutgut Rupple, 1MHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTSVoltage, SinA Load±6,5V dcAccuracy±5%Current±5% CCurr	Continuous, ac or dc	±2500V _{pk} max
Balanced Source Impedance114dBSkD Source Impedance Imbalance110dB minCMR, Inputs to Guard, 60Hz78dBMax Leakage Current, Inputs to Power Common $@$ 115V ac, 60HzQ 115V ac, 60Hz2.0µA rms maxNPUT IMPEDANCE $10^{6} \Omega 70 p F$ Overload300kΩCommon Mode $5x10^{10} \Omega 20 p F$ INPUT DIFFERENCE CURRENTInitial, $@$ 25°CInitial, $@$ 25°C $±7nA max$ vs. Temperature (0 to $+70^{\circ}$ C) $\pm0.1nA/^{2}$ CNPUT NOISEYoltage, G = 10V/V0.05Hz to 100Hz8µV p-p10Hz to 1kHz10µV rmsCurrent0.05Hz to 100Hz0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VSlew Rate25mV/µsFull Power, 10V p-p OutputGam = 10V/VGam = 10V/V200HzGam = 10V/V200HzRecovery Time, to ±100µV after Application of ±6500V _{pk} Differential Input Pulse200msOFFSET VOLTAGE REFERRED TO INPUTtifs + 150/G)µV/°Cvs. Supply Voltage±1mV/%RATED OUTPUTvoltage, 50kΩ LoadVoltage, 50kΩ Load±5V minOutput Impedance1kΩOutput Impedance1kΩVoltage, 51mA Load±8.5V dcAccuracy±5%Current±5%Voltage, 1112 Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Questing+15V dcVoltage, Questing+15V dcVoltage, Corrent±15% C	CMR, Inputs to Outputs, 60Hz, $R_S \leq 5k\Omega$	•
Skl 5 Source impedance impedance11005 minCMR, Inputs to Guard, 60Hz78dBMax Leakage Current, Inputs to Power Common $2.0\mu\Lambda$ rms maxINPUT IMPEDANCE $2.0\mu\Lambda$ rms maxDifferential $10^6 \Omega 170 p F$ Overload $300k\Omega$ Common Mode $5x10^{10} \Omega 120 p F$ INPUT DIFFERENCE CURRENTInitial, @ +25°CIntul, @ +25°C $2.0\mu\Lambda$ maxvs. Temperature (0 to +70°C) $40.1n\Lambda/°C$ INPUT NOISEVoltage, G = 10V/V0.05Hz to 100Hz 8μ V p-p10Hz to 1kHz 10μ V rmsCurrent $5p\Lambda$ p-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1 V/V to 10V/VSlew Rate $25mV/\mu$ sFull Power, 10V p-p OutputGam = 10V/VGam = 10V/V $200Hz$ Gam = 10V/V $200Hz$ Recovery Time, to ±100 μ V after Applicationof ±5500V _{µb} Differential Input Pulse $200ms$ OFFSET VOLTAGE REFERRED TO INPUTInitial, @ +25°C, Adjustable to Zerovs. Temperature (0 to +70°C)vs. Temperature (0 to +70°C)t1fs1, @ +25°C, Adjustable to Zerot5V minOutput ImpedanceISOLATED POWER OUTPUTSVoltage, 5tmA Loadt5NA minRegulation, No Load to Full Loadt00msOutput Impedancet00msOutput Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Operatingcurrentt15W devoltage Operatingcurrent <t< td=""><td>Balanced Source Impedance</td><td>114dB</td></t<>	Balanced Source Impedance	114dB
ChristianThe control of the control of	SKM Source Impedance Imbalance	110dB min
Max Leakage Current, Inputs to Power Common $2.0\mu A \text{ mm s max}$ INPUT IMPEDANCEDifferential $10^8 \Omega \ 70 \text{ pF}$ Overload $300 \text{k}\Omega$ Common Mode $5x10^{10} \Omega \ 20 \text{ pF}$ INPUT DIFFERENCE CURRENTInitial, @ $+25^{\circ}$ C $\pm 7nA \text{ max}$ vs. Temperature (0 to $+70^{\circ}$ C) $\pm 0.1nA/^{\circ}$ CINPUT NOISEVoltage, G = $10V/V$ $0.05Hz$ to $100Hz$ $8\mu V \text{ pp}$ $0.05Hz$ to $100Hz$ $5pA \text{ pp}$ FREQUENCY RESPONSESmall Signal, $-3dB$, G = $1V/V$ to $10V/V$ Slew Rate $25mV/\mu s$ Full Power, $10V \text{ p-} p$ Output $200Hz$ Gam = $1V/V$ $200Hz$ Gam = $1V/V$ $200Hz$ Gam = $10V/V$ $200Hz$ Recovery Time, to $\pm 100\mu V$ after Applicationof $\pm 6500V_{pk}$ Differential input Pulse $200ms$ OFFSET VOLTAGE REFERRED TO INPUTInitial, @ $\pm 25^{\circ}$ C, Adjustable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to $+70^{\circ}$ C) $\pm (15 + 150/G)\mu V/^{\circ}$ Cvs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUT $50A \text{ Coad}$ Voltage, $50k\Omega$ Load $\pm 5V$ minOutput Impedance $1k\Omega$ Output Ripple, 1MHz Bandwidth $5mV \text{ pc-pk}$ ISOLATED POWER OUTPUTS $\pm 5mA \text{ min}$ Regulation, No Load to Full Load $\pm 0, -15\%$ Ripple, 100kHz Bandwidth $100mV \text{ p-p}$ POWER SUPPLY, SINGLE POLARITY ³ $\forall 0 tage, Ratel Performance+ 15W de(48 to 15 5)V deCurrent\pm 10mATEMPERATURE RANGE+ 0s^{$	$1k\Omega$ Source impedance imbalance	78dB
$@ 115Vac, 60Hz$ $2.0\muA rms max$ INPUT IMPEDANCEDifferentialDifferential $10^8 \Omega 170 pF$ Overload $300k\Omega$ Common Mode $5x10^{10} \Omega \ _{20pF}$ INPUT DIFFERENCE CURRENTInitial, @ +25°CInitial, @ +25°C $\pm 7nA max$ Voltage, G = 10V/V $0.05Hz$ to $100Hz$ $0.05Hz$ to $100Hz$ $8\mu V p-p$ $10Hz$ to $1kHz$ $10\mu V rms$ Current $0.05Hz$ to $100Hz$ $0.05Hz$ to $100Hz$ $5pA p-p$ FREQUENCY RESPONSESmall Signal, $-3dB$, G = $1V/V$ to $10V/V$ Slew Rate $25mV/\mu s$ Full Power, $10V p-p$ Output $200Hz$ Gam = $10V/V$ $200Hz$ Gam = $10V/V$ $200Hz$ Gam = $10V/V$ $200Hz$ Recovery Time, to $\pm 100\mu V$ after Applicationof $\pm 6500V_{pk}$ Differential Input Pulse $200ms$ OFFSET VOLTAGE REFERRED TO INPUTInitial, $@ +25^{\circ}C$, Adjustable to Zero $\pm (5 \pm 20/G)mV$ vs. Temperature (0 to $\pm 70^{\circ}C$) $\pm (15 \times 150/G)\mu V/^{\circ}C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUT $V0kage, 50k\Omega$ LoadVoltage, $50k\Omega$ Load $\pm 5.5V$ dcAccuracy $\pm 3\%$ Current $\pm 5.5V$ dcAccuracy $\pm 5\%$ Voltage, SimA Load $\pm 8.5V$ dcAccuracy $\pm 5\%$ Current $\pm 15V dc$ Voltage, Rated Performance $\pm 15V dc$ Voltage, Rated Performance $\pm 15V dc$ Voltage, Questant $\pm 10mA$ TEMPERATURE RANGE $\pm 25\% C$	Max Leakage Current, Inputs to Power Common	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	@ 115V ac, 60Hz	2.0µA rms max
Differential108 Ω [170p FOverload300kΩCommon Mode5x10 ¹⁰ Ω [120p FINPUT DIFFERENCE CURRENTInitial, @ +25°CInitial, @ +25°C \pm 7nA maxvs. Temperature (0 to +70°C)±0.1nA/°CINPUT NOISEVoltage, G = 10V/V0.05Hz to 100Hz8µV p-p10Hz to 1kHz10µV rmsCurrent0.05Hz to 100Hz5pA p-p5pA p-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VSwe Rate25mV/µsFull Power, 10V p-p OutputGam = 10V/VGam = 1V/V700HzGam = 10V/V200HzRecovery Time, to ±100µ2 after Applicationof ±6500V _{pk} Differential Input Pulse200msOFFSET VOLTAGE REFERRED TO INPUTInitial, @ +25°C, Adjustable to Zero±(15 + 150/G)µV/°Cvs. Supply Voltage±1mV/%RATED OUTPUTVoltage, 50kΩ Load0utput Impedance0utput Ripple, 1MHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTSVoltage, ±5mA Load48.5V dcAccuracy±5%CurrentRipple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performancevoltage, Rated Performancevoltage, Cot +485°CCorrent, Quescent+10mATEMPERATURE RANGERated Performance0 to +70°COperating-25°C to +485°CCorrentCase DIME	INPUT IMPEDANCE	
Overload300k12 $Sx10^{10}\Omega l20pF$ INPUT DIFFERENCE CURRENTInitial, @ +25°CInitial, @ +25°C $\pm 7nA max$ vs. Temperature (0 to +70°C) $\pm 0.1nA/^{2}C$ INPUT NOISEVoltage, G = 10V/V0.05Hz to 100Hz $B\mu V p p$ 10Hz to 1kHz $10\mu V rms$ Current0.05Hz to 100HzSmall Signal, -3dB, G = 1V/V to 10V/V1kHzSlew Rate25mV/µsFIL Power, 10V p-p Output700HzGam = 10V/V200HzGam = 10V/V200HzRecovery Time, to ±100µV after Applicationof ±6500V _{pk} Differential Input Pulse200msOFFSET VOLTAGE REFERRED TO INPUTInitial, @ +25°C, Adjustable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to +70°C) $\pm 15 + 150/G)\mu V/^{2}C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUTVoltage, 50kΩ LoadVoltage, ±5mA Load $\pm 8.5V$ deAccuracy $\pm 5\%$ Current $\pm 5NA$ minRegulation, No Load to Full Load $\pm 0, -15\%$ Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Co + 85°CVoltage, Rated Performance $+15V$ deVoltage Operating $-4.5^{\circ} C to + 85^{\circ} C$ Carrent $=10MA$ TEMPERATURE RANGE -55° Cto + 85°CRated Performance 0 to $+70^{\circ} C$ Operating $-2.5^{\circ} C to + 85^{\circ} C$ CASE DIMENSIONS $1.5^{\circ} x to 62^{\prime}$	Differential	10 ⁸ Ω 70pF
Common Mode $3 \times 10^{\circ} \Omega \ _{20pF}$ INPUT DIFFERENCE CURRENTInitial, @ +25°Ctnitial, @ +25°C $\pm 7nA \max$ vs. Temperature (0 to +70°C) $\pm 0.1nA/°C$ INPUT NOISEVoltage, $5 \subseteq 100VV$ 0.05Hz to 100Hz $8\mu V p \cdot p$ 10Hz to 1kHz10 $\mu V rms$ Current $5pA p \cdot p$ FREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VShew Rate $25mV/\mu s$ Full Power, 10V $p \cdot p$ Output $200Hz$ Gam = 10V/V200HzGam = 10V/V200HzGam = 10V/V200HzGam = 10V/V $200Hz$ Recovery Time, to $\pm 100\mu V$ after Applicationof $\pm 6500V_{pb}$ Differential Input Pulse $200ms$ OFFSET VOLTAGE REFERRED TO INPUTInitial, @ $\pm 25°C$, Adjustable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to $\pm 70°C$) $\pm (5 + 150/G)\mu V/°C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUT $Voltage, 50k\Omega$ LoadVoltage, $\pm 50k\Omega$ Load $\pm 5V$ minOutput Impedance $1k\Omega$ Output Rupple, 1MHz Bandwidth $5mV pk \cdot pk$ ISOLATED POWER OUTPUTS $\pm 5NA$ minVoltage, Sural Load $\pm 8.5V$ dcAccuracy $\pm 5%$ Current $\pm 5M$ minRegulation, No Load to Full Load $\pm 0, -15\%$ Rupple, 100kHz Bandwidth100mV $p \cdot p$ POWER SUPPLY, SINGLE POLARITY ³ Voltage, Operating $+15V dc$ Voltage Operating $-25°C$ to $\pm 85°C$ Storage $-55°C$ to $\pm 85°C$ Storage	Overload	300kΩ
INPUT DIFFERENCE CURRENT Initial, @ +25°C $\pm 7nA max$ ws. Temperature (0 to +70°C) $\pm 7nA max$ to .1nA/°CINPUT NOISE Voltage, G = 10V/V 0.05Hz to 100Hz $8\mu V p p$ 10Hz to 1kHz $10\mu V rms$ Current 0.05Hz to 100Hz $5pA p p$ FREQUENCY RESPONSE Small Sgnal, -3dB, G = 1 V/V to 10V/V1kHz Slew RateGam = 10V/V Gam = 10V/V700Hz 200HzGam = 10V/V Gam = 10V/V200HzRecovery Time, to ±100µV after Application of ±650Vµb Differential Input Pulse200msOFFSET VOLTAGE REFERRED TO INPUT Initial, @ +25°C, Adjustable to Zero vs. Temperature (0 to +70°C) $\pm (5 + 20/G)mV$ $\pm (5 + 150/G)µV/°C$ $\pm supply VoltageVoltage, 50kΩ LoadOutput ImpedanceCurrent\pm 5V min5%CurrentVoltage, ±5mA LoadAccuracyCurrent\pm 8.5V dc\pm 5%CurrentVoltage, Ratel POWER OUTPUTSVoltage, simA LoadAccuracyCurrent\pm 5NA min\pm 5%Ripple, 100kHz BandwidthTEMPERATURE RANGERated Performance+15V dc+0 + 70°CCOperating-25°C to +85°CCorrentTEMPERATURE RANGERated PerformanceOperatingCorrest-55°C to +85°CCCASE DIMENSIONS15" x 1 5" x 0 62"$	Common Mode	5x10 Ωll20pF
Initial, @ +25°C $\pm 7nA \max$ vs. Temperature (0 to +70°C)±0.1nA/°CINPUT NOISEVoltage, G = 10V/V0.05Hz to 100Hz8µV p.p10Hz to 1kHz10µV rmsCurrent0.05Hz to 100Hz5pA p.pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/V1kHzSlew Rate25mV/µsFull Power, 10V p.p Output200HzGam = 1V/V700HzGam = 1V/V200HzRecovery Time, to ±100µV after Applicationof ±6500V _{pk} Differential Input Pulse00FFSET VOLTAGE REFERRED TO INPUTInitial, @ ±25°C, Adjustable to Zero±(5 ± 20/G)mVvs. Temperature (0 to +70°C)±(15 ± 150/G)µV/°Cvs. Supply Voltage±1mV/%RATED OUTPUTVoltage, 5bxΩ LoadVoltage, t5mA Load±8.5V dcAccuracy±5%Voltage, t5mA Load±8.5V dcAccuracy±5%Voltage, Rated Performance+15V deVoltage, Rated Performance+15V deVoltage, Rated Performance+10mATEMPERATURE RANGE+10mARated Performance0 to +70°COperating-2.55°C to +85°CStorage-55°C to +85°CCASE DIMENSIONS1 5″ x 1 5″ x 0 62″	INPUT DIFFERENCE CURRENT	
Vs. Temperature (0 to +70°C)20.1nA/ CINPUT NOISE0.05Hz to 100Hz $$\mu$ V pp0.05Hz to 100Hz $$\mu$ V pp10Hz to 1kHz10 μ V rmsCurrent0.05Hz to 100Hz $$pA pp$ FREQUENCY RESPONSESmall Sgnal, -3dB, G = 1V/V to 10V/V1kHzSlew Rate25mV/µsFull Power, 10V p-p OutputGam = 1V/VGam = 10V/V200HzRecovery Time, to ±100µV after Applicationof ±6500V pk Differential Input PulseOFFSET VOLTAGE REFERRED TO INPUTInitial, @ +25°C, Adjustable to Zero±(5 + 20/G)mVvs. Temperature (0 to +70°C)voltage, ±5mA Load±5V minOutput Impedance1kΩOutput Ripple, 1MHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTS±5% A minVoltage, ±5mA Load±8.5V deAccuracy±5%Current±5% Am minRegulation, No Load to Full Load+0, -15%Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance+15V deVoltage Operating-48' to 15 5)V deCurrent, Quescent+10mATEMPERATURE RANGERaked PerformanceRated Performance0 to +70°COperating-25°C to +85°CStorage-55°C to +85°CCASE DIMENSIONS15″ x 1 5″ x 0 62″	Initial, $(P + 25^{\circ}C)$	$\pm 7 nA max$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	vs. Temperature (0 to +/0 C)	±0.1nA/ C
voltage, G = 10VV0.05Hz to 100Hz 8μ V p-p10Hz to 1kHz10µV rmsCurrent $5pA p-p$ FREQUENCY RESPONSESmall Sgnal, -3dB, G = 1V/V to 10V/VSmall Sgnal, -3dB, G = 1V/V to 10V/V1kHzSiew Rate $25mV/\mu$ sFull Power, 10V p-p OutputGam = 10V/VGam = 10V/V200HzGam = 10V/V200HzRecovery Time, to ±100µV after Applicationof ±500V _{pb} Differential Input PulseOFFSET VOLTAGE REFERRED TO INPUTtits1, @ ±25°C, Adjustable to Zerotits1, @ ±25°C, Adjustable to Zero±(5 ± 20/G)mVvs. Temperature (ot +70°C)±15 × 150/G)µV/°Cvs. Supply Voltage±1mV/%RATED OUTPUTVoltage, 50kΩ LoadVoltage, 55mA Load±8.5V dcAccuracy±5%Current±5% Am minRegulation, No Load to Full Load+0, -15%Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage, Operating+(8 to 15 5)V dcVoltage Operating+15 V dcVoltage Operating-25°C to +85°CStorage-55°C to +85°CCASE DIMENSIONS15″ x 1 5″ x 0 62″	INPUT NOISE	
10Hz to 1kHz10μV rmsCurrent10μV rms0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSESmall Signal, -3dB, G = 1V/V to 10V/VSlew Rate25mV/μsFull Power, 10V p-p Output200HzGam = 1V/V200HzGam = 1V/V200HzRecovery Time, to ±100µV after Applicationof ±6500V _{pk} Differential Input Pulse00FSET VOLTAGE REFERRED TO INPUTInitial, θ ± 25°C, Adjustable to Zero±(5 + 20/G)mVvs. Temperature (0 to +70°C)±(15 + 150/G)µV/°Cvs. Temperature (0 to +70°C)±15V minOutput Impedance1kΩOutput Impedance1kΩOutput, SignA Load±8.5V deAccuracy±5%Voltage, ±5mA Load±8.5V deAccuracy±5%Voltage, Rated Performance+15V deVoltage, Rated Performance+15V deVoltage, Rated Performance+15V deVoltage, Coreating-4.55°C CCorge-55°C to +85°CStorage-55°C to +85°CCASE DIMENSIONS15″ x 1 5″ x 0 62″	0.05Hz to 100 Hz	8 <i>u</i> V p-p
$\begin{tabular}{ c c c c } \hline Current & 5pA p-p & \\ \hline 0.05Hz to 100Hz & 5pA p-p & \\ \hline FREQUENCY RESPONSE & \\ Small Signal, -3dB, G = 1V/V to 10V/V & 1kHz & \\ \hline Slew Rate & 25mV/µs & \\ \hline Full Power, 10V p-p Output & \\ \hline Gam = 1V/V & 700Hz & \\ \hline Gam = 10V/V & 200Hz & \\ \hline Recovery Time, to 110µV after Application & \\ \hline of ±6500V_{pk} Differential Input Pulse & 200ms & \\ \hline OFFSET VOLTAGE REFERRED TO INPUT & \\ \hline Initial, @ +25°C, Adjustable to Zero & ±(5 + 20/G)mV & \\ w. Temperature (0 to +70°C) & ±(15 + 150/G)µV/°C & \\ w Supply Voltage & ±1mV/% & \\ \hline RATED OUTPUT & \\ \hline Voltage, 50k\Omega Load & ±5V min & \\ \hline Output Impedance & 1k\Omega & \\ \hline Output Ripple, 1MHz Bandwidth & 5mV pk-pk & \\ \hline ISOLATED POWER OUTPUTS & \\ \hline Voltage, ±5mA Load & ±8.5V dc & \\ Accuracy & ±5% & \\ Current & ±5mA min & \\ \hline Regulation, No Load to Full Load & +0, -15% & \\ \hline Ripple, 100kHz Bandwidth & 100mV p-p & \\ \hline POWER SUPPLV, SINGLE POLARITY^3 & \\ \hline Voltage, Rated Performance & +15V dc & \\ \hline Voltage Current & +10mA & \\ \hline TEMPERATURE RANGE & \\ \hline Rated Performance & 0 to +70°C & \\ \hline Operating & -25°C to +85°C & \\ \hline Storage & -55°C to +85°C & \\ \hline CASE DIMENSIONS & 15" x 15" x 0 62" & \\ \hline \end{tabular}$	10Hz to 1kHz	10µV rms
0.05Hz to 100Hz5pA p-pFREQUENCY RESPONSE Small Signal, -3dB, G = 1V/V to 10V/V1kHzSlew Rate25mV/ μ sFull Power, 10V p-p Output Gam = 10V/V700HzCam = 10V/V200HzRecovery Time, to ±100 μ V after Application of ±6500V pk Differential Input Pulse200msOFFSET VOLTAGE REFERRED TO INPUT Initial, @ ±25°C, Adjustable to Zero vs. Temperature (0 to ±70°C)±(5 ± 20/G)mVVoltage, 50k Ω Load±5V min Output Impedance1k Ω Output Regulation, No Load to Full Load to 5% C Larent to 100Hz BandwidthSOLATED POWER OUTPUTS Voltage, ±5mA Load±8.5V dc ±5% C CurrentRegulation, No Load to Full Load Voltage, Rated Performance+15V dc +00Hz +100mV to 100 HzPOWER SUPPLY, SINGLE POLARITY3 Voltage, Querent+15V dc +100mATEMPERATURE RANGE Rated Performance+15V dc +100ATEMPERATURE RANGE Rated Performance0 to +70°C -25°C to +85°C -25°C to +85°C -25°C to +85°CCASE DIMENSIONS15" x 1 5" x 0 62"	Current	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.05Hz to 100Hz	5рА р-р
Small Signal, -3dB, G = $1 V/V$ to $10V/V$ 1 kHzSlew Rate $25 mV/\mu s$ Full Power, $10V p$ -p Output700HzGam = $1V/V$ $200Hz$ Recovery Time, to $\pm 100\mu V$ after Application $0 \pm 100\mu V$ of $\pm 6500V_{pk}$ Differential Input Pulse $200ms$ OFFSET VOLTAGE REFERRED TO INPUTInitial, @ $\pm 25^{\circ}$ C, $d_1ustable to Zero$ $\pm (5 + 20/G)mV$ vs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvs. Temperature (0 to $\pm 70^{\circ}$ C) $\pm (5 + 150/G)\mu V/^{\circ}$ Cvoltage, 50k\Omega Load $\pm 5V$ minOutput Ripple, 10MHZ Bandwidth $5mV$ pk-pkISOLATED POWER OUTPUTS $\pm 50M$ Voltage, $\pm 5mA$ Load $\pm 8.5V$ dcAccuracy $\pm 5\%$ Current $\pm 50M$ Ripple, 100kHz Bandwidth $100mV$ p-pPOWER SUPPLY, SINGLE POLARITY ³ Voltage Operating $\pm (8 to 15 5)V dc$ Current, Quescent $\pm 10mA$ TEMPERATURE RANGERated PerformanceRated Performance 0 to $\pm 70^{\circ}$ COperating -25° C to $\pm 85^{\circ}$ CStorage -55° C to $\pm 85^{\circ}$ CCASE DIMENSIONS $15^{\circ} x 1 5^{\circ} x 0 62^{\circ}$	FREQUENCY RESPONSE	
Siew Rate $25mV/\mu S$ Full Power, 10V p-p Output700HzGam = 1V/V700HzGam = 10V/V200HzRecovery Time, to ±100µV after Applicationof ±6500V _{pk} Differential Input Pulse00FFSET VOLTAGE REFERRED TO INPUTInitial, @ +25°C, Adjustable to Zero1nitial, @ +25°C, Adjustable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to +70°C) $\pm (15 + 150/G)\mu V/°C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUTVoltage, $50k\Omega$ LoadVoltage, $50k\Omega$ Load $\pm 5V$ minOutput Impedance $1k\Omega$ Output Ripple, 1MHz Bandwidth $5mV$ pk-pkISOLATED POWER OUTPUTS $\pm 5NA$ minVoltage, $\pm 5mA$ Load $\pm 8.5V$ dcAccuracy $\pm 5\%$ Current $\pm 5mA$ minRegulation, No Load to Full Load $+0, -15\%$ Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ \vee (8 to 15 5)V dcVoltage, Rated Performance $+15V$ dcVoltage Operating $-2.5°$ Cto $+85°$ CCurrent, Quescent $+10mA$ TEMPERATURE RANGERated PerformanceRated Performance 0 to $+70°$ COperating $-2.5°$ Cto $+85°$ CCASE DIMENSIONS $15"x$ to $"x$ to $"x"$	Small Signal, $-3dB$, G = $1V/V$ to $10V/V$	1kHz
Function for the product of the produ	Siew Rate	25mV/µs
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Gain = 1V/V	700Hz
$\begin{tabular}{ c c c c c } \hline Recovery Time, to \pm 100\mu V after Application of \pm 6500V_{pk} Differential Input Pulse 200ms \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Gain = 10V/V	200Hz
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Recovery Time, to $\pm 100 \mu V$ after Application	
OFFSET VOLTAGE REFERED TO INPUT Initial, @ +25°C, Adjustable to Zero $\pm (5 + 20/G)mV$ vs. Temperature (0 to +70°C) $\pm (15 + 150/G)\mu V/°C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUT Voltage, $50k\Omega$ Load $\pm 5V$ min Output ImpedanceOutput Impedance $1k\Omega$ Output Ripple, 1MHz Bandwidth $5mV$ pk-pkISOLATED POWER OUTPUTS Voltage, $\pm 5mA$ Load $\pm 8.5V$ dcAccuracy $\pm 5\%$ Current $\pm 5mA$ min Regulation, No Load to Full LoadRegulation, No Load to Full Load $+0, -15\%$ Ripple, 100kHz BandwidthPOWER SUPPLY, SINGLE POLARITY³ Voltage, Quescent $+10mA$ TEMPERATURE RANGE Rated Performance 0 to $+70°C$ OperatingCoperating $-25°C$ to $+85°C$ StorageCASE DIMENSIONS $15"x$ i $5"x$ to $62"$	of ±6500V _{pk} Differential Input Pulse	200ms
Inital, @ +25°C, Adjustable to Zero $\pm (5 + 20/G) mV$ vs. Temperature (0 to +70°C) $\pm (5 + 150/G) \mu V/°C$ vs. Supply Voltage $\pm 1mV/\%$ RATED OUTPUT $\pm 1mV/\%$ Voltage, 50kΩ Load $\pm 5V min$ Output Impedance $1k\Omega$ Output Ripple, 1MHz Bandwidth $5mV pk-pk$ ISOLATED POWER OUTPUTS $\pm 8.5V dc$ Voltage, $\pm 5mA$ Load $\pm 8.5V dc$ Accuracy $\pm 5\%$ Current $\pm 5mA$ min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage Operating Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE Rated Performance Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to 485°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	OFFSET VOLTAGE REFERRED TO INPUT	
vs. Temperature (0 to +70°C) $\pm (15 + 150/G)\mu V/C$ vs. Supply Voltage $\pm 1 m V/\%$ RATED OUTPUT $V Oltage, 50 k\Omega Load$ $\pm 5 V min$ Output Impedance $1 k\Omega$ Output Rupple, 1MHz Bandwidth $5 m V p k \cdot p k$ ISOLATED POWER OUTPUTS $\pm 8.5 V dc$ Voltage, $\pm 5 m A Load$ $\pm 8.5 V dc$ Accuracy $\pm 5 m A min$ Regulation, No Load to Full Load $\pm 0, -15\%$ Ripple, 100kHz Bandwidth $100m V p \cdot p$ POWER SUPPLY, SINGLE POLARITY ³ $+15 V dc$ Voltage Rated Performance $+15 V dc$ Voltage Operating $+(8 to 15 5) V dc$ Current, Quescent $+10 m A$ TEMPERATURE RANGE $Rated Performance$ Rated Performance $-25^{\circ}C to +85^{\circ}C$ Storage $-55^{\circ}C to +85^{\circ}C$ CASE DIMENSIONS $15^{\circ} x t 5^{\circ} x to 62^{\circ}$	Initial, @ +25°C, Adjustable to Zero	$\pm (5 + 20/G)mV$
vs supply Voltage11mV/%RATED OUTPUTVoltage, 50k\Omega Load \pm 5V minOutput Impedance1k\OmegaOutput Ripple, 1MHz Bandwidth5mV pk-pkISOLATED POWER OUTPUTS \pm 5%Voltage, \pm 5mA Load \pm 5%Current \pm 5%Ripple, 100kHz Bandwidth100mV p-pPOWER SUPPLY, SINGLE POLARITY ³ $+$ 15V dcVoltage, Rated Performance $+$ 15V dcVoltage Operating $+$ (8 to 15 5)V dcCurrent \pm 5%TEMPERATURE RANGE $+$ 10mARated Performance 0 to $+70^{\circ}$ COperating -25° C to $+85^{\circ}$ CStorage -55° C to $+85^{\circ}$ CCASE DIMENSIONS 15° x to 52°	vs. Temperature (0 to +70 C)	$\pm (15 + 150/G)\mu V/C$
RATED OUTPUT Voltage, 50kΩ Load ±5V min Output Impedance 1kΩ Output Ripple, 1MHz Bandwidth 5mV pk-pk ISOLATED POWER OUTPUTS * Voltage, ±5mA Load ±8.5V dc Accuracy ±5% Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE Raked Performance Raked Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to 485°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″		
Voltage, Jokas Daal 1.5V mini Output Ripple, 1MHz Bandwidth 5mV pk-pk ISOLATED POWER OUTPUTS 18.5V dc Voltage, ±5mA Load ±8.5V dc Accuracy ±5% Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE Rated Performance Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to 485°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	Voltage 50kQ Load	+5V min
Output Ripple, 1MHz Bandwidth 5mV pk-pk ISOLATED POWER OUTPUTS #8.5V dc Voltage, ±5mA Load ±8.5V dc Accuracy ±5% Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage Operating Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE Rated Performance Rated Performance -25°C to +85°C Storage -55°C to +85°C Storage -55°C to *85°C	Output Impedance	1kΩ
ISOLATED POWER OUTPUTS ±8.5V dc Voltage, ±5mA Load ±8.5V dc Accuracy ±5% Current ±5mA min Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance vlotage, Rated Performance +15V dc Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	Output Ripple, 1MHz Bandwidth	5mV pk-pk
Voltage, ±5mA Load ±8.5V dc Accuracy ±5% Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE Rated Performance Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	ISOLATED POWER OUTPUTS	
Accuracy ±5% Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance Voltage Operating +15 V dc Current, Quescent +10mA TEMPERATURE RANGE Rated Performance Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	Voltage, ±5mA Load	±8.5V dc
Current ±5mA min Regulation, No Load to Full Load +0, -15% Ripple, 100kHz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ Voltage, Rated Performance Voltage, Rated Performance +15 V dc Voltage, Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Accuracy	±5%
Replet 100 kTz Bandwidth 100mV p-p POWER SUPPLY, SINGLE POLARITY ³ 100mV p-p Voltage Operating +15V dc Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	Current	±5mA min
Ripper, Tooking Data Wattin Toolin V p P POWER SUPPLY, SINGLE POLARITY ³ +15V dc Voltage, Rated Performance +15V dc Voltage Operating +(8 to 15 5)V dc Current, Quescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Regulation, No Load to Full Load	+0, -13%
POWER SUPPLY, SINGLE POLARITY Voltage, Rated Performance +15V dc Voltage Operating +(8 to 15 5)V dc Current, Quiescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to *85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Rippit, TOKTIZ Bandwidth	100mv p-p
Voltage Operating + (8 to 15 5)V dc Current, Quiescent + 10mA TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Voltage, Rated Performance	+15V dc
Current, Quescent +10mA TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Voltage Operating	+(8 to 15 5)V dc
TEMPERATURE RANGE 0 to +70°C Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Current, Quiescent	+10mA
Rated Performance 0 to +70°C Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	TEMPERATURE RANGE	
Operating -25°C to +85°C Storage -55°C to +85°C CASE DIMENSIONS 15″ x 1 5″ x 0 62″	Rated Performance	0 to +70°C
Storage -55°C to +85°C CASE DIMENSIONS 1 5″ x 1 5″ x 0 62″	Operating	-25°C to +85°C
CASE DIMENSIONS 1 5" x 1 5" x 0 62"	Storage	-55°C to +85°C
	CASE DIMENSIONS	1 5" x 1 5" x 0 62"

¹ Gain temperature drift is specified as a percentage of output signal level ² Gain nonlinearity is specified as a percentage of 10V pk-pk output span ³ Recommended power supply, ADI model 904, :15V @ 50mA output \$41 (1-9)

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

AC1049 SHIELDED MOUNTING SOCKET

INTERCONNECTION AND GUARDING TECHNIQUES

Model 2841 can be applied directly to achieve rated performance as shown in Figure 1 below. To preserve the high CMR performance of model 284J, care must be taken to keep the capacitance balanced about the input terminals. A shield should be provided on the printed circuit board under model 284J as illustrated in the outline drawing above (screened area). The GUARD (Pin 6) should be connected to this shield. This guard-shield is provided with the mounting socket, model AC1049. A recommended guarding technique using model AC1049 is illustrated in Figure 1. To reduce effective cable capacitance, cable shield should be connected to the common mode signal source by connecting the shield as close as possible to the signal low.

Offset Voltage Trim Adjust: The trim adjust circuit shown in Figure 1 can be used to zero the output offset voltage over the gain range from 1 to 10V/V. The output terminals, HI OUT and LO OUT, can be floated with respect to PWR COM up to $\pm 50V_{pk}$ max, offering three-port isolation. A $0.1\mu F$ capacitor is required from LO OUT to PWR COM whenever the output terminals are floated with respect to PWR COM. LO OUT can be connected directly to PWR COM when output offset trimming is not required.

Understanding the Isolation Amplifier Performance

THEORY OF OPERATION

The remarkable performance of model 284J is derived from the carrier isolation technique which is used to transfer both signal and power between the amplifier's guarded input stage and the rest of the circuitry. The block diagram for model 284J is shown in Figure 2 below.

The 320k Ω input protection resistor limits the differential input current during periods of input amplifier saturation and also limits the differential fault current to approximately 35 μ A in case the preamplifier fails.

The bipolar input preamplifier operates single-ended (noninverting). Only a difference bias current flows with zero net bias current. A third wire return path for input bias current is not required. Gain can be set from 1V/V to 10V/V by changing the gain resistor, R_i . To preserve bigb CMR, the gain resistor must be guarded. Best performance is achieved by shorting terminal 2 to terminal 1 and operating model 284J at a gain of 10V/V.

For powering floating input circuitry such as buffer amplifiers, instrumentation amplifiers, calibration signals and transducers, dual isolated power is provided. High CMV isolation is achieved by the low-leakage transformer coupling between the input preamplifier, modulator section and the output circuitry. Only the 20pF leakage capacitance between the floating guarded input section and the rest of the circuitry keeps the CMR from being infinite.

Figure 2. Block Diagram - Model 284J

INTERELECTRODE CAPACITANCE, TERMINAL RATINGS AND LEAKAGE CURRENTS LIMITS

Capacitance: Interelectrode terminal capacitance arising from stray coupling capacitance effects between the input terminals and the signal output terminals are each shunted by leakage resistance values exceeding $50 \text{kM}\Omega$. Figure 3 illustrates the CMR ratings at 60Hz and $5 \text{k}\Omega$ source imbalance between signal input/output terminals, along with their respective capacitance.

Figure 3. Model 284J Terminal Capacitance and CMR Ratings

Figure 4. Model 284J Terminal Ratings

Terminal Ratings: CMV performance is given in both peak pulse and continuous ac or dc peak ratings. Pulse ratings are intended to support defibrillator and other transient voltages. Continuous peak ratings apply from dc up to the normal full power response frequencies. Figure 4 and Table 1 illustrate model 284J's ratings between terminals.

SYMBOL	RATING	REMARKS
V1 (pulse)	±6500V _{PK} (10ms)	Withstand Voltage, Defibrillator
V1 (cont)	±240V _{RMS}	Withstand Voltage, Steady State
V2 (pulse)	$\pm 2500 V_{PK}$ (10ms) R _G = 0	Transient
V2 (pulse)	$\pm 5000 V_{PK}$ (10ms) R _G = 510k Ω	Isolation, Defibrillator
V2 (cont)	±2500VPK	Isolation, Steady State
V3 (cont)	±50VPK	Isolation, dc
Z1	50kMΩ 20pF	Isolation Impedance
ł	35µA rms	Input Fault Limit, DC to 60kHz

Table 1. Isolation Ratings Between Terminals

Leakage Current Limits: The low coupling capacitance between inputs and output yields a ground leakage current of less than 2.0 μ A rms at 115V ac, 60Hz (or 0.02 μ A/V ac). As shown in Figure 5, the transformer coupled modulator signal, through stray coupling, also creates an internally generated leakage current of about 5 μ A rms @ 60kHz. Line frequency leakage current levels are unaffected by the power on or off condition of model 284J.

5

For medical applications, model 284J is designed to improve on patient safety current limits proposed by F.D.A., U.L., A.A.M.I. and other regulatory agencies. (e.g. model 284J complies with leakage requirements for the Underwriters Laboratory STANDARD FOR SAFETY, MEDICAL AND DENTAL EQUIPMENT as established under UL544 for type A and B patient connected equipment – reference *Leakage Current*, paragraph 27.5).

In patient monitoring equipment, such as ECG recorders, model 284J will provide adequate isolation without exposing the patient to potentially lethal microshock hazards. Using passive components for input protection, this design limits input fault currents even under amplifier failure conditions.

Figure 5. Model 284J Leakage Current Performance from Line Induced and Internally Generated (Modulator) Operating Conditions

PERFORMANCE CHARACTERISTICS

Common Mode Rejection: Input-to-Output CMR is dependent on source impedance imbalance, signal frequency and amplifier gain. CMR is rated at 115V ac, 60Hz and 5k Ω imbalance at a gain of 10V/V. Figure 6 illustrates CMR performance as a function of signal frequency. CMR approaches 146dB at dc with source imbalances as high as 5k Ω . As gain is decreased, CMR is reduced. At a gain of 1V/V, CMR is typically 6dB lower than at a gain of 10V/V.

Figure 6. Common Mode Rejection vs. Frequency

Figure 7 illustrates the effect of source imbalance on CMR performance at 60Hz and Gain = 10V/V. CMR is typically 120dB at 60Hz and a balanced source. CMR is maintained greater than 80dB for source imbalances up to $100k\Omega$.

Figure 7. Common Mode Rejection vs. Source Impedance Imbalance

Input Voltage Noise: Voltage noise, referred to input, is dependent on gain and bandwidth as illustrated in Figure 8. RMS voltage noise is shown in a bandwidth from 0.05Hz to the frequency shown on the horizontal axis. The noise in a bandwidth from 0.05Hz to 100Hz is $8\mu V$ pk-pk at a gain of 10V/V. This value is derived by multiplying the rms value at f = 100Hzshown in Figure 8 (1.2 μV rms) by 6.6.

Figure 8. Input Voltage Noise vs. Bandwidth

Input Offset Voltage Drift: Total input voltage drift is composed of two sources, input and output stage drifts and is gain dependent. The curve of Figure 9 illustrates the total input voltage drift over the gain range of 1 to 10V/V.

Figure 9. Input Offset Voltage Drift vs. Gain

Gain Nonlinearity: Linearity error is defined as the peak deviation of the output voltage from the best straight line and is specified as a % of peak-to-peak output voltage span; e.g. non-linearity of model 284J operating at an output span of 10V pk-pk (\pm 5V) is \pm 0.05% or \pm 5mV. In applying model 284J, highest accuracy is achieved by adjustment of gain and offset voltage to minimize the peak error over the operating output voltage span. A calibration technique illustrating how to minimize output error is shown below. In this example, model 284J is operating over an output span of +5V to -5V and a gain of 5V/V.

Figure 10. Gain and Offset Adjustment

GROUNDING PRACTICES

The more common sources of electrical noise arise from ground loops, electrostatic coupling and electromagnetic pickup. The guidelines listed below pertain to guarding low level, millivolt signals in hostile environments such as current shunt signals in "heavy industrial" plants.

Guidelines:

- Use twisted shielded cable to reduce inductive and capacitive pickup.
- Drive the transducer cable shield, S, with the common mode signal source, E_G, to reduce the effective cable capacitance as shown in Figure 11 below. This is accomplished by connecting the shield point S, as close as possible to the transducer signal low point B. This may not always be possible. In some cases the shield may be separated from signal low by a portion of the medium being measured (e.g. pressure transducer). This will cause a common mode signal, E_M, to be generated by the medium between the shield and the signal low. The 78dB CMR capability of model 284J between the input terminals (HI IN and LO IN) and GUARD, will work to suppress the common mode signal, E_M.
- To avoid ground loops and excessive hum, signal low, B, or the transducer cable shield, S, should never be grounded at more than one point.
- Dress unshielded leads short at the connection terminals and reduce the area formed by these leads to minimize inductive pickup.

Figure 11. Transducer- Amplifier Interconnection

Isolated Power and Output Voltage Swing: Model 284J offers a floating power supply providing ±8.5V dc outputs with ±5mA output current rating. As shown in Figure 12, the minimum voltage output for ±V_{ISO}, as well as the maximum load capability, is dependent on the input power supply, +V_S. Figure 12 also illustrates the typical output voltage range as both input supply, +V_S, and the isolated supply loads, ±I_L, are varied. At ±5mA isolated load and V_S = +15V dc, model 284J can provide an output voltage swing of ±7.5V.

Figure 12. Isolated Power ($\pm V_{ISO}$) and Output Voltage Swing ($\pm E_o$) Versus Power Supply Input (VS)

APPLICATIONS IN INDUSTRIAL MEASUREMENT AND CONTROL SYSTEMS

Remote Sensor Interface: In chemical, nuclear and metal processing industries, model 284J can be applied to measure and control off-ground millivolt signals in the presence of $\pm 2500V$ dc CMV signals. In interface applications such as pH control systems of on-line process measurement systems such as pollution monitoring, model 284J offers complete galvanic isolation to eliminate troublesome ground loop problems. Isolated power outputs and adjustable gain add to the application flexibility of this model.

Figure 13 illustrates how model 284J can be combined with a low drift, $1\mu V/^{\circ}C$ max, front-end amplifier, model AD517K, to interface low level transducer signals. Model 284J's isolated ±8.5V dc power and front-end guard eliminate ground loops and preserve high CMR (114dB @ 60Hz).

Figure 13. Input Signal Conditioning Using Isolated Power for Transducer Buffer Amplifier

Instrumentation Amplifier: Model 284J provides a floating guarded input stage capable of directly accepting isolated differential signals. The non-inverting, single-ended input stage offers simple two wire interconnection with floating input signals.

In applications where the isolated power is applied to transducers such as bridges which generate differential input signals with common mode voltages measured with respect to the isolated power common, model 284J can be connected as shown in Figure 14. To achieve high CMR with respect to the ISO PWR COM, the following trim procedure is recommended.

CMR Trim Procedure

- 1) Connect a 1V pk-pk oscillator between the +IN/-IN and IN COM terminals as shown in Figure 14.
- 2) Set the input frequency at 0.5Hz and adjust R1 for minimum e_{Ω} .
- Set the input frequency at 60Hz and adjust R2 for minimum e₀.
- 4) Repeat steps 2 and 3 for best CMR performance.

Figure 14. Application of 284J as Instrumentation Amplifier

ISOLATION AMPLIFIERS 5-37

APPLICATIONS IN BIOMEDICAL DESIGNS

Cardiac Monitoring: Heart signals can be masked by muscle noise, electrochemical noise, residual electrode voltages and 60Hz power line pickup. To achieve high performance in cardiac monitoring, model 284J's design provides high CMR in the dc to 100Hz bandwidth and substantial source impedance – to 5k Ω . An especially demanding ECG requirement is that of fetal heart monitoring as illustrated in Figure 15. The low input noise of model 284J and the dual CMR ratings are exploited in this application to extract the fetal ECG signals. The separation between the mother's and the fetal heartbeat is enhanced by the 78dB of CMR between the input electrodes and guard, while the 110dB of CMR from input to output ground screens out 60Hz pickup and other external interference.

AMPLIFIER'S 78dB INPUT-TO-SHIELD CMR SEPARATES FETAL HEART BEAT FROM MOTHER'S, WHILE 110dB INPUT-TO-GROUND CMR ATTENUATES 60Hz PICKUP.

Figure 15. Fetal Heartbeat Monitoring

Single Lead ECG Recorder with Leads Off Indicator: In single lead applications model 284J offers simple two-wire hook-up to the ECG signal as illustrated in Figure 16. The floating signal can be connected directly to the HI IN and LO IN terminals using the GUARD tied to the patients' right leg for best CMR performance. Using the isolated power from model 284J an inexpensive calibration signal is easily provided. In ECG applications, model 284J provides a simple means to determine whenever a "Leads-Off" condition exists at the input. A "Leads-Off" condition ($R_S = \infty$) will cause the HI OUT terminal to be at a negative output saturation level; i.e. $e_O = -8.5V$ to -9.5V @ $V_S = +15V$.

Figure 16. Single Lead ECG Recorder with 1mV Calibration Circuit and Leads Off Indicator

Multi-Lead ECG Recorder with Right Leg Drive: The small size, economy and isolated power makes model 284J an ideal isolation amplifier for application in clinical ECG recorders. Figure 17 illustrates how this new isolator can be applied in a high performance, portable multi-lead ECG recorder. In this application, model 284J's input is configured as an instrumentation amplifier with high CMR to the floating input common. The right leg drive offers improved CMR between input and isolated common by driving to zero any CMV existing between these points. The isolated power, $\pm V_{ISO}$, is used to drive the lead buffer amplifiers and the front-end, 1mV calibration signal.

Figure 17. Multi-Lead ECG Recorder Application Using Model 284J with Right Leg Drive Output

High CMV, High Performance, Synchronized Isolation Amplifiers

Models 286J, 281

FEATURES

Low Cost

Single or Multi-Channel Capability Using External Oscillator Isolated Power Supply: $\pm 15V dc @ \pm 15mA$ Low Nonlinearity: 0.05% @ 10V pk-pk Output High Gain Stability: 0.001%/1000 Hours; 0.0075%/°C Small Size: $1.5'' \times 1.5'' \times 0.62''$ Low Input Offset Voltage Drift: $10\mu V/^{\circ}C$ (Gain = 100V/V) Wide Input/Output Dynamic Range: 20V pk-pk High CMV Isolation: 2500V dc Continuous Wide Gain Range: 1 to 100V/V

APPLICATIONS

Ground Loop Elimination in Industrial and Process Control High Voltage Protection in Data Acquisition Systems Biomedical and Patient Monitoring Instrumentation Off-Ground Signal Measurements

GENERAL DESCRIPTION

Model 286J is a low cost, compact, isolation amplifier that is optimized for single or multi-channel use in data acquisition systems for industrial and medical applications. A single external synchronizing oscillator can drive from 1 to 16 model 286J's, or a virtually limitless number of model 286's can be configured using multiple ganged oscillators. The oscillator drive circuit can be supplied by the user of specified in a compact, low cost, epoxy encapsulated module, model 281, which also includes a voltage regulator for operation over a wide single voltage range of +8V to +28V.

In addition to providing multi-channel operation, this new design features adjustable gain, 1 to 100V/V, dual isolated power, $\pm 15V$ dc $\circledast \pm 15$ mA, $\pm 2500V$ dc off ground isolation (CMV) and 110dB minimum CMR at 60Hz, 5k Ω source imbalance, in a compact 1.5" x 1.5" x 0.6" epoxy encapsulated package. Model 286J achieves a low input noise of $8\mu V$ pk-pk (100Hz bandwidth, G = 100V/V), nonlinearity of $\pm 0.05\%$ \circledast 10V pk-pk output, and an input/output dynamic range of 20V pk-pk.

Using modulation techniques with reliable transformer isolation, model 286J will interrupt ground loops, leakage paths, and high voltage transients to ± 5 kV pk (10ms pulse), providing dc to 1kHz (-3dB) response.

WHERE TO USE MODEL 286J

Industrial Applications: In multi-channel data acquisition systems, computer interface systems, process signal isolators and high CMV instrumentation, model 286J offers complete galvanic isolation and protection against damage from transients and fault voltages. High level transducer interface capability is afforded with model 286J's 20V pk-pk input signal range at a gain of 1V/V operation. In portable multi-channel designs, model 286J's single supply, wide range operation (+8V to +16V) offers simple battery operation.

MODEL 286J FUNCTIONAL BLOCK DIAGRAM

MODEL 281 FUNCTIONAL BLOCK DIAGRAM

LEAVE TERMINAL 6 OPEN, WHEN POWER IS APPLIED TO TERMINAL 7

Medical Applications: In biomedical and patient monitoring equipment such as multi-channel VCG, ECG, and polygraph recorders, model 286J offers protection from lethal ground fault currents as well as 5kV defibrillator pulse inputs. Low level bioelectric signal recording is achieved with model 286J's low input noise ($8\mu V$ pk-pk @ G = 100V/V) and high CMR (110dB, min @ 60Hz).

DESIGN FEATURES AND USER BENEFITS

High Reliability: Model 286J is a conservatively designed, compact module, capable of reliable operation in harsh environments. Model 286J has a calculated MTBF of 392,125 hours and is designed to meet MIL-STD-202E environmental testing as well as the IEEE Standard for Transient Voltage Protection (472-1974: Surge Withstand Capability). As an additional assurance of reliability, every model 286J is factory tested for CMV and input ratings by application of 5kV pk, 10ms pulses, between input terminals as well as input/output terminals.

Isolated Power Supply: Dual $\pm 15V$ dc $@ \pm 15mA$, completely isolated from the input power terminals ($\pm 2500V$ dc isolation), provides the capability to excite floating signal conditioners, front end buffer amplifiers as well as remote transducers such as thermistors or bridges.

Adjustable Gain: A single external resistor enables gain adjustment from 1V/V to 100V/V providing the flexibility of applying model 286J in both high-level transducer interfacing as well as low-level sensor measurements.

SPECIFICATIONS

MODEL	286J*
GAIN (NONINVERTING)	
Range (50k Ω Load)	1 to 100V/V
Formula	$Gain = 1 + (1001 O \cdot D \cdot (1001))$
Deviation from Formula	$\pm 4\%$
vs. Temperature (0 to $+70^{\circ}$ C) ¹	±0.0075%/°C
vs. Time	±0.001%/1000 hours
Nonlinearity, 2 ±5V Output (G = 1 to 100V/V)	±0 05%
Noninearity, 1100 Output (G = 1 to 1000/v)	10.2%
INPUT VOLTAGE RATINGS	+101/
Max Safe Differntial Input	1100 mm
Continuous	240V rms
Pulse, 10ms Duration, 1 Pulse/10sec	±6500V pk max
Max CMV, Inputs to Outputs	2500V mms
Pulse, 10ms Duration, 1 Pulse/10sec	±2500V pk max
With 510k Ω in series with Guard	±5000V pk max
Continuous, ac or dc	±2500V pk max
CMR, inputs to Outputs, 60Hz, $R_S \ge 5KM$ Balanced Source Impedance	114dB
5kΩ Source Impedance Imbalance	110dB min
CMR, Inputs to Guard, 60Hz	
$1k\Omega$ Source Impedance Imbalance	78dB
@ 115V ac 60Hz	2 5/1 A rms max
OFFSET VOLTAGE REFERRED TO INPLIT	
Initial. @ +25°C (Adjustable to zero)	$\pm(5 + 45/G)$ mV
vs. Temperature (0 to +70°C)	
At Gain = 100V/V	±10µV/°C
At Other Gains (1 to 100V/V)	$\pm (7 + 250/G)\mu V/C$
	±1mV/%
Differential	10 ⁸ Ω 150nF
Overload	300kΩ
Common Mode	5 x 10 ¹⁰ Ω 20pF
INPUT DIFFERENCE CURRENT	
Initial, @ +25°C	±7nA max
vs Temperature (0 to +70 C)	±0 1nA/ C
INPUT NOISE (Gain = 100V/V)	
0.05Hz to 100Hz	80V pk-pk
10Hz to 1kHz	3.0µV rms
Current	
0 05Hz to 100Hz	5pA pk-pk
FREQUENCY RESPONSE (Gain 1V/V to 100V/V)	
Small Signal Bandwidth, –3dB	1 OkHz
Full Power, 10V pk-pk Output	25m v/µs 900Hz
Full Power, 20V pk-pk Output	400Hz
Recovery Time, to ±100µV	200ms
RATED OUTPUT	
Voltage, 50kΩ Load	±10V min
Output Impedance Output Ripple, 1mHz Bandwidth	20mV nk-nk
	20m t pk pk
Input Voltage	(8 to 16)V pk-pk
Input Frequency	100kHz ±5%, max
ISOLATED POWER SUPPLY	
Voltage	±15V dc
Accuracy	0, -6%
Current Bomlation No London Full Lond	±15mA min
Ripple, 100kHz Bandwidth	+0, -10% 200mV pk-pk
POWER SUPPLY SINCLE POLARITY ³	
Voltage, Rated Performance	+15V dc
Voltage, Operating	+(8V dc to 16V dc)
Current, Quiescent	+13mA
TEMPERATURE RANGE	
Rated Performance	0 to +70°C
Storage	-55°C to +85°C
CASE DIMENSIONS	1.5" x 1 5" x 0.62"
¹ C up temperature drift is energified as a perceptore of output	at organal level

uan temperature unt is specificate as a percentage of output signal ierei Gan nonlinearty is specificate as a percentage of output signal span. Recommended power supply, ADI model 904, ±15V @ ±50mA output. Specifications are for model 2660 when driven by ADI model 281 oscillator circuit (see Figure 12) Specifications subject to change without notice

GUARDING TECHNIQUES

To preserve the high CMR performance of model 286, care must be taken to keep the capacitance balanced about the input terminals. A shield should be provided on the printed circuit board under model 286 as illustrated in the outline drawing above (screened area). The GUARD (pin 6) must be connected to this shield. This shield is provided with the mounting socket, model AC1054 (solder feedthrough wire to the socket guard pin and copper foil surface.) A recommended guarding technique using model AC1054 is illustrated in Figure 1.

Best CMR performance will be achieved by using twisted, shielded cable to reduce inductive and capacitive pickup. To reduce effective cable capacitance, cable shield should be connected to the common mode signal source by connecting the shield as close as possible to signal low as shown in Figure 1.

Understanding the Isolation Amplifier Performance

THEORY OF OPERATION

The remarkable performance of model 286J is derived from the carrier isolation technique which is used to transfer both signal and power between the amplifier's guarded input stage and the rest of the circuitry. The block diagram for model 286J is shown in Figure 2 below.

The 320k Ω input protection resistor limits the differential input current during periods of input amplifier saturation and also limits the differential fault current to approximately 50 μ A in case the preamplifier fails.

The bipolar input preamplifier operates single-ended (noninverting). Only a difference bias current flows with zero net bias current. A third wire return path for input bias current is not required. Gain can be set from 1V/V to 100V/V by changing the gain resistor, R_i . To preserve high CMR, the gain resistor must be guarded. Best performance is achieved by shorting terminal 2 to terminal 1 and operating model 286J at a gain of 100V/V.

For powering floating input circuitry such as buffer amplifiers, instrumentation amplifiers, calibration signals and transducers, dual isolated power is provided. High CMV isolation is achieved by the low-leakage transformer coupling between the input preamplifier, modulator section and the output circuitry.

Figure 2. Block Diagram - Model 286J

OPTIONAL TRIM ADJUSTMENTS

Model 286J can be applied directly to achieve rated performance as shown in Figure 1, on previous page. Additional trim adjustment capability for bandwidth, output offset voltage and gain (for gains greater than 100V/V) is easily provided as shown in Figure 3 (below). The OUT and TRIM terminals can be floated with respect to PWR COM up to $\pm 50V$ pk, max offering three-port isolation.

The TRIM terminal (pin 11) must be connected to the PWR COM terminal (pin 8) when not used to adjust the output offset voltage. A 0.1μ F capacitor from pin 11 to PWR COM is recommended whenever the TRIM terminal is used.

Figure 3. Optional Connections: Offset Voltage Trim Adjust, Bandwidth (-3dB) Rolloff and Gain Adjust (G > 100V/V)

INTERELECTRODE CAPACITANCE, TERMINAL RATINGS AND LEAKAGE CURRENTS LIMITS

Capacitance: Interelectrode terminal capacitance arising from stray coupling capacitance effects between the input terminals and the signal output terminals are each shunted by leakage resistance values exceeding 50kM Ω . Figure 4 illustrates the CMR ratings at 60Hz and 5k Ω source imbalance between signal input/output terminals, along with their respective capacitance.

Figure 4. Model 286J Terminal Capacitance and CMR Ratings

Figure 5. Model 286. Terminal Ratings

Terminal Ratings: CMV performance is given in both peak pulse and continuous ac or dc peak ratings. Pulse ratings are intended to support defibrillator and other transient voltages. Continuous peak ratings apply from dc up to the normal full power response frequencies. Figure 5 and Table 1 illustrate model 286J ratings between terminals.

SYMBOL	RATING	REMARKS
V1 (pulse) V1 (cont.) V2 (pulse) V2 (pulse) V2 (cont.) V3 (cont.) Z1 I	$\begin{array}{l} \pm 6500 V_{PK} \ (10ms) \\ \pm 240 V_{RMS} \\ \pm 2500 V_{PK} \ (10ms) R_G = 0 \\ \pm 5000 V_{PK} \ (10ms) R_G \\ \pm 2500 V_{PK} \\ \pm 50 V_{PK} \\ \pm 50 V_{PK} \\ 50 kM \\ 2 \\ 2 \\ 0 \\ F \\ 50 \\ \mu \\ ms \end{array}$	Withstand Voltage, Defibrillator Withstand Voltage, Steady State Transient Isolation, Defibrillator Isolation, Steady State Isolation, de Isolation Impedance Input Fault Limit, de to 200kHz

Table 1. Isolation Ratings Between Terminals

Leakage Current Limits: The low coupling capacitance between inputs and output yields a ground leakage current of less than 2.5μ A rms at 115V ac, 60Hz (or 0.02μ A/V ac). As shown in Figure 6, the transformer coupled modulator signal, through stray coupling, also creates an internally generated leakage current of about 5 μ A rms @ 100kHz. Line frequency leakage current levels are unaffected by the power on or off condition of model 286J.

For medical applications, model 286J is designed to improve on patient safety current limits proposed by F.D.A., U.L., A.A.M.I. and other regulatory agencies (e.g., model 286J complies with leakage requirements for the Underwriters Laboratory STANDARD FOR SAFETY, MEDICAL AND DENTAL EQUIPMENT as established under UL544 for type A and B patient connected equipment – reference *Leakage Current*, paragraph 27.5).

In patient monitoring equipment, such as ECG recorders, model 286J will provide adequate isolation without exposing the patient to potentially lethal microshock hazards. Using passive components for input protection, this design limits input fault currents even under amplifier failure conditions.

Figure 6. Model 286J Leakage Current Performance from Line Induced and Internally Generated (Modulator) Operating Conditions

PERFORMANCE CHARACTERISTICS

Common Mode Rejection: Input-to-Output CMR is dependent on source impedance imbalance, signal frequency and amplifier gain. CMR is rated at 115V ac, 60Hz and 5k Ω imbalance at a gain of 100V/V. Figure 7 illustrates CMR performance as a function of signal frequency. CMR approaches 156dB at dc with source imbalances as high as 5k Ω . As gain is decreased, CMR is reduced. At a gain of 1V/V CMR is typically 6dB lower than at gain of 100V/V.

Figure 7. Common Mode Rejection vs. Frequency

Figure 8 illustrates the effect of source imbalance on CMR performance at 60Hz at gains of 1V/V, 10V/V, and 100V/V. CMR is typically 140dB at 60Hz and a balanced source. CMR is maintained greater than 80dB for source imbalances up to 100k Ω .

Figure 8. Common Mode Rejection vs. Source Impedance Imbalance

Gain Nonlinearity: Linearity error is defined as the deviation of the output voltage from the best straight line and is specified as a % of peak-to-peak output voltage span; e.g., nonlinearity of model 286J operating at an output span of 10V pk-pk (±5V) is ±0.05% or ±5mV. Figure 9 illustrates gain nonlinearity for any output span to 20V pk-pk (±10V).

Figure 9. Gain Nonlinearity vs. Output Voltage

Input Voltage Noise: Voltage noise, referred to input, is dependent on gain and bandwidth as illustrated in Figure 10. RMS voltage noise is shown in a bandwidth from 0.05Hz to the frequency shown on the horizontal axis. The noise in a bandwidth from 0.05Hz to 100Hz is 8μ V pk-pk at a gain of 100V/V. This value is derived by multiplying the rms value at f = 100Hz shown in Figure 10 (1.2 μ V rms) by 6.6.

For best noise performance in particular applications, a low pass filter at the output should be used to selectively roll-off noise and undesired signal frequencies beyond the bandwidth of interest (see note 3, Figure 1). Increasing gain will also reduce the input noise.

Figure 10. Input Voltage Noise vs. Bandwidth

Input Offset Voltage Drift: Total input drift is composed of two sources, input and output stage drifts and is gain dependent. The curve of Figure 11 illustrates total input drift over the gain range of 1 to 100V/V.

Figure 11. Input Offset Voltage Drift vs. Gain

Applying the Multi-Channel Isolation Amplifier

REFERENCE EXCITATION OSCILLATOR

When applying model 286J, the user has the option of building a low cost 100kHz excitation oscillator, as shown in Figure 12, or purchasing a module from Analog Devices – model 281.

Figure 12. Model 281 100kHz Oscillator – Logic and Interconnection Diagram

The block diagram of model 281 is shown in Figure 13. An internal +12V dc regulator is provided to permit the user the option of operating over two, pin selectable, power input ranges; terminal 6 offers a range of +14V dc to +28V dc; terminal 7 offers an input range of +8V dc to +14V dc.

LEAVE TERMINAL 6 OPEN, WHEN POWER IS APPLIED TO TERMINA

Model 281 oscillator is capable of driving up to 16 model 286J's as shown in Figure 14. An additional model 281 may be driven in a slave-mode, as shown in Figure 15, to expand the total system channels from 16 to 32. By adding additional model 281's in this manner, systems of over 1000 channels may be easily configured.

SPECIFICATIONS

(typical @ $+25^{\circ}$ C and VS = +15V dc unless otherwise noted)

MODEL	281
OUTPUT	
Frequency	100kHz ±5%
Waveform	Squarewave
Voltage (ϕ and $\overline{\phi}$ terminals)	0 to +12V pk
Fan-Out ^{1,2}	16 max
POWER SUPPLY RANGE ³	
High Input, Pin 6	+(14 to 28)V dc
Quiescent Current, N L	+5mA
F L	+16mA
Low Input, Pin 7	+(8 to 14)V dc
Quiescent Current, N L	+12mA
FL	+33mA
TEMPERATURE	
Rated Performance	0 to +70°C
Storage	-55°C to +85°C
MECHANICAL	
Case Size	14″ x 06″ x 049″
Weight	10 grams

¹ Model 286j oscillator drive input represents unity oscillator load ² For applications requiring more than 16 286j's, additional 281's may be used in a master/slave mode Refer to Figure 15 ³ Pull load consists of 16 model 286j's and 281 oscillator slave

Specifications subject to change without notice

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm). MODEL 281

MATING SOCKET: CINCH #16 DIP OR EQUIVALENT

GUIDELINES ON EFFECTIVE SHIELDING & GROUNDING PRACTICES

- Use twisted shielded cable to reduce inductive and capacitive pickup.
- Drive the transducer cable shield, S, with the common mode signal source, E_G, to reduce the effective cable capacitance as shown in Figure 16. This is accomplished by connecting the shield point S, as close as possible to the transducer signal low point B. This may not always be possible. In some cases the shield may be separated from signal low by a portion of the medium being measured (e.g. pressure transducer). This will cause a common mode signal, E_M, to be generated by the medium between the shield and the signal low. The 78dB CMR capability of model 286J between the input terminals (HI IN and LO IN) and GUARD, will work to suppress the common mode signal, E_M.
- Dress unshielded leads short at the connection terminals and reduce the area formed by these leads to minimize inductive pickup.

ISOLATION AMPLIFIERS 5-43

Figure 16. Transducer - Amplifier Interface

GAIN AND OFFSET TRIM PROCEDURE

In applying the isolation amplifier, highest accuracy is achieved by adjustment of gain and offset voltage to minimize the peak error encountered over the selected output voltage span. The following procedure illustrates a calibration technique which can be used to minimize output error. In this example, the output span is +5V to -5V and operation at Gain = 10V/Vis desired.

- 1. Apply $e_{IN} = 0$ volts and adjust R_0 for $e_0 = 0$ volts.
- 2. Apply e_{IN} = +0.500V dc and adjust R_G for e_O = +5.000V dc.
- 3. Apply $e_{IN} = -0.500V$ dc and measure the output error (see curve a).
- Adjust R_G until the output error is one half that measured in step 3 (see curve b).
- 5. Apply +0.500V dc and adjust R_0 until the output error is one half that measured in step 4 (see curve c).

Figure 17. Gain and Offset Adjustment

APPLICATIONS IN INDUSTRIAL MEASUREMENT AND CONTROL SYSTEMS

Remote Sensor Interface: In chemical, nuclear and metal processing industries, model 286J can be applied to measure and control off-ground millivolt signals in the presence of $\pm 2500V dc CMV$ signals. In interface applications such as pH control systems or on-line process measurement systems such as pollution monitoring, model 286J offers complete galvanic

isolation to eliminate troublesome ground loop problems. Isolated power outputs and adjustable gain add to the application flexibility of this model.

Figure 18 illustrates how model 286J can be combined with a low drift, $1\mu V/^{\circ}C$ max, front-end amplifier, model AD510K, to interface low level transducer signals. Model 286J's isolated $\pm 15V$ dc power and front-end guard eliminate ground loops and preserve high CMR (110dB min @ 60Hz).

Figure 18. Input Signal Conditioning Using Isolated Power for Transducer Buffer Amplifier

Current Loop Receiver: Model 286J can be applied to measurement of analog quantities transmitted via 4-20mA current loops over substantial distances through harsh environments. Figure 19 shows an application of model 286J as a current loop receiver. A 25 Ω resistor converts the 4-20mA current input from a remote loop to a 100-500mV differential voltage input, which the 286J amplifies, isolates, and translates to a 0 to +5V output level at local system ground.

Among the most-helpful characteristics of the 286J in this kind of measurement are the high common-mode rejection (110dB minimum at 60Hz with 5k Ω source unbalance) and the high common-mode rating (±2500 volts dc). The former means low noise pickup; the latter means excellent isolation and protection against large transients. The high common-mode rejection, permitting relatively low input voltage to be used (0.4V span, in this case), permits the use of a low current-metering resistance, which in turn results in low compliance-voltage loading on the current loop, and therefore permits insertion into existing loops without encountering overrange problems. The gain of 12.5 provides a substantial output span, and the floating output permits biasing to a 0 to 5V range.

Figure 19. Isolated Analog Interface; 4 to 20mA is Converted to 0 to +5V at the Output, with Up to $\pm 2500V$ of Isolation

Precision, Wide Bandwidth, Synchronized Isolation Amplifier

Model 289

FEATURES

Low Nonlinearity: ±0.012% max (289L) Frequency Response: (-3dB) dc to 20kHz (Full Power) dc to 5kHz Gain Adjustable 1 to 100V/V, Single Resistor 3-Port Isolation: ±2500V CMV Isolation Input/Output Low Gain Drift: ±0.005%[°]C max Floating Power Output: ±15V @ ±5mA 120dB CMR at 60Hz: Fully Shielded Input Stage Meets UL Std. 544 Leakage: 2µA rms max, @ 115V ac, 60Hz

APPLICATIONS

Multi-Channel Data Acquisition Systems Current Shunt Measurements Process Signal Isolator High Voltage Instrumentation Amplifier SCR Motor Control

GENERAL DESCRIPTION

Model 289 is a wideband, accurate, low cost isolation amplifier designed for instrumentation and industrial applications, Three accuracy selections are available offering guaranteed gain nonlinearity error at 10V p-p output: ±0.012% max (289L), ±0.025% max (289K), ±0.05% max (289J). All versions of the 289 provide a small signal frequency response from dc to 20kHz (-3dB) and a large signal response from dc to 5kHz (full power) at a gain of 1V/V. This new design offers true 3-port isolation, ±2500V dc between inputs and outputs (or power inputs), as well as 240V rms between power supply inputs and signal outputs. Using carrier modulation techniques with transformer isolation, model 289 interrupts ground loops and leakage paths and minimizes the effect of high voltage transients. It provides 120dB Common Mode Rejection between input and output common. The high CMV and CMR ratings of the model 289 facilitate accurate measurements in the presence of noisy electrical equipment such as motors and relays.

WHERE TO USE THE MODEL 289

The model 289 is designed to interface single and multichannel data acquisition systems with dc sensors such as thermocouples, strain gauges and other low level signals in harsh industrial environments. Providing high accuracy with complete galvanic isolation, and protection from line transients of fault voltages, model 289's performance is suitable for applications such as process controllers, current loop receivers, weighing systems, high CMV instrumentation and computer interface systems.

Use the model 289 when data must be acquired from floating transducers in computerized process control systems. The photograph above shows a typical multichannel application allowing potential differences or interrupting ground loops, among transducers, or between transducers and local ground.

MODEL 289 FUNCTIONAL BLOCK DIAGRAM

DESIGN FEATURES AND USER BENEFITS

Isolated Power: The floating power supply section provides isolated $\pm 15V$ outputs @ $\pm 5mA$. Isolated power is regulated to within $\pm 5\%$. This feature permits model 289 to excite floating signal conditioners, front-end buffer amplifiers and remote transducers such as thermistors or bridges, eliminating the need for a separate isolated dc/dc converter.

Adjustable Gain: A single external resistor adjusts the model 289's gain from 1V/V to 100V/V for applications in high and low level transducer interfacing.

Synchronized: The model 289 provides a synchronization terminal for use in multichannel applications. Connecting the synchronization terminals of model 289s synchronizes their internal oscillators, thereby eliminating the problem of oscillator "beat frequency" interference that sometimes occurs when isolation amplifiers are closely mounted.

Internal Voltage Regulator: Improves power supply rejection and helps prevent carrier oscillator spikes from being broadcast via the isolator power terminal to the rest of the system.

Buffered Output: Prevents gain errors when an isolation amplifier is followed by a resistive load of low impedance. Model 289 can drive a $2k\Omega$ load.

Three-Port Isolation: Provides true galvanic isolation between input, output and power supply ports. Eliminates need for power supply and output ports being returned through a common terminal.

Reliability: Model 289 is conservatively designed to be capable of reliable operation in harsh environments. Model 289 has a calculated MTBF of 271,835 hours. In addition, the model 289 meets UL Std. 544 leakage, 2µA rms @ 115V ac, 60Hz.

SPECIFICATIONS (typical $@ +25^{\circ}$ and $V_s = \pm 14.4V$ to +25V dc unless otherwise noted)

	·// 0		
Model	289J	289K	289L
GAIN (NONINVERTING)			
Range		1 to 100V/V	
Formula		$G = 1 + \frac{10k\Omega}{10k\Omega}$	
		$R_{G}(k\Omega)$	
Deviation from Formula we Temperature $(0 to +70^{\circ}C)^{1}$		±1.5% max	n/°C max)
Nonlinearity, (±5V Swing) ^{2,3}	±0.05% max	±0 025% max	±0.012% max
INPUT VOLTAGE RATINGS			
Linear Differential Range (G = 1V/V)		±10V min	
Max Safe Differential Input			
Continuous		120V rms	
1 Minute		240V rms	
Max CMV (Inputs to Outputs)		+2500V =1	
ac 60Hz 1 Minute Duration		2500V peak max	
CMR. Inputs to Outputs 60Hz		2500 V 1113	
$R_S \leq 1k\Omega$, Balanced Source Impedance		120dB	
$R_S \leq 1k\Omega$, HI IN Lead Only		104dB min	
Max Leakage Current, Input to Output @			
115V rms, 60Hz ac		2µA rms max	
INPUT IMPEDANCE			
Differential		33pF 10°Ω	
Common Mode		20pFII5 X 10 ¹⁰ O	
Common Mode		20pr//3 × 10 32	
INPUT DIFFERENCE CURRENT		10nA (75nA)	
$(0 \text{ to } 70^{\circ}\text{C})$		10nA(75nA max) 0 15nA/°C	
INDUT NOISE (CAIN - 100V/V)	A	o tomb c	· · · · · · · · · · · · · · · · · · ·
Voltage			
0.05Hz to 100Hz		8µV n-0	4
10Hz to 1kHz		3µV rms	
Current			
0.05Hz to 100Hz		3pA rms	
FREQUENCY RESPONSE			
Small Signal -3dB			
G = 1V/V		20kHz	
G = 100 V/V		5kHz	
Full Power, 10V p-p Output		el.11-	
G = 100 V/V		3 5kHz	
Full Power, 20V p-p Output		J JAME	
G = 1V/V		2 3kHz	
G = 190V/V		2 3kHz	
Slew Rate		0 14V/μs	
Settling Time* ±0.05%, ±10V Step		400µs	
OFFSET VOLTAGE, REFERRED TO INPUT		10	
Initial, @ +25 C		$\pm 5 \pm \frac{1}{G}$ mV max	
vs. Temperature (0 to $\pm 70^{\circ}$ C)	$+20 + \frac{200}{200}$ max	+15 + 100	$\pm 10 \pm \frac{50}{2}$ wW/°C max
vs remperature (o to 170 C)	G G G	G	$\frac{10}{G}$
vs Supply Voltage (+15V to +20V change)		$\pm 2 \pm \frac{10}{2} \mu V/V$	
RATED OUTPUT		G	
Voltage, 2kΩ Load		±10V min	
Output Impedance		$<1\Omega(dc \text{ to } 100 \text{Hz})$	
Output Ripple, 0 1MHz Bandwidth			
No Signal IN		5mV p-p	
+10V _{IN}		50mV p-p	
ISOLATED POWER SUPPLY			
Voltage		±15V dc	
Accuracy		±10%	
Current Regulation No Load to Full Load		±5%, min	
Ripple, 0 1MHz Bandwidth, No Load		25mV n-n	
Full Load		75mV p-p	
POWER SUPPLY SINGLE POLARITY			
Voltage, Rated Performance		+14.4V to +25V	
Voltage, Operating		+8 5V to +25V	
Current, Quiescent (@ V _S = +15V)		+25mA	
TEMPERATURE RANGE			
Rated Performance		0 to +70°C	
Operating		-15°C to +75°C	
Storage		-55°C to +85°C	
CASE DIMENSIONS		1.5" × 2 0" × 0.75"	

NOTES

¹Gain temperature drift is specified as a percentage of output signal level ²Gain nonlinearity is specified as a percentage of 10V pk-pk output span.

³When isolated power output is used, nonlinearity accesses by 20.002%/mA of current drawn. G = 1V/V, with 2-pole, 5kHz output filter (see Figure 13). Recommended power supply, ADI model 904, ±15V @ 50mA output.

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

SHIELDED MATING SOCKET AC1214

INTERCONNECTIONS AND SHIELDING TECHNIQUE

To preserve the high CMR performance of model 289, care must be taken to keep the capacitance balanced about the input terminals. A shield should be provided on the printed circuit board under model 289 as illustrated in the outline drawing above (screened area). The LO IN/ISO PWR COM (pin 1) must be connected to this shield. This shield is provided with the mounting socket, model AC1214 (solder feedthrough wire to the socket pin 1 and copper foil surface). A recommended shielding technique using model AC1214 is illustrated in Figure 1.

Best CMR performance will be achieved by using twisted, shielded cable for the input signal to reduce inductive and capacitive pickup. To further reduce effective cable capacitance, the cable shield should be connected to the common mode signal source as close to signal low as possible (see Figure 1).

Understanding the Isolation Amplifier Performance

NOTE GAIN RESISTOR RG, 1% 50ppm/°C METAL FILM TYPE IS RECOMMENDED FOR GAIN = 1V/V, LEAVE PIN 4 OPEN FOR GAIN > 1V/V, CONNECT GAIN RESISTOR (RG) BETWEEN PIN 4 AND PIN 1 $GAIN = 1 + \frac{10k\Omega}{R_G(k\Omega)}$

Figure 1. Basic Isolator Interconnection

THEORY OF OPERATION

The remarkable performance of the model 289 is derived from the carrier isolation technique used to transfer both signal and power between the amplifier's input stage and the rest of the circuitry. A block diagram is shown in Figure 2.

The input signal is filtered and appears at the input of the noninverting amplifier, A1. This signal is amplified by A1, with its gain determined by the value of resistance connected externally between the gain terminal and the input common terminal. The output of A1 is modulated, carried across the isolation barrier by signal transformer T1, and demodulated. The demodulated voltage is filtered, amplified and buffered by amplifier A2, and applied to the output terminal. The voltage applied to the V_S terminal is set by the regulator to +12V which powers the 100kHz symmetrical square wave power oscillator. The oscillator drives the primary winding of transformer T2. The secondary windings of T2 energize both input and output power supplies, and drives both the modulator and demodulator.

INTERELECTRODE CAPACITANCE AND TERMINAL RATINGS

Capacitance: Interelectrode terminal capacitance, arising from stray coupling capacitance effects between the input terminals and the signal output terminals, are each shunted by leakage resistance values exceeding 50G Ω . Figure 3 illustrates model 289's capacitance, between terminals.

Figure 3. Model 289 Terminal Capacitance Figure 4. Model 289 Terminal Ratings

28

rms CON1 rms 1 MIN

500V rms 1 MINUTE 500V pk or de CONT

Terminal Ratings: CMV performance is given in both peak pulse and continuous ac, or dc peak ratings. Continuous peak ratings apply from dc up to the normal full power response frequencies. Figure 4 illustrates model 289 ratings between terminals.

GAIN AND OFFSET TRIM PROCEDURE

The following procedure illustrates a calibration technique which can be used to minimize output error. In this example, the output span is +5V to -5V and Gain = 10V/V.

- 1. Apply $E_{IN} = 0$ volts and adjust R_0 for $E_0 = 0$ volts.
- 2. Apply E_{IN} = +0.500V dc and adjust R_G for E_O = +5.000V dc.
- 3. Apply $E_{IN} = -0.500V$ dc and measure the output error (see curve a).
- 4. Adjust RG until the output error is one-half that measured in step 3 (see curve b).
- 5. Apply +0.500V dc and adjust R_O until the output error is one-half that measured in step 4 (see curve c).

Figure 5a. Recommended Offset and Gain Adjustment for Gains > 1

Figure 5b. Recommended Offset Adjustment for G = 1V/V

ISOLATION AMPLIFIERS 5-47

PERFORMANCE CHARACTERISTICS

Figure 6 shows the phase shift vs. frequency. The low phase shift and wide bandwidth of the model 289 make it suitable for use in SCR Motor Controller and other high frequency applications.

Figure 6. Typical 289 Phase vs. Frequency

Figure 7 illustrates the effect of source impedance imbalance on CMR performance at 60Hz for gains of 1V/V, 10V/V, and 100V/V. CMR is typically 120dB at 60Hz and a balanced source impedance. CMR is >60dB for source impedance imbalances up to 100k Ω .

Figure 7. Typical 289 Common Mode Rejection vs. Source Impedance

Input Voltage Noise: Voltage noise, referred to input, is dependent on gain and bandwidth. Figure 8 shows rms voltage noise in a bandwidth from 0.05Hz to the frequency shown on the horizontal axis. The noise in a bandwidth from 0.05Hz to 100Hz is 8μ V pk-pk at a gain of 100V/V. The peak-to-peak value is derived by multiplying the rms value at F = 100Hz (1.2 μ V rms) by 6.6.

For best noise performance in particular applications, a low pass filter at the output should be used to selectively rolloff noise and undesired signal frequencies beyond the bandwidth of interest. Increasing gain will also reduce the noise, referred to input.

Figure 8. Typical Input Voltage Noise vs. Bandwidth

5-48 ISOLATION AMPLIFIERS

Gain Nonlinearity: Linearity error is defined as the deviation of the output voltage from the best straight line and is specified as a % peak-to-peak output voltage span; e.g., nonlinearity of model 289J operating at an output span of 10V pk-pk (± 5 V) is ± 0.05 % or ± 5 mV. Figure 9 illustrates gain nonlinearity for any output span to 20V pk-pk (± 10 V). Figure 10 shows the effect of gain vs. gain nonlinearity.

Figure 9. Typical Gain Nonlinearity vs. Output Swing

Figure 10. Typical Gain Nonlinearity vs. Gain

Common Mode Rejection: Input-to-output CMR is dependent on source impedance imbalance, signal frequency and amplifier gain. CMR is rated at 115V ac, 60Hz and 1k Ω balanced source at a gain of 100V/V. Figure 11 illustrates CMR performance as a function of signal frequency. CMR approaches 156dB at dc with source imbalance as high as 1k Ω . As gain is decreased, CMR is reduced. At a gain of 1V/V, CMR is typically 6dB lower than at a gain of 100V/V.

Figure 11. Typical Common Mode Rejection vs. Frequency at a Gain of 1V/V, CMR is typically 6dB Lower than at a Gain of 100V/V

Applications

MULTICHANNEL APPLICATIONS

Isolation amplifiers containing internal oscillators may exhibit a slowly varying offset voltage at the output when used in multichannel applications. This offset voltage is the result of adjacent internal oscillators beating together. For example, if two adjacent isolation amplifiers have oscillator frequencies of 100.0kHz and 100.1kHz respectively, a portion of the difference frequency may appear as a slowly varying output offset voltage error. Model 289 eliminates this problem by offering a synchronization terminal (pin 8). When this terminal is interconnected with other model 289 synchronization terminals, the units are synchronized. Alternately, one or more units may be synchronized to an external 100kHz ±2% squarewave generator by the connection of synchronization termial(s) to that generator. The generator output should be 2.5V-5.0V p-p with $1k\Omega$ source impedance to each unit. Use an external oscillator when you need to sync to an external 100kHz source, such as a sub-multiple of a microprocessor clock. A differential line driver, such as SN75158, can be used to drive large clusters of model 289. When using the synchronization pin, keep leads as short as possible and do not use shielded wire. These precautions are necessary to avoid capacitance from the synchronization terminal to other points. It should be noted that units synchronized must share the same power common to ensure a return path.

APPLICATIONS IN INDUSTRIAL MEASUREMENT AND CONTROL SYSTEMS

Isolated DAS: In data acquisition systems where multiple transducers are powered by a single supply and the magnitude of that supply is low enough for a multiplexer to handle the voltages on all the transducers, it is economical to multiplex ahead of an isolator. The fast settling time of the model 289 makes this configuration practical where slower isolators would not be usable.

Figure 12 shows an application where the difference in voltage between any two terminals of any of the transducers does not exceed 30 volts. Though the input of the model 289 is protected against line voltage, its power terminals are not; neither is the multiplexer so protected. This circuit will not, therefore, withstand the differential application of line voltage.

Multiplexer addressing is binary, an enable providing selection of the circuit shown as a signal source. Optical isolation is provided for digital signals. When several of these circuits are used for several groups of transducers, the model 289's should be synchronized.

Figure 12. DAS with MUX Ahead of Isolator

Figure 13. 2-Pole, 5kHz Active Filter

Noise Reduction in Data Acquisition Systems: Transformer coupled isolators must have a carrier to pass dc signals through their signal transformers. Inevitably some carrier frequency ripple passes through to the isolator output. As the bandwidth of an isolator becomes a larger fraction of its carrier frequency, this ripple becomes more difficult to control. Despite this difficulty, the model 289 produces very low ripple; therefore, additional filtration will usually be unnecessary. However, in some applications, particularly where a fast analog-to-digital converter is used following the isolator, it may be desirable to add filtration; otherwise, ripple may cause inaccurate conversions. The 2-pole low-pass shown in Figure 13 limits isolator bandwidth to 5kHz, which is the full power bandwidth of the model 289. Carrier ripple is much reduced. Another beneficial effect of an output filter is smoothing of discontinuous high frequency waveforms.

Motor Control and AC Load Control: Phase shift and bandwidth are important considerations for motor control and ac load control applications. The model 289 possesses sufficient bandwidth and acceptable phase shift for such tasks.

Figure 14 shows two model 289's sensing the armature voltage and current of a motor. Faithful replicas of the waveforms of these variables are applied to the motor control. A1 operates at unity gain from divided R1-R3 to deliver an output that is 1/100 of the armature voltage of the motor. A2 operates at a gain of 100V/V to deliver a voltage 100 times that developed across the current sensing shunt.

ISOLATION AMPLIFIERS 5-49

Figure 15 shows three model 289's sensing the voltages on the three phases of an ac load. The Y network shown divides the voltages of the three phases and creates a neutral for the input commons of the isolators. The output of each isolator is a faithful replica of the phase of the waveform it senses. The isolator outputs provide the feedback necessary for the trigger control to correctly fire the triacs. In other applications, the outputs of the isolators might have been fed to rms-to-dc converters.

Figure 15. Isolating a 3 Phase Load Controller

Isolated DACs: Figure 16 shows a 12-bit DAC with $\pm 5V$ isolated output. A buffered -5V reference voltage is provided to the DAC by A1a, A1b and associated circuitry. The digital input causes a proportion of DAC current to flow into OUT1 of the DAC. The remaining DAC current flows into OUT2. Current flowing into OUT1 causes positive voltage at the output of A1c. Current flowing into OUT2 causes a positive voltage at the output of A1d, which in turn causes a negative voltage at the output of A1c. Voltage appearing at the output of A1c is reproduced at the output of the model 289. R5 and R8 must be adjusted to produce less than 0.5mV at OUT1 and OUT2 of the DAC respectively. R15 may be used to adjust gain and R11 to adjust offset with the binary code 1000 0000 0000 to zero.

Figure 16. 12-Bit Isolated Voltage DAC

Figure 17 shows the model 289 providing an isolated 4-to-20mA output from a 12-bit DAC. A1a provides a -4V reference to the DAC. The digital input causes a portion of DAC current to flow into OUT1, causing a positive voltage at the output of A1d. A1b produces a voltage across R4 proportional to DAC current, A1c and associated circuitry sink a current which is one-fourth of the full scale current of the DAC, causing a positive voltage of 1 volt at the output of A1d. With the code 1111 1111 1111, +5 volts appears at the output of A1d. Operation is unipolar with a positive offset. The output voltage of A1d is reproduced at the output of the isolator, where the circuitry shown converts it into a 4-to-20mA current which may be applied to the load R₁.

Figure 17. 12-Bit Isolated Process Current DAC

Temperature Measurement: Figure 18 shows the model 289 providing a ground-referred output in an application measuring the temperature of an object floating at a high common mode voltage. The AD590 temperature sensor sinks a current of $-1\mu A/K$. This current flows into the gain terminal of the model 289, developing +10mV/K across the internal feedback resistor. This voltage also appears at the output of the model 289.

The circuitry shown connected by a dotted line may be useful if an output of $10\text{mV}^{\circ}\text{C}$ is desired. A current of $+273\mu\text{A}$ is sourced through the 8.66k resistor and the potentiometer cancelling the AD590 current at 0°C (273K), resulting in 0mV at the output at 0°C.

Figure 18. Isolated Temperature Measurement

Low-Cost, Single and Multichannel Isolation Amplifiers

Models 290A/292A

FEATURES

Low Cost

Multichannel Capability Using External Oscillator (292A) Isolated Power Supply: ±13V dc @ ±5mA (290A) or ±15mA (292A)

Low Nonlinearity: 0.1% @ 10V pk-pk Output High Gain Stability: 0.001%/1000 Hours; 0.01%/°C Small Size: $1.5'' \times 1.5'' \times 0.62''$ Low Input Offset Voltage Drift: $10\mu V/^{\circ}C$ (Gain = 100V/V) Wide Input/Output Dynamic Range: 20V pk-pk High CMV Isolation: 1500V dc, Continuous Wide Gain Range: 1 to 100V/V

APPLICATIONS

Ground Loop Elimination in Industrial and Process Control High Voltage Protection in Data Acquisition Systems Fetal Heart Biomedical and Monitoring Instrumentation Off-Ground Signal Measurements

GENERAL DESCRIPTION

Models 290A and 292A are low-cost, compact, isolation amplifiers that are optimized for single and multichannel industrial applications, respectively. The model 290A has a self-contained oscillator and is intended for single channel applications. A single external synchronizing oscillator can drive up to 16 model 292As or, a virtually limitless number of model 292As can be configured using multiple oscillators. The user can supply the external oscillator circuit or specify model 281 oscillator module, which includes a voltage regulator for operation over a wide single supply voltage range of +8V to +28V.

Models 290A and 292A design features include: adjustable gain, from 1 to 100V/V, dual isolated power, $\pm 13V$ dc, $\pm 1500V$ dc off ground isolation, 100dB minimum CMR at 60Hz, 1k Ω source imbalance, in a compact $1.5'' \times 1.5'' \times 0.6''$ module. Models 290A and 292A achieve low input noise of 1 μ V pk-pk (10Hz bandwidth, G = 100V/V), nonlinearity of $\pm 0.1\%$ @ 10V pk-pk output, and an input/output dynamic range of 20V pk-pk.

Using modulation techniques with reliable transformer isolation, models 290A and 292A will interrupt ground loops, leakage paths, and voltage transients, while providing dc to 2kHz (-3dB) response.

WHERE TO USE MODELS 290A AND 292A

Industrial Applications: In data acquisition systems, computer interface systems, process signal isolators and high CMV instrumentation, models 290A and 292A offer complete galvanic isolation and protection against damage from transients and fault voltages. High level transducer interface capability is afforded

MODELS 290A/292A FUNCTIONAL BLOCK DIAGRAM

with 20V pk-pk input signal range at a gain of 1V/V operation. In portable single or multichannel designs, single power supply operation (+8V to +16V) enables battery operation.

DESIGN FEATURES AND USER BENEFITS

Isolated Power: Dual $\pm 13V$ dc output, completely isolated from the input power terminals ($\pm 1500V$ dc isolation), provides the capability to excite floating signal conditioners, front end buffer amplifiers and remote transducers such as thermistors or bridges.

Adjustable Gain: Models 290A and 292A adjustable gain offers compatibility with a wide class of input signals. A single external resistor enables gain adjustment from 1V/V to 100V/V providing flexibility in both high level transducer interfacing as well as low level sensor measurement applications.

Floating, Guarded Front-End: The input stage of models 290A and 292A can directly accept floating differential signals or it may be configured as a high performance instrumentation front-end to accept signals having CMV with respect to input power common.

High Reliability: Models 290A and 292A are conservatively designed, compact modules, capable of reliable operation in harsh environments. They have a calculated MTBF of over 400,000 hours and are designed to meet MIL-STD-202E environmental testing as well as the IEEE Standard for Transient Voltage Protection (472-1974: Surge Withstand Capability).

SPECIFICATIONS (typical @ $+25^{\circ}$ C; G = 100V/V and V_s = $+15^{\circ}$ unless otherwise noted)

MODEL	290A		292A
GAIN (NONINVERTING)			
Range (50kΩ Load)		1 to 100V/V	1
Formula		Gain = $\int 1 + \frac{1}{1k\Omega}$	$\frac{100k\Omega}{+R_{1}(k\Omega)}$
Deviation from Formula		±3%	
vs. Time		±0.001%/1000 H	ours
vs. Temperature $(-25^{\circ}C \text{ to } +85^{\circ}C)^{1}$		±0.0075%/°C	
Nonlinearity, G = 1V/V to 100V/V*		±0.1% (±0.25%)*	
INPUT VOLTAGE RATINGS		+ = 17	
Linear Differential Range, G = 1V/V		±5V min (±10V r	nin) ⁻
Continuous 1 min		110V rms	
Max CMV. Inputs to Outputs		1107 Inis	
ac, 60Hz, 1 Minute Duration		1500V rms max	
Continuous, ac		±1000V pk max	
Continuous, dc		±1500V pk max	
CMR, Inputs to Outputs, 60Hz, $R_S \le 1k\Omega$		10(10	
1kO Hi In Lead Only		100dB mm	
Max Leakage Current, Inputs to Power Com	non	100ub mm	
@ 115V ac, 60Hz		10µA rms max	
INPUT IMPEDANCE			
Differential		$10^8 \Omega \ 70 pF$	
Overload		100kΩ	
Common Mode		5 × 10 ¹⁰ Ω∥100p	F
INPUT DIFFERENCE CURRENT			
Initial, @ +25°C		+3nA	
vs. Temperature (-25°C to +85°C)		±0.1nA/°C	
INPUT NOISE			
Voltage, $G = 100V/V$			
0.01Hz to 10Hz		1μV p-p	
IOHz to IkHz		$1.5\mu v \text{ rms}$	
0.05Hz to 100Hz		5nA n-n	
EREQUENCY RESPONSE		· · · · · · ·	
Small Signal $-3dR G = 1V/V$		2 skuz	
Slew Rate		50mV///s	
Full Power, 10V p-p Output		som , ps	
Gain - 1V/V thru 100V/V	2.0kHz(1.0kHz)3		3 0kHz(1 0kHz) ³
OFFSET VOLTAGE REFERRED TO INPUT			
Initial, @ +25°C, Adjustable to Zero		±(5 + 50/G)mV	
vs Temperature (-25°C to +85°C)	±(10 + 150/G)μV	/°C	$\pm (8 + 250/G)\mu V/^{6}C$
vs. Supply Voltage		±1mV/%	
RATED OUTPUT			. 9
Voltage, 50k Load		±5V min (±10V i	nin) ⁵
Output Impedance		1KM2 nk-nk	,
Output Ripple, IMITZ Ballawidth		топту рк-рк	
OSCILLATOR DRIVE INPUT			
Input Voltage	N/A		8 to 16V pk-pk
Input Frequency	N/A		100kHz ±5%, max
ISOLATED POWER OUTPUTS			
Voltage Full Load		±13V dc	
Accuracy Current ⁴	+5mA min	1 3 %	+15mA min
Regulation. No Load to Full Load	-51111 11111	+015%	-1911111 11111
Ripple, 100kHz Bandwidth	200mV p-p	-,	250mV p-p
POWER SUPPLY, SINGLE POLARITY			
Voltage, Rated Performance		+15V dc	
Voltage, Operating		+8V dc to +15.5	V dc
Current, Quiescent		+20mA	
TEMPERATURE RANGE			
Rated Performance		-25°C to +85°C	
Storage		-55°C to +85°C	
CASE DIMENSIONS		$1.5'' \times 1.5'' \times 0.6$	2"
Where the answer the second seco			

NOTES

NOTES ¹ Gan temperature drift is specified as a percentage of output signal level. ¹Gain nonlinearity is specified as a percentage of 10V pk-pk output span. ¹These specs apply for a 20V pk-pk output span. ⁴Do not load Vigo When operating at output spans greater than 10V pk-pk Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

SHIELDED MOUNTING SOCKET AC1054

Figure 1. Model 290A and 292A Terminal Ratings

Symbol	Rating	Remarks
V_1	±110V rms (cont.)	Withstand Voltage, Steady State
v_2	±1000V pk (cont.)	Isolation, Steady State, ac
v_2	±1500V pk (cont)	Isolation, Steady State, dc
V_2	±1500V rms (1 min)	Isolation, ac, 60Hz
$\bar{v_3}$	±50V pk (cont.)	Isolation, dc
Z ₁	50GΩ∥20pF	Isolation Impedance

Table I. Isolation Ratings Between Terminals

Understanding the Isolation Amplifier Performance

THEORY OF OPERATION

The remarkable performance of models 290A and 292A are derived from the carrier isolation technique which is used to transfer both signal and power between the amplifier's guarded input stage and the rest of the circuitry. The block diagram for both models is shown in Figure 2 below.

The bipolar input preamplifier operates single-ended (noninverting). Only a difference bias current flows with zero net bias current. A third wire return path for input bias current is not required. Gain can be set from 1V/V to 100V/V by changing the gain resistor, R_i . To preserve high CMR, the gain resistor must be guarded. Best performance is achieved by shorting terminal 2 to terminal 1 and operating the isolator at a gain of 100V/V.

For powering floating input circuitry such as buffer amplifiers, instrumentation amplifiers, calibration signals and transducers, dual isolated power is provided. High CMV isolation is achieved by the low-leakage transformer coupling between the input preamplifier, modulator section and the output circuitry. Only the 10pF leakage capacitance between the floating input section and the rest of the circuitry keeps the CMR from being infinite.

Figure 2. Block Diagram – Models 290A and 292A

GUIDELINES ON EFFECTIVE SHEILDING & GROUNDING PRACTICES

- Use twisted shielded cable to reduce inductive and capacitive pickup.
- Drive the transducer cable shield, S, with the common mode signal source, E_G, to reduce the effective cable capacitance as shown in Figure 3. This is accomplished by connecting the shield point S, as close as possible to the transducer signal low point B. This may not always be possible. In some cases the shield may be separated from signal low by a portion of the medium being measured (e.g. pressure transducer). This will cause a common mode signal, E_M, to be generated by the medium between the shield and the signal low. The 86dB CMR capability of both models between the input terminals (HI IN and LO IN) and GUARD, will work to suppress the common mode signal, E_M.
- Dress unshielded leads short at the connection terminals and reduce the area formed by these leads to minimize inductive pickup.

Figure 3. Transducer - Amplifier Interface

GAIN AND OFFSET TRIM PROCEDURE

In applying the isolation amplifier, highest accuracy is achieved by adjustment of gain and offset voltage to minimize the peak error encountered over the selected output voltage span. The following procedure illustrates a calibration technique which can be used to minimize output error. In this example, the output span is +5V to -5V and operation at Gain = 10V/Vis desired.

- 1. Apply $E_{IN} = 0$ volts and adjust R_O for $E_O = 0$ volts.
- 2. Apply E_{IN} = +0.5V dc and adjust R_G for E_O = +5.0V dc. 3. Apply E_{IN} = -0.5V dc and measure the output error (see
- curve a). 4 Adjust \mathbf{P}_{-} until the output error is one half that measure
- 4. Adjust R_G until the output error is one half that measured in step 3 (see curve b).
- 5. Apply +0.5V dc and adjust R_0 until the output error is one half that measured in step 4 (see curve c).

 $\begin{array}{l} \mbox{GAIN RESISTOR, R, 1%, 50ppm/^{C} CMETAL FILM TYPE IS RECOMMENDED FOR GAIN = 10V/V, LEAVE TERMINAL 2 OPEN. FOR GAIN = 10V/V, SHORT TERMINAL 2 TO TERMINAL 1 <math display="block"> \begin{array}{l} \mbox{GAIN} & = 1 \\ \mbox{GAIN} & = 1 \\ \hline \mbox{T} & = 1 \\ \hline \mbo$

 $f = (-3\mathrm{dB}) = \frac{1}{2\pi\mathrm{C}\left(11\mathrm{k}\Omega\right)}$

Figure 4. Gain and Offset Adjustment

ISOLATION AMPLIFIERS 5-53

SELECTING BANDWIDTH

In low frequency signal measurements, such as thermocouple temperature measurements, strain gage measurements and geophysical instrumentation, an external filter is used to select bandwidth and minimize output noise.

When used with a buffer amplifier as shown in Figure 5a below, a series resistor (R_S) is used to lower the effective value of the filter capacitor required to achieve very low frequency (under 200Hz) noise filtering.

Figure 5a. Selecting Bandwidth with External Capacitor and Buffer

An active filter, as illustrated in Figure 5b will significantly improve 60Hz noise reduction at the output by providing a sharp roll-off characteristic. The 5Hz 3-pole active filter design illustrated in Figure 5b, will increase the 60Hz noise reduction by 50dB. Overall CMR performance of models 290 and 292 and the 5Hz active filter approaches 150dB @ 60Hz and 1k Ω imbalance.

Figure 5b. Selecting Bandwidth with a 3-Pole 5Hz Active Filter

PERFORMANCE CHARACTERISTICS

Common Mode Rejection: Input-to-Output CMR is dependent on source impedance imbalance, signal frequency and amplifier gain. CMR is rated at 115V ac, 60Hz and 1k Ω imbalance at a gain of 100V/V. Figure 6 illustrates CMR performance as a function of signal frequency. CMR approaches 130dB at dc with source imbalances as high as 1k Ω . As gain is decreased, CMR is reduced. At a gain of 1V/V, CMR is typically 12dB lower than at a gain of 100V/V.

Figure 6. Typical Common Mode Rejection vs. Frequency

Figure 7 illustrates the effect of source imbalance on CMR performance at 60Hz and Gain = 100V/V. CMR is typically 110dB at 60Hz and a balanced source. CMR is maintained greater than 70dB for source imbalances up to $100k\Omega$.

Figure 7. Typical Common Mode Rejection vs. Source Impedance Imbalance

Gain Nonlinearity: Linearity error is defined as the deviation of the output voltage from the best straight line and is specifield as a % of peak-to-peak output voltage span; e.g., nonlinearity of models 290A and 292A operating at an output span of $10V \text{ pk-pk} (\pm 5V)$ is $\pm 0.1\%$ or $\pm 10\text{mV}$. Figure 8 illustrates gain nonlinearity for any output span to $20V \text{ pk-pk} (\pm 10V)$.

Figure 8. Typical Gain Nonlinearity vs. Output Voltage

Input Voltage Noise: Voltage noise, referred to input, is dependent on gain and bandwidth as illustrated in Figure 9. RMS voltage noise is shown in a bandwidth from 0.01Hz to the frequency shown on the horizontal axis. The noise in a bandwidth from 0.01Hz to 10Hz is $1\mu V$ pk-pk at a gain of 100V/V. This value is derived by multiplying the rms value at f = 10Hz shown in Figure 9 by 6.6.

For best noise performance in particular applications, a low pass filter at the output should be used to selectively roll-off noise and undesired signal frequencies beyond the bandwidth of interest. Increasing gain will also reduce the input noise.

Figure 9. Typical Input Voltage Noise vs. Bandwidth

The Multichannel Isolation Amplifier

Input Offset Voltage Drift: Total input drift is composed of two sources, input and output stage drifts and is gain dependent. The curve of Figure 10 illustrates total input drift over the gain range of 1 to 100V/V.

Figure 10. Typical Input Offset Voltage Drift vs. Gain

REFERENCE EXCITATION OSCILLATOR, MODEL 281

When applying model 292A, the user has the option of building a low cost 100kHz excitation oscillator, as shown in Figure 11, or purchasing a module from Analog Devices-model 281.

Figure 11. 100kHz Oscillator Interconnection Diagram

The block diagram of model 281 is shown in Figure 12. An internal +12V dc regulator is provided to permit the user the option of operating over two, pin selectable, power input ranges; terminal 6 offers a range of +14V dc to +28V dc; terminal 7 offers an input range of +8V dc to +14V dc.

*LEAVE TERMINAL 6 OPEN, WHEN POWER IS APPLIED TO TERMINAL 7

Model 281 oscillator is capable of driving up to 16 model 292As. As shown in Figure 13, an additional model 281 may be driven in a slave-mode to expand the total system channels from 16 to 32. By adding additional model 281's in this manner, systems of over 1000 channels may be easily configured.

Figure 13. External Oscillator Interconnection

SPECIFICATIONS (typical @ $+25^{\circ}$ C and Vs = +15V dc unless otherwise noted)

MODEL	281
OUTPUT	
Frequency	100kHz ±5%
Waveform	Squarewave
Voltage (ϕ and $\overline{\phi}$ terminals)	0 to +12V pk
Fan-Out ^{1,2}	16 max
POWER SUPPLY RANGE ³	
High Input, Pin 6	+(14 to 28)V dc
Quiescent Current, N L	+5mA
FL	+16mA
Low Input, Pin 7	+(8 to 14)V dc
Quiescent Current, N L	+12mA
FL	+33mA
TEMPERATURE	
Rated Performance	0 to +70°C
Storage	-55°C to +85°C

¹Model 292A oscillator drive input represents unity oscillator load.
 ²For applications requiring more than 16 292As, additional 281s may be used in a master/slave mode. Refer to Figure 13.

³Full load consists of 16 model 292As and 281 oscillator slave,

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

CINCH #16 DIP OR EQUIVALENT

ISOLATION AMPLIFIERS 5-55

APPLICATIONS IN INDUSTRIAL MEASUREMENT AND CONTROL SYSTEMS

Remote Sensor Interface: In chemical, nuclear and metal processing industries, models 290A and 292A can be applied to measure and control off-ground millivolt signals in the presence ±1500V dc CMV signals. In interface applications such as pH control systems or on-line process measurement systems such as pollution monitoring, models 290A and 292A offer complete galvanic isolation to eliminate troublesome ground loop problems. Isolated power outputs and adjustable gain add to the application flexibility of these models.

Figure 14 illustrates how model 290A or 292A can be combined with a low drift, $1\mu V/^{\circ}C$ front-end amplifier, model AD517L, to interface low level transducer signals. Both products provide isolated ±13V dc power and front-end guard in addition to eliminating ground loops and preserving high CMR (100dB @ 60Hz).

Figure 14. Input Signal Conditioning Using Isolated Power for Transducer Buffer Amplifier

Instrumentation Amplifier: Models 290A and 292A provide a floating guarded input stage capable of directly accepting isolated differential signals. The noninverting, single-ended input stage offers simple two wire interconnection with floating input signals.

In applications where the isolated power is applied to transducers such as bridges which generate differential input signals with common mode voltages measured with respect to the isolated power common, models 290A and 292A can be connected as shown in Figure 15. To achieve high CMR with respect to the ISO PWR COM, the following trim procedure is recommended.

CMR Trim Procedure

- 1) Connect a 1V pk-pk oscillator between the +IN/-IN and IN COM terminals as shown in Figure 15.
- Set the input frequency at 0.5Hz and adjust R1 for minimum E_O.
- Set the input frequency at 60Hz and adjust R2 for minimum E_O.
- 4) Repeat steps 2 and 3 for best CMR performance.

Figure 15. Application of 290A as Instrumentation Amplifier 5–56 ISOLATION AMPLIFIERS

Isolated Temperature Measurements: Industrial temperature measurements are often performed in harsh environments where line voltages or transients can sometimes be impressed on the temperature sensor. To provide protection for the delicate recording instrumentation, models 290A and 292A can be applied as shown in Figure 16. The Analog Devices' AC2626 probe is a temperature sensor whose output is a current directly proportional to absolute temperature. The isolation amplifier provides the isolated power (+13V dc) as well as the input/output isolation. Zero calibration is performed by placing the AC2626 probe in a zero temperature bath and adjusting R_0 for E_0 to 0 volts. Full scale output adjustment is performed by placing the AC2626 probe in boiling water (100°C) and adjusting R_5 for 1.000V output.

Figure 16. Isolated Temperature Measurements

Current Loop Receiver: Model 290A and 292A can be applied to measurement of analog quantities transmitted via 4-20mA current loops over substantial distances through harsh environments. Figure 17 shows an application of model 290A or 292A as a current loop receiver. A 25 Ω resistor converts the 4-20mA current input from a remote loop to a 100-500mV differential voltage input, which the isolator amplifies, isolates, and translates to a 0 to +5V output level at local system ground.

Among the most-helpful characteristics of the isolator in this kind of measurement are the high common-mode rejection (100dB minimum at 60Hz with $1k\Omega$ source unbalance) and the high common-mode rating (±1500 volts dc). The former means low noise pickup; the latter means excellent isolation and protection against large transients. The high commonmode rejection, permitting relatively low input voltage to be used (0.4V span, in this case), permits the use of a low currentmetering resistance, which in turn results in low compliancevoltage loading on the current loop, and therefore permits insertion into existing loops without encountering overrange problems. The gain of 12.5 provides a substantial output span, and the floating output permits biasing to a 0 to 5V range.

Figure 17. Isolated Analog Interface; 4 to 20mA is Converted to 0 to +5V at the Output, with Up to $\pm 1500V$ of Isolation

Analog Multipliers/Dividers Contents

Page

Selection Guide	\$
Orientation	ŀ
AD532 – Internally Trimmed Integrated Circuit Multiplier	,
AD534 – Internally Trimmed Precision IC Multiplier	3
AD538 – Real-Time Analog Computational Unit (ACU)	!3
AD539 – Wideband Dual-Channel Linear Multiplier/Divider	31
AD632 – Internally Trimmed Precision IC Multiplier	9
AD834 – High Frequency Four-Quadrant Multiplier	13

÷

Selection Guide Analog Multipliers/Dividers

Model	Small Signal Bandwidth MHz	Full-Scale Accuracy %	X Nonlinearity % of FS	Y Nonlinearity % of FS	Full-Scale Output	Page	Notes
AD532	1	1	0.5	0.2	10V	6 – 7	4-quadrant multiplication
AD534	1	0.25	0.12	0.01	10V	6 - 13	4-quadrant multiplication
AD538	0.4	0.5	-	-	10V	6 – 23	Multiplication, division, powers, roots
AD539	30	1	-	-	lmA	6 - 31	2-quadrant multiplication/division
AD632	1	0.5	0.08	0.01	10V	6 - 39	
AD834	500	0.5	-	-	4mA	6 – 43	High frequency 4-quadrant multiplier

Orientation Analog Multipliers/Dividers

The devices catalogued in this section are high-performance ICs that accept analog voltages and multiply, divide, square and/or square-root them, depending on device properties and connections. Other multiplying devices available from Analog Devices include digital multipliers (in *DSP Products Databook*) and multiplying D/A converters (*Data Conversion Products Databook*).

Multiplication: For two inputs, V_x and V_y , a multiplier will provide the output, $E_{out} = V_x V_y / E_{ref}$, where E_{ref} is a dimensional constant, usually of 10V nominal value. If $E_{ref} = 10V$, $E_{out} = 10V$ when V_x and V_y are 10V. Multipliers are used for modulation and demodulation, fixed and variable remote gain adjustment, power measurement and mathematical operations in analog computing, curve fitting and linearizing.

If the inputs may be of either positive or negative polarity and the output polarity is in a correct relationship for multiplication, the device is called a "four-quadrant" multiplier, reflecting the four quadrants of the X-Y plane.

Squaring: If $V_x = V_y = V_{in}$, a multiplier's output will be V_{in}^2/E_{ref} . A four-quadrant multiplier, used as a squarer, will have an output that is positive whether V_{in} is positive or negative. Squarers are useful in frequency doubling, power measurement of constant loads and mathematical operations.

Division: For a numerator input, V_z , and a denominator input, V_x , an analog divider will provide the output, $E_{out} = E_{ref}(V_z/V_x)$. If $E_{ref} = 10V$, E_{out} will be 10V or less for $V_z \leq V_x$. V_x is of a single polarity and will not provide meaningful results if it approaches zero too closely. If V_z may be of either positive or negative polarity, the device is described as a "two-quadrant" divider, and the output will reflect the polarity of V_z . Analog dividers are used to compute ratios – such as efficiency, attenuation, or gain; they are also used for fixed and variable remote gain adjustment, ratiometric measurements and for mathematical operations in analog computing.

Square Rooting: For a numerator input, V_{in} , and a denominator input, E_o (the output fed back to the denominator input), the output of a divider is $E_o = E_{ref} (V_{in}/E_o)$; hence $E_o = \sqrt{E_{ref}V_{in}}$. A square rooter works in one quadrant; some devices require external diode circuitry to prevent latchup if the input polarity changes, even momentarily. Square roots are used in vector and rms computation, to linearize flowmeters, and for mathematical operations in analog computing.

CHOOSING A MULTIPLIER, DIVIDER, ETC.

A number of devices are listed here, differing in internal ararchitecture, external functional configuration and performance specifications. Most have essentially fixed references; the AD538 is a *multifunction device* that performs the one-quadrant operation, $E_o = V_z/(V_y/V_x)^m$, where m is an exponent adjustable from 1/5 to 5.

Considerable information on these functions, the nature of devices to perform them and extensive discussions of their applications can be found in the *Nonlinear Circuits Handbook*.¹ A wealth of information is also to be found in the data sheets for the individual

¹Nonlinear Circuits Handbook, D.H. Sheingold, ed., 1976, 536pp., \$5.95, Analog Devices, Inc., P.O. Box 796, Norwood, MA 02062 devices published in this section. In addition to the products listed here, a number of popular earlier products are still available; data sheets are available upon request.

Internal Architecture: All of the devices in this section rely on the logarithmic properties of silicon P-N junctions. An example of the *translinear* principle that they embrace can be seen in the circuitry of a "Gilbert cell," employed in various forms for analog multiplication. Its four-quadrant multiplying circuitry and performance are described in (1), with further references to the original sources. The input voltages are converted to currents; the currents are multiplied together and divided by a reference, and the net output current, $I_x I_y / I_{ref}$, is converted to voltage by feedback around the output amplifier. The feedback terminals are available as inputs for applications involving division.

Basic Four-Quadrant Variable-Transconductance Multiplier Circuit

$$I_0 = (I_3 + I_5) - (I_4 + I_6) = \frac{2V_X V_Y}{IR_X R_Y}$$

AD538 Functional Block Diagram

In multifunction devices like the AD538, the feedback currents of the V_z and V_x input op amps are used to develop logarithmic voltages across transistor base-emitter junctions; these voltages are differenced to provide the logarithm of the ratio, V_z/V_x . At the user's choice, this log ratio is either amplified (m>1), attenuated (m<1) or unchanged (m=1), then applied to a productantilog circuit which adds the logarithm of V_y, then takes the antilogarithm to produce the output equation,

$$V_{OUT} = V_{y} \left\{ \frac{V_{z}}{V_{x}} \right\}^{m}$$

Wideband Multipliers have bandwidths greatly exceeding 1MHz. The output is generally in the form of current, for maximum bandwidth (current-to-voltage conversion tends to reduce bandwidth and is unnecessary in many applications). The user can choose an appropriate external amplifier – or other circuitry – to meet the needs of the application. The AD539 is a dual multiplier/divider with two independent two-quadrant signal channels (inputs Y1 and Y2) and a common X-input, which provides linear control of gain for both channels. Signal bandwidth is 30MHz and control bandwidth is 5MHz. The AD834 is a four-quadrant multiplier with 500MHz large-signal bandwidth and 0.5% static-accuracy specifications. It has differential X and Y inputs and differential open-collector current output. For 1-volt inputs, its differential output current is $\pm 4mA$.

External Functional Configuration: Most of the devices listed here can be used for multiplication, division, squaring and/or square-rooting (MDSSR), by the appropriate connection of external jumpers. Performance of pretrimmed devices is optimized in specified modes of operation. The data sheets show how devices are connected for the various modes of operation; where appropriate, the suggested trim circuits and procedures for optimizing performance are provided.

Technologies: The devices described in these two volumes are monolithic integrated circuits. For any application, the user will evaluate a device on the basis of its performance in the desired mode(s). The pretrimmed ICs use laser trimming of thin-film-onsilicon chips at the wafer stage and buried-Zener reference circuitry, as well as thermally balanced input stages and "core" circuitry, for overall maximum errors as low as 0.25%, and high linearities.

Performance: Multiplier performance, specifications and test circuitry are described in great detail in the *Nonlinear Circuits Handbook*. Here is a brief digest of the factors relating to low-frequency performance.

An ideal multiplier has an output which is the product of two input variables, X and Y, divided by the 10V scaling voltage. However, the practical multiplier is subject to various offset errors and nonlinearities which must be accounted for in its application. This discussion is intended to assist the designer in understanding and interpreting multiplier and divider specifications and obtaining insight into device performance.

In practical (see the simplified single-ended multiplier in the figure), a multiplier may be considered as having two parts, one (M) contains the input circuitry and the multiplying cell; the other is a gain-conditioning op amp, A.

Also summed at the op-amp input is the feedback variable, Z. In multiplication, Z is connected to the output circuit. In division, Z and X are the inputs, and Y is connected to the output. The figure shows a model with 10-volt scale factor used for considering

Functional Block Diagram of Typical Multiplier/Divider

errors. X_o and Y_o are input offset voltages, Z_o is the offset-referredto-the-input of the output amplifier, and f(X', Y') is the nonlinearity, viewed as the departure from the ideal multiplication, $\frac{X'Y'}{10R}$. The output equation, including the errors is of the form

$$E_{o} = \frac{XY}{10B} \pm \left[\frac{X_{o}Y}{10B} \pm \frac{XY_{o}}{10B} \pm Z_{o} + f(X,Y)\right]$$
Product
$$\underbrace{X_{offset}}_{Uinear} \underbrace{Y_{offset}}_{"Y"} \underbrace{Output}_{"X"} \underbrace{Output}_{Feedthrough} \\ Feedthrough}$$

The errors are included in the bracketed term, except for gain error, which is the departure of "B", the gain-error term, from its nominal value of unity. The effects of input offsets (called "linear feedthrough") can be set to zero by adding external input biases, the output offset can be set to zero by biasing the output amplifier, and the gain can be externally calibrated by adjusting the reference or the feedback resistance. The remaining departure from the ideal output for any combination of input values is the irreducible *linearity error*, or *nonlinearity*, a function of X and Y that differs from device to device and, with temperature, within a given device. The component of nonlinearity for X = 0is called "Y feedthrough" and for Y = 0, it is called "X feedthrough".

The "total error" specification includes the effects of all these errors. Although a guide to performance, it may produce an excessively conservative design in some applications. For example, output offset is not important if the output is to be capacitively coupled or the initial offset is nulled. Gain error is not important if system gain is to be adjusted elsewhere in the system or if gain is not a critical factor in system performance. If frequent calibration of offset and scale-factor errors is available (e.g., in a "smart" instrument, via software) nonlinearity becomes the limiting parameter. In such cases, improvements in predicted error can be achieved by using the approximate linearity equation:

$$f(X,Y) \cong |V_x|\epsilon_x + |V_y|\epsilon_y$$

where ϵ_x and ϵ_y are the specified fractional linearity errors (%/100) and V_x and V_y are the input signals.

When multipliers are fed back for use in division applications, it is important to recognize that maximum multiplication errors are increased approximately in proportion to the inverse of the denominator voltage $(10V/V_x)$, and bandwidth is decreased in proportion to denominator voltage. Pretrimmed multipliers used in such applications, with wide dynamic range of X (i.e., >10:1), will always benefit greatly by the trimming of offsets, especially Z_o (affects offsets) and X_o (affects gain), for small values of X.

DEFINITIONS OF SPECIFICATIONS*

Accuracy is defined in terms of total error of the multiplier at room temperature and constant nominal supply voltage. Total error includes the sum of the effects of input and output dc offsets, nonlinearity, and feedthrough. Temperature dependence and supply-voltage effects are specified separately.

Scale Factor: The scale-factor error (or gain error) is the difference between the average scale factor and the ideal scale factor (e.g., $(10V)^{-1})$. It is expressed in percent of the output signal. Temperature dependence is specified.

Output Offset refers to the offset voltage at the output-amplifier stage. This offset is usually minimized at manufacture and can be trimmed where high accuracy is desired. Output offset vs. temperature is also specified.

Linearity Error or Nonlinearity is the maximum difference between actual and "best-straight-line" theoretical output, for all pairs of input values, expressed as a percentage of full scale, with all other dc errors nulled. It is the irreducible minimum error. It is usually expressed in terms of X and Y nonlinearity, with the named input swinging over its full-scale range and the other input at (\pm) 10V. Y nonlinearity is considerably less than X nonlinearity in simple "Gilbert-cell" multipliers. This specification includes nonlinear feedthrough.

X or Y Feedthrough is the signal at the output for any value of X or Y input in the rated range, when the other input is zero. It has two components, a linear one, corresponding to an *input* offset at the zero input, which can be trimmed out (but can drift

and has a *temperature specification*), and a nonlinear one, which is irreducible. *Feedthrough* is usually specified at one frequency (50Hz) for a 20V p-p sine wave input. It increases with frequency, and plots of typical feedthrough vs. frequency are provided on multiplier data sheets.

Noise is specified and measured with both inputs at zero signal and zero impedance (i.e., shorted). For low-frequency applications, filtering the output of the mulitplier may improve smallsignal resolution significantly.

Dynamic Parameters include: small-signal bandwidth, full-power response, slew(ing) rate, small-signal amplitude error and settling time.

Small-Signal Bandwidth is the frequency at which the output is down 3dB from its low-frequency value (i.e., by about 30%) for a nominal output amplitude of 10% of full scale.

Full-Power Response is the maximum frequency at which the multiplier can produce the full-scale voltage into its rated load without noticeable distortion.

Slew(ing) Rate $(V/\mu s)$ is the maximum rate of change of output voltage for the product of a full-scale dc voltage and a full-scale step input.

Small-Signal Amplitude Error is defined in relation to the frequency at which the amplitude response, or scale-factor, is in error by 1%, measured with a small (10% of full-scale) signal.

Settling Time, for the product of a $\pm 10V$ step and 10V dc, is the total length of time the output takes to respond to an input change and stay within some specified error band of its final value. Settling time cannot be accurately predicted from any other dynamic specifications; it is specified in terms of a prescribed measurement.

Vector Error is the most sensitive measure of dynamic error. It is usually specified in terms of the frequency at which a phase error of 0.01 radians (0.57°) occurs.

*These are general definitions. Further definitions are provided as footnotes to the Specifications tables; they should be read carefully.

Internally Trimmed Integrated Circuit Multiplier

AD532

FEATURES

Pretrimmed To ±1.0% (AD532K) No External Components Required Guaranteed ±1.0% max 4-Quadrant Error (AD532K)

Diff Inputs For $(X_1-X_2) (Y_1-Y_2)/10V$ Transfer Function

Monolithic Construction, Low Cost

APPLICATIONS Multiplication, Division, Squaring, Square Rooting Algebraic Computation Power Measurements Instrumentation Applications Available in Chip Form

PRODUCT DESCRIPTION

The AD532 is the first pretrimmed single chip monolithic multiplier/divider. It guarantees a maximum multiplying error of $\pm 1.0\%$ and a $\pm 10V$ output voltage without the need for any external trimming resistors or output op amp. Because the AD532 is internally trimmed, its simplicity of use provides design engineers with an attractive alternative to modular multipliers, and its monolithic construction provides significant advantages in size, reliability and economy. Further, the AD532 can be used as a direct replacement for other IC multipliers that require external trim networks (such as the AD530).

FLEXIBILITY OF OPERATION

The AD532 multiplies in four guadrants with a transfer function of $(X_1 - X_2)(Y_1 - Y_2)/10V$, divides in two guadrants with a $10VZ/(X_1-X_2)$ transfer function, and square roots in one quadrant with a transfer function of $\pm \sqrt{10VZ}$. In addition to these basic functions, the differential X and Y inputs provide significant operating flexibility both for algebraic computation and transducer instrumentation applications. Transfer functions, such as XY/10V, (X²-Y²)/10V, ±X²/ 10V, and $10VZ/(X_1-X_2)$ are easily attained, and are extremely useful in many modulation and function generation applications, as well as in trigonometric calculations for airborne navigation and guidance applications, where the monolithic construction and small size of the AD532 offer considerable system advantages. In addition, the high CMRR (75dB) of the differential inputs makes the AD532 especially well qualified for instrumentation applications, as it can provide an output signal that is the product of two transducergenerated input signals.

GUARANTEED PERFORMANCE OVER TEMPERATURE

12 13

The AD532J and AD532K are specified for maximum multiplying errors of $\pm 2\%$ and $\pm 1\%$ of full scale, respectively at $\pm 25^{\circ}$ C, and are rated for operation from 0 to $\pm 70^{\circ}$ C. The AD532S has a maximum multiplying error of $\pm 1\%$ of full scale at $\pm 25^{\circ}$ C; it is also 100% tested to guarantee a maximum error of $\pm 4\%$ at the extended operating temperature limits of $\pm 55^{\circ}$ C and $\pm 125^{\circ}$ C. All devices are available in either the hermetically-sealed TO-100 metal can or TO-116 ceramic DIP.

ADVANTAGES OF ON-THE-CHIP TRIMMING OF THE MONOLITHIC AD532

NC X₂ GND

NC ARE NO CONNECT PINS

- 1. True ratiometric trim for improved power supply rejection.
- 2. Reduced power requirements since no networks across supplies are required.
- More reliable since standard monolithic assembly techniques can be used rather than more complex hybrid approaches.
- 4. High impedance X and Y inputs with negligible circuit loading.
- 5. Differential X and Y inputs for noise rejection and additional computational flexibility.

SPECIFICATIONS (@ $+25^{\circ}$ C, V_s = $\pm 15V$, R $\ge 2k\Omega$ V_{os} grounded)

	T			T		-	T			
Model	Min	AD532J Typ	Max	Min	AD532K Typ	Max	Min	AD532S Typ	Max	Units
MULTIPLIER PERFORMANCE	1	Rec. 101-04-0	·····							······
Transfer Function	(\mathbf{X}_1)	$-X_2(Y_1 - Y_2)$	Y ₂)	<u>(X</u> 1	$-X_2(Y_1 - Y_2)(Y_1 $	- Y ₂)	<u>(X</u> 1	$-X_2)(Y_1 - 10)$	Y ₂)	
Total Error $(-10V \le Y, V \le \pm 10V)$		+15	+20		+0.7	+10		+0.5	+10	%
$T_{i} = \min to \max$		+25	- 2.0		+15	± 1.0		20.5	+40	%
Total Error vs Temperature		± 0.04			± 0.03			± 0.01	± 0.04	%/°C
Supply Rejection $(\pm 15V \pm 10\%)$		±0.05			±0.05			± 0.05		%/%
Nonlinearity, $X (X = 20V \text{ pk-pk}, Y = 10V)$	1 °	± 0.8			±0.5			±0.5		%
Nonlinearity, Y (Y = 20V pk-pk, X = 10V)		±0.3			±0.2			± 0.2		%
Feedthrough, X (Y Nulled,				1						
X = 20V pk-pk 50Hz)	1	50	200		30	100		30	100	mV
Feedthrough, Y (X Nulled,										
$\mathbf{Y} = \mathbf{20V} \mathbf{pk} \cdot \mathbf{pk} \mathbf{50Hz})$		30	150	1	25	80		25	80	mV
Feedthrough vs. Temp.		2.0			1.0			1.0		mV p-p/°C
Feedthrough vs. Power Supply		± 0.25			±0.25			±0.25		mv/%
DYNAMICS										
Small Signal BW ($V_{OUT} = 0.1 \text{ rms}$)		1			1			1 75		MHZ
Norman Slow Pate (V 20 pk pk)		15			15			15		V/us
Setting Time (to $2\% \Delta V_{OUT} = 20V$)		45			45			1		ν/μs μs
NOISE	╂────		······		-					
Wideband Nose f = 5Hz to 10kHz		0.6			0.6			0.6		mV (rms)
f = 5Hz to $5MHz$		3.0			3.0			3.0		mV (rms)
OUTPUT	 		· · · · · · · · · · · · · · · · · · ·	<u> </u>						
Output Voltage Swing	+ 10	+ 13		+ 10	+ 13		+ 10	+ 13		v
Output Impedance $(f \le 1 \text{ kHz})$	- 10	1			1		- 10	1		Ω
Output Offset Voltage		- ± 40			-	± 30		-	±30	mV
Output Offset Voltage vs Temp.		0.7			0.7				2.0	mV/°C
Output Offset Voltage vs. Supply		± 2.5			± 2.5			± 2.5		mV/%
INPUT AMPLIFIERS (X, Y and Z)										
Signal Voltage Range (Diff. or CM										
Operating Diff)	1	± 10			± 10			±10		v
CMRR	40			50			50			dB
Input Bias Current				,						
X, Y Inputs		3			1.5	4		1.5	4	μΑ
X, Y Inputs T _{min} to T _{max}		10			8			8		μΑ
Zinput		± 10			± 5	± 15		±)	±15	μΑ
Z Input I mun to I max		± 30			± 25			± 25		μA A
Differential Resistance		± 0.5			±0.1			10		мо MO
	┝───	10			10					11112
DIVIDER PERFORMANCE										
Transfer Function $(X_1 > X_2)$	101	$V Z/(X_1 - X_2)$	2)	10V	$Z/(X_1 - X_2)$	2)	10V	$Z/(X_1 - X_2)$	2)	
Total Error										
$(V_{X} = -10V, -10V \le V_{Z} \le +10V)$		± 2			±1			±1		%
$(V_{X} = -1V, -10V \le V_{Z} \le +10V)$		±4			± 3			± 3		%
SQUARE PERFORMANCE		N \2			V 12			V 12		
Transfer Function	$\frac{(\mathbf{x})}{\mathbf{x}}$	$(-X_2)^2$		$\frac{(\mathbf{X}_1)}{1}$	$-X_2^{2}$		$\frac{(\mathbf{X}_1)}{\mathbf{X}_2}$	$-\mathbf{X}_2^{\mu}$		
Total Frror	'	+0.8			+0.4			±0.4		%
SOUADE BOOTED DEDEOD MANCE	<u> </u>	_ 0.0								
Transfer Function		$-\sqrt{10^3}$	V7		$-\sqrt{10^{2}}$	VZ.		$-\sqrt{10}$	VZ	
Total Error $(0V \le V_2 \le 10V)$.	±1.5			±1.0			±1.0		%
POWER SUPPLY SPECIFICATIONS	<u> </u>									
Supply Voltage	1									
Rated Performance	1	±15			±15			±15		v
Operating	±10		±18	±10		±18	± 10		±22	v
Supply Current	1		-							
Quiescent		4	6		4	6		4	6	mA
PACKAGE OPTIONS ¹			•	 						
TO-116 (D-14)	AD53	2JD		AD532	KD		AD532	SD		
TO-100(H-10A)	AD532	2JH		AD532	кн		AD532	SH		

NOTE ¹See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electr-ical test. Results from those tests are used to calculate outgoing quality levels.

All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

FUNCTIONAL DESCRIPTION

The functional block diagram for the AD532 is shown in Figure 1, and the complete schematic in Figure 2. In the multiplying and squaring modes, Z is connected to the output to close the feedback around the output op amp. (In the divide mode, it is used as an input terminal.)

The X and Y inputs are fed to high impedance differential amplifiers featuring low distortion and good common mode rejection. The amplifier voltage offsets are actively laser trimmed to zero during production. The product of the two inputs is resolved in the multiplier cell using Gilbert's linearized transconductance technique. The cell is laser trimmed to obtain $V_{out} = (X_1 - X_2)(Y_1 - Y_2)/10$ volts. The built-in op amp is used to obtain low output impedance and make possible self-contained operation. The residual output voltage offset can be zeroed at V_{os} in critical applications otherwise the V_{os} pin should be grounded.

Figure 1. Functional Block Diagram

Figure 2. AD532 Schematic Diagram

ORDERING GUIDE					
Model	Max Mult Error	Temperature Range	Model	Max Mult Error	Temperature Range
AD532JH	±2.0%	0 to +70°C	AD532SH	±1.0%	$-55^{\circ}C$ to $+125^{\circ}C$
AD532JD	±2.0%	0 to +70°C	AD532SD	±1.0%	-55° C to $+125^{\circ}$ C
AD532KH	±1.0%	0 to +70°C	AD532SH/883B	±1.0%	-55° C to $+125^{\circ}$ C
AD532KD	±1.0%	0 to +70°C	AD532SD/883B	±1.0%	-55°C to +125°C

CHIP DIMENSIONS AND BONDING DIAGRAM

Dimensions shown in inches and (mm).

AD532 PERFORMANCE CHARACTERISTICS

Multiplication accuracy is defined in terms of total error at $+25^{\circ}$ C with the rated power supply. The value specified is in percent of full scale and includes X_{in} and Y_{in} nonlinearities, feedback and scale factor error. To this must be added such application-dependent error terms as power supply rejection, common mode rejection and temperature coefficients (although worst case error over temperature is specified for the AD532S). Total expected error is the rms sum of the individual components, since they are uncorrelated.

Accuracy in the divide mode is only a little more complex. To achieve division, the multiplier cell must be connected in the feedback of the output op amp as shown in Figure 13. In this configuration, the multiplier cell varies the closed loop gain of the op amp in an inverse relationship to the denominator voltage. Thus, as the denominator is reduced, output offset, bandwidth and other multiplier cell errors are adversely affected. The divide error and drift are then $\epsilon_m \cdot 10V/X_1-X_2$) where ϵ_m represents multiplier full scale error and drift, and (X_1-X_2) is the absolute value of the denominator.

NONLINEARITY

Nonlinearity is easily measured in percent harmonic distortion. The curves of Figures 3 and 4 characterize output distortion as a function of input signal level and frequency respectively, with one input held at plus or minus 10V dc. In Figure 4 the sine wave amplitude is 20V(p-p).

Figure 3. Percent Distortion vs. Input Signal

Figure 4. Percent Distortion vs. Frequency

AC FEEDTHROUGH

AC Feedthrough is a measure of the multiplier's zero suppression. With one input at zero, the multiplier output should be zero regardless of the signal applied to the other input. Feedthrough as a function of frequency for the AD532 is shown in Figure 5. It is measured for the condition $V_x = 0$, $V_y = 20V(p-p)$ and $V_y = 0$, $V_x = 20V(p-p)$ over the given frequency range. It consists primarily of the second harmonic and is measured in millivolts peak-to-peak.

Figure 5. Feedthrough vs. Frequency

COMMON MODE REJECTION

The AD532 features differential X and Y inputs to enhance its flexibility as a computational multiplier/divider. Common mode rejection for both inputs as a function of frequency is shown in Figure 6. It is measured with $X_1 = X_2 = 20V(p-p)$, $(Y_1-Y_2) = \pm 10V dc and Y_1 = Y_2 = 20V(p-p), (X_1-X_2) = \pm 10V dc.$

Figure 6. CMRR vs. Frequency

Figure 7. Frequency Response, Multiplying

Applying the AD532

DYNAMIC CHARACTERISTICS

The closed loop frequency response of the AD532 in the multiplier mode typically exhibits a 3dB bandwidth of 1MHz and rolls off at 6dB/octave thereafter. Response through all inputs is essentially the same as shown in Figure 7. In the divide mode, the closed loop frequency response is a function of the absolute value of the denominator voltage as shown in Figure 8.

Stable operation is maintained with capacitive loads to 1000pF in all modes, except the square root for which 50pF is a safe upper limit. Higher capacitive loads can be driven if a 100 Ω resistor is connected in series with the output for isolation.

Figure 8. Frequency Response, Dividing

POWER SUPPLY CONSIDERATIONS

Although the AD532 is tested and specified with $\pm 15V$ dc supplies, it may be operated at any supply voltage from $\pm 10V$ to $\pm 18V$ for the J and K versions and $\pm 10V$ to $\pm 22V$ for the S version. The input and output signals must be reduced proportionately to prevent saturation, however, with supply voltages below $\pm 15V$, as shown in Figure 9. Since power supply sensitivity is not dependent on external null networks as in the AD530 and other conventionally nulled multipliers, the power supply rejection ratios are improved from 3 to 40 times in the AD532.

Figure 9. Signal Swing vs. Supply

NOISE CHARACTERISTICS

All AD532s are screened on a sampling basis to assure that output noise will have no appreciable effect on accuracy. Typical spot noise vs. frequency is shown in Figure 10.

Figure 10. Spot Noise vs. Frequency

APPLICATIONS CONSIDERATIONS

The performance and ease of use of the AD532 is achieved through the laser trimming of thin film resistors deposited directly on the monolithic chip. This trimming-on-the-chip technique provides a number of significant advantages in terms of cost, reliability and flexibility over conventional in-package trimming of off-the-chip resistors mounted or deposited on a hybrid substrate.

First and foremost, trimming on the chip eliminates the need for a hybrid substrate and the additional bonding wires that are required between the resistors and the multiplier chip. By trimming more appropriate resistors on the AD532 chip itself, the second input terminals that were once committed to external trimming networks (e.g., AD530) have been freed to allow fully differential operation at both the X and Y inputs. Further, the requirement for an input attenuator to adjust the gain at the Y input has been eliminated, letting the user take full advantage of the high input impedance properties of the input differential amplifiers. Thus, the AD532 offers greater flexibility for both algebraic computation and transducer instrumentation applications.

Finally, provision for fine trimming the output voltage offset has been included. This connection is optional, however, as the AD532 has been factory-trimmed for total performance as described in the listed specifications.

REPLACING OTHER IC MULTIPLIERS

Existing designs using IC multipliers that require external trimming networks (such as the AD530) can be simplified using the pin-for-pin replaceability of the AD532 by merely grounding the X_2 , Y_2 and V_{os} terminals. (The V_{os} terminal should always be grounded when unused.)

APPLICATIONS

MULTIPLICATION

Figure 11. Multiplier Connection
For operation as a multiplier, the AD532 should be connected as shown in Figure 11. The inputs can be fed differentially to the X and Y inputs, or single-ended by simply grounding the unused input. Connect the inputs according to the desired polarity in the output. The Z terminal is tied to the output to close the feedback loop around the op amp (see Figure 1). The offset adjust V_{OS} is optional and is adjusted when both inputs are zero volts to obtain zero out, or to buck out other system offsets.

SQUARE

Figure 12. Squarer Connection

The squaring circuit in Figure 12 is a simple variation of the multiplier. The differential input capability of the AD532 can be used, however, to obtain a positive or negative output response to the input....a useful feature for control applications, as it might eliminate the need for an additional inverter somewhere else.

DIVISION

The AD532 can be configured as a two-quadrant divider by connecting the multiplier cell in the feedback loop of the op amp and using the Z terminal as a signal input, as shown in Figure 13. It should be noted, however, that the output error is given approximately by $10V\epsilon_m/(X_1-X_2)$, where ϵ_m is the total error specification for the multiply mode; and bandwidth by $f_m \cdot (X_1-X_2)/10V$, where f_m is the bandwidth of the multiplier. Further, to avoid positive feedback, the X input is restricted to negative values. Thus for singleended negative inputs (OV to -10V), connect the input to X and the offset null to X_2 ; for single-ended positive inputs (OV to +10V), connect the input to X_2 and the offset null to X_1 . For optimum performance, gain (S.F.) and offset (X_0) adjustments are recommended as shown and explained in Table I.

For practical reasons, the useful range in denominator input is approximately $500 \text{mV} \le |(X_1 - X_2)| \le 10 \text{V}$. The voltage offset adjust (V_{0s}) , if used, is trimmed with Z at zero and $(X_1 - X_2)$ at full scale.

SQUARE ROOT

Figure 14. Square Rooter Connection

The connections for square root mode are shown in Figure 14. Similar to the divide mode, the multiplier cell is connected in the feedback of the op amp by connecting the output back to both the X and Y inputs. The diode D_1 is connected as shown to prevent latch-up as Z_{in} approaches 0 volts. In this case, the V_{OS} adjustment is made with $Z_{in} = +0.1V dc$, adjusting V_{OS} to obtain -1.0V dc in the output, $V_{out} = -\sqrt{10VZ}$. For optimum performance, gain (S.F.) and offset (X_0) adjustments are recommended as shown and explained in Table I.

DIFFERENCE OF SQUARES

Figure 15. Differential of Squares Connection

The differential input capability of the AD532 allows for the algebraic solution of several interesting functions, such as the difference of squares, $X^2 - Y^2/10V$. As shown in Figure 15, the AD532 is configured in the square mode, with a simple unity gain inverter connected between one of the signal inputs (Y) and one of the inverting input terminals $(-Y_{in})$ of the multiplier. The inverter should use precision (0.1%) resistors or be otherwise trimmed for unity gain for best accuracy.

TABLE I

ADJUST PROCEDURE (Divider or Square Rooter)

		DIVI	DER	SQUARE ROOTE				
	Wi	th:	Adjust for:	With:	Adjust for:			
Adjust	х	Z	Vout	Z	Vout			
Scale Factor	-10V	+10V	±10V	+10V	-10V			
X _o (Offset)	-1V	+0.1V	±10V	+0.1V	-1V			

Repeat if required.

AD534

FEATURES

Pretrimmed to ±0.25% max 4-Quadrant Error (AD534L) All Inputs (X, Y and Z) Differential, High Impedance for $[(X_1-X_2)(Y_1-Y_2)/10V] +Z_2$ Transfer Function Scale-Factor Adjustable to Provide up to X100 Gain Low Noise Design: $90\mu V$ rms, 10Hz-10kHzLow Cost, Monolithic Construction

Excellent Long Term Stability

APPLICATIONS

High Quality Analog Signal Processing Differential Ratio and Percentage Computations Algebraic and Trigonometric Function Synthesis Wideband, High-Crest rms-to-dc Conversion Accurate Voltage Controlled Oscillators and Filters Available in Chip Form

PRODUCT DESCRIPTION

The AD534 is a monolithic laser trimmed four-quadrant multiplier divider having accuracy specifications previously found only in expensive hybrid or modular products. A maximum multiplication error of $\pm 0.25\%$ is guaranteed for the AD534L without any external trimming. Excellent supply rejection, low temperature coefficients and long term stability of the on-chip thin film resistors and buried zener reference preserve accuracy even under adverse conditions of use. It is the first multiplier to offer fully differential, high impedance operation on all inputs, including the Z-input, a feature which greatly increases its flexibility and ease of use. The scale factor is pretrimmed to the standard value of 10.00V; by means of an external resistor, this can be reduced to values as low as 3V.

The wide spectrum of applications and the availability of several grades commend this multiplier as the first choice for all new designs. The AD534J ($\pm 1\%$ max error), AD534K ($\pm 0.5\%$ max) and AD534L ($\pm 0.25\%$ max) are specified for operation over the 0 to $+70^{\circ}$ C temperature range. The AD534S ($\pm 1\%$ max) and AD534T ($\pm 0.5\%$ max) are specified over the extended temperature range, -55° C to $+125^{\circ}$ C. All grades are available in hermetically sealed TO-100 metal cans and TO-116 ceramic DIP packages.

AD534 FUNCTIONAL BLOCK DIAGRAM

PROVIDES GAIN WITH LOW NOISE

The AD534 is the first general purpose multiplier capable of providing gains up to X100, frequently eliminating the need for separate instrumentation amplifiers to precondition the inputs. The AD534 can be very effectively employed as a variable gain differential input amplifier with high common mode rejection. The gain option is available in all modes, and will be found to simplify the implementation of many functionfitting algorithms such as those used to generate sine and tangent. The utility of this feature is enhanced by the inherent low noise of the AD534: 90μ V, rms (depending on the gain), a factor of 10 lower than previous monolithic multipliers. Drift and feedthrough are also substantially reduced over earlier designs.

UNPRECEDENTED FLEXIBILITY

The precise calibration and differential Z-input provide a degree of flexibility found in no other currently available multiplier. Standard MDSSR functions (multiplication, division, squaring, square-rooting) are easily implemented while the restriction to particular input/output polarities imposed by earlier designs has been eliminated. Signals may be summed into the output, with or without gain and with either a positive or negative sense. Many new modes based on implicit-function synthesis have been made possible, usually requiring only external passive components. The output can be in the form of a current, if desired, facilitating such operations as integration.

SPECIFICATIONS $(T_A = +25^{\circ}C, \pm V_S = 15V, R \ge 2k\Omega)$

Model		AD534J		[AD534K		<u> </u>	AD534L		[
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
MULTIPLIER PERFORMANCE										
Transfer Function	$\underline{(\mathbf{x}_1)}$	$\frac{-X_2}{10V}$	$\frac{Y_2}{2} + Z_2$	(\mathbf{X}_1)	$\frac{(X_2)(Y_1 - Y_2)}{10V}$	$\frac{\mathbf{Y}_2}{\mathbf{Z}} + \mathbf{Z}_2$	(\mathbf{X}_1)	$\frac{-X_2}{10V}$	$\frac{Y_2}{2} + Z_2$	
Total Error ¹ ($-10V \le X, Y \le +10V$)			±1.0	[±0.5			±0.25	%
$T_A = \min to \max$		±1.5		1	±1.0			± 0.5		%
Total Error vs Temperature		±0 022			±0 015			±0.008		%/°C
$(SF = 10,000V Nominal)^2$		+0.25			+01			+0.1		%
Temperature-Coefficient of		= 0.25			-01			- 0.1		
Scaling Voltage	l	± 0.02			± 0.01			± 0.005		%/°C
Supply Rejection ($\pm 15V \pm 1V$)		$\pm 0 01$			/±0.01			±0 01		%
Nonlinearity, $X (X = 20V \text{ pk-pk}, Y = 10V)$		±0.4			±02	±0.3		±0.10	± 0.12	%
Feedthrough ³ , X (Y Nulled.		± 0.2			±01	20.1		± 0.005	± 0.1	70
X = 20V pk-pk 50 Hz		±03			±0.15	±0.3		±0.05	±0.12	%
Feedthrough ³ , Y (X Nulled,										
$Y = 20V pk \cdot pk 50Hz)$		±0 01	. 20		± 0.01	±0.1		± 0.003	±0.1	%
Output Offset Voltage		± 5 200	± 30		± 2 100	±15		± 2 100	± 10	mv uV/°C
		200			100			100		μι, ο
Small Signal BW (Vour = 0.1 rms)		1			1			1		MH2
1% Amplitude Error (C _{LOAD} = 1000pF)		50			50			50		kHz
Slew Rate (VOUT 20 pk-pk)		20			20			20		V/µs
Settling Time (to 1%, $\Delta V_{OUT} = 20V$)		2		l	2			2		μs
NOISE										6
Noise Spectral-Density $SF = 10V$		0.8			0.8			0.8		$\mu V/\sqrt{Hz}$
$SF = 3V^2$ Wideband Noise f = 10Hz to SMHz		0.4			0.4			0.4		mV/rms
f = 10Hz to $10kHz$		90			- 90			90		μV/rms
OUTPUT										
Output Voltage Swing	±11			±11			±11			v
Output Impedance(f≤1kHz)		01			01	•		0.1		Ω
Output Short Circuit Current		20			20			20		
$(\mathbf{K}_{L} = 0, 1_{A} = \min \operatorname{fo} \max)$ Amplifier Open Loop Gain $(f = 50 \text{Hz})$		30 70			50 70			70		dB
INDUT A MPLIEIEPS (Y. Yand 7)5										
Signal Voltage Range (Diff. or CM		±10]	±10			±10		v
Operating Diff)		± 12			±12			±12		v
Offset Voltage X, Y		±5	±20		±2	±10		±2	±10	mV
Offset Voltage Drift X, Y		100	+ 20		50	+ 16		50 + 2	+10	μV/°C
Offset Voltage Drift Z		± 3 200	± 30		100	± 15		100	T 10	μV/°C
CMRR	60	80		70	90		70	90		dB
Bias Current		0.8	2.0		0.8	2.0		08	2.0	μA
Offset Current		01			01			0.05	0.2	μΑ
Differential Resistance		10			10			10		MII
DIVIDER PERFORMANCE		(7, -7)			(7, -7)			$(Z_{1} - Z_{1})$		
Transfer Function (X1>X2)	10V	$\frac{(x_2 - y_1)}{(x_1 - x_2)}$ +	Y ₁	10V	$\frac{(-2)}{(X_1 - X_2)}^+$	Y ₁	10V	$\frac{1}{(X_1 - X_2)}^+$	Y	
Total Error ¹ (X = 10V, $-10V \le Z \le +10V$)		±0 75			±0 35			±0.2		%
$(X - 1V, -1V \le Z \le +1V)$		± 2.0			± 1.0			±08		%
$(0.1V \le X \le 10V, -10V \le$. 1.0					N/
Z≤10V)		±23			±10			±08		78
SQUAREPERFORMANCE	(x .	- X_)2		ax.	- X_) ²		x,	- X ₂) ²		
Transfer Function		$\frac{A_{2}}{10V} + Z_{2}$		<u>(11)</u>	$\frac{112}{10V} + Z_2$		<u></u>	$\frac{1-2}{10V} + Z_2$		
Total Error ($-10V \le X \le 10V$)		±06			±0.3			± 0.2		%
SQUARE-ROOTER PERFORMANCE	_						_			
Transfer Function $(Z_1 \leq Z_2)$	$\sqrt{10}$	$0V(Z_2 - \overline{Z}_1)$	+ X ₂	$\sqrt{1}$	$OV(Z_2 - Z_1)$	+ X ₂	\ 1	$0V(Z_2 - Z_1)$	+ X ₂	
Total Error ¹ (1V≤Z≤10V)		±10		L	±0.5		L	±0 25		%
POWER SUPPLY SPECIFICATIONS						,				
Supply Voltage Rated Performance		+ 15			+ 15			±15		v
Operating	±8	والش	±18	± 8	-15	±18	± 8	- 12	±18	v
Supply Current			-							
Quiescent		4	6		4	6		4	6	mA
PACKAGE OPTIONS6										
TO-100 (H-10A)	AD	534JH		AD	534KH		AD AD	534LH		
10-116 (D-14)		554JD			334KD		^AD	-2.24LD		

NOTES ¹Figures given are percent of full scale, $\pm 10V$ (i e, 0 01% = 1mV). ²May be reduced down to 3V using external resistor between $-V_S$ and SF ³Irreducible component due to nonlinearity excludes effect of offsets ⁴Using external resistor adjusted to give SF = 3V. ³See functional block diagram for definition of sections. ⁵See Section 16 for package outline information ⁶Construction when the diagram of the set of th

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electri-cal test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Model		AD534S		Γ	AD534T		
	Min	Тур	Max	Min	Тур	Max	Units
MULTIPLIER PERFORMANCE							
Transfer Function	(\mathbf{X}_1)	$-X_2)(Y_1 - Y_2)(Y_1 - Y_2)$	$\frac{\mathbf{Y}_2}{\mathbf{z}} + \mathbf{Z}_2$	(\mathbf{X}_1)	$-X_2)(Y_1 -$	$\frac{Y_2}{2} + Z_2$	
Total Error ¹ ($= 10V \le X, Y \le \pm 10V$)		100	+10		100	+05	%
$T_A = min \text{ to max}$			± 2.0			±1.0	%
Total Error vs Temperature			±0.02			± 0.01	%/°C
$(SF = 10.000V Nominal)^2$		±0.25		1	+0.1		%
Temperature-Coefficient of				ļ			~
Scaling Voltage		±0.02				±0.005	%/°C
Supply Rejection $(\pm 150 \pm 10)$ Nonlinearity, X (X = 20V pk-pk, Y = 10V)		± 0.01 ± 0.4			± 0.01 ± 0.2	±0.3	%
Nonlinearity, $Y (Y = 20V \text{ pk-pk}, X = 10V)$		±0.2			±01	±0.1	%
Feedthrough ³ , X (Y Nulled,					0.15		
X = 20V pk-pk 50Hz Feedthrough ³ , Y (X Nulled,		±0.3			±015	±0.3	%
Y = 20V pk-pk 50Hz		±0 01			±0 01	±0.1	%
Output Offset Voltage		± 5	± 30		± 2	±15	mV
Output Offset Voltage Drift			500			300	μν/℃
DYNAMICS Small Signal BW (Vour = 0.1 rms)		1			,		MH2
1% Amplitude Error ($C_{LOAD} = 1000 \text{pF}$)		50			50		kHz
Slew Rate (V _{OUT} 20 pk-pk)		20			20		V/µs
Settling Time (to 1%, $\Delta V_{OUT} = 20V$)		2			2		μs
NOISE		0.0			0.8		W/V/Ha
Noise Spectral-Density $SF = 10^{\circ}$ $SF = 3V^4$		0.8			08		$\mu V/\sqrt{Hz}$
Wideband Noise f = 10Hz to 5MHz		10			10		mV/rms
f = 10Hz to 10kHz		90			90		μV/rms
OUTPUT							.,
Output Voltage Swing Output Impedance (f≤1kHz)	±II	0.1		±11	01		N N
Output Short Circuit Current							
$R_L = 0, T_A = \min to \max$		30			30		mA
Amplitier Open Loop Gain (f = 50Hz)		/0			/0		ав
Signal Voltage Bange (Diff. or CM		+ 10			± 10		v
Operating Diff)		±12		1	± 12		v
Offset Voltage X, Y		±5	±20		±2	±10	mV
Offset Voltage Z		± 5	± 30		±2	±15	mV
Offset Voltage Drift Z			500			300	μV/°C
CMRR	60	80		70	90		dB
Bias Current Offset Current		0.8	2.0		0.8	2.0	μΑ
Differential Resistance		10			10		MΩ
DIVIDER PERFORMANCE							
Transfer Function $(X_1 > X_2)$	101	$(Z_2 - Z_1)$	Y,	101	$(Z_2 - Z_1) +$	Υ.	
		$(X_1 - X_2)$	-1		$(X_1 - X_2)$		
$(X - 1V, -1V \le Z \le +10V)$ (X - 1V, -1V \le Z \le +1V)		±0.75 ±2.0			±0.55 ±1.0		%
$(0.1V \le X \le 10V, -10V \le$							
Z≤10V)		±25			±10		%
SQUARE PERFORMANCE		W \2			* *		
Transfer Function	<u>(x</u>	$\frac{-X_2^{2}}{10V} + Z_2$		(A)	$\frac{(-X_2)^2}{10V} + Z_2$		
Total Error $(-10V \le X \le 10V)$		±0.6			± 0.3		%
SOUARE-ROOTER PERFORMANCE							
Transfer Function $(Z_1 \le Z_2)$	$\sqrt{1}$	$0V(Z_2 - Z_1)$	+ X ₂	$\sqrt{1}$	$0V(Z_2 - Z_1)$	+ X ₂	
Total Error ¹ (1V≤Z≤10V)		±10			±05		%
POWER SUPPLY SPECIFICATIONS							
Supply Voltage Rated Performance		±15			±15		v
Operating	±8	- • •	±22	± 8		± 22	v
Supply Current						4	
		4	0		4	0	
TO-100 Package (H-10A)	AD	534SH		АГ	534TH		
TO-116 Package (D-14)	AD	534SD		AD	534TD		

$$\label{eq:NOTES} \begin{split} & NOTES \\ ^{1}\text{Figures given are percent of full scale, \pm 10V (i.e., 0 01% = 1 mV), $$^{2}\text{May be reduced down to 3V using external resistor between $-V_{S}$ and SF. $$^{3}\text{Irreducible component due to nonlinearity: excludes effect of offsets $$^{4}\text{Using external resistor adjusted to give SF = 3V. $$^{3}\text{Sec functional block diagram for definition of sectons $$^{6}\text{Sec Section 16 for package outline information $$^{1}\text{Improvement}$} \end{split}$$

Specifications shown in boldface are tested on all production units at final electri-cal test Results from those tests are used to calculate outgoing quality levels All man and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Specifications subject to change without notice.

CHIP DIMENSIONS AND BONDING DIAGRAM

Dimensions shown in inches and (mm).

THE AD534 IS AVAILABLE IN LASER TRIMMED CHIP FORM, CONSULT THE CATALOG FOR DETAILS

ABSOLUTE MAXIMUM RATINGS

	AD534J, K, L	AD534S, T
Supply Voltage	±18V	±22V
Internal Power Dissipation	500mW	*
Output Short-Circuit to Ground	Indefinite	*
Input Voltages, X1 X2 Y1 Y2 Z1 Z2	±V _S	*
Rated Operating Temperature Range	0 to +70°C	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C	*
Lead Temperature, 60s soldering	+300°C	*

*Same as AD534J specs.

OPTIONAL TRIMMING CONFIGURATION

FUNCTIONAL DESCRIPTION

Figure 1 is a functional block diagram of the AD534. Inputs are converted to differential currents by three identical voltageto-current converters, each trimmed for zero offset. The product of the X and Y currents is generated by a multiplier cell using Gilbert's translinear technique. An on-chip "Buried Zener" provides a highly stable reference, which is laser trimmed to provide an overall scale factor of 10V. The difference between XY/SF and Z is then applied to the high gain output amplifier. This permits various closed loop configurations and dramatically reduces nonlinearities due to the input amplifiers, a dominant source of distortion in earlier designs. The effectiveness of the new scheme can be judged from the fact that under typical conditions as a multiplier the nonlinearity on the Y input, with X at full scale $(\pm 10V)$, is $\pm 0.005\%$ of F.S.; even at its worst point, which occurs when $X = \pm 6.4V$, it is typically only ±0.05% of F.S. Nonlinearity for signals applied to the X input, on the other hand, is determined almost entirely by the multiplier element and is parabolic in form. This error is a major factor in determining the overall accuracy of the unit and hence is closely related to the device grade.

Figure 1. AD534 Functional Block Diagram

The generalized transfer function for the AD534 is given by:

$$V_{OUT} = A \left(\frac{(X_1 - X_2)(Y_1 - Y_2)}{SF} - (Z_1 - Z_2) \right)$$

where A = open loop gain of output amplifier, typically 70dB at dc

X, Y, Z = input voltages (full scale =
$$\pm$$
SF, peak=
 \pm 1.25SF)

SF = scale factor, pretrimmed to 10.00V but adjustable by the user down to 3V.

In most cases the open loop gain can be regarded as infinite, and SF will be 10V. The operation performed by the AD534, can then be described in terms of equation:

$$(X_1 - X_2)(Y_1 - Y_2) = 10V(Z_1 - Z_2)$$

The user may adjust SF for values between 10.00V and 3V by connecting an external resistor in series with a potentiometer between SF and -V_S. The approximate value of the total resistance for a given value of SF is given by the relationship:

$$R_{SF} = 5.4K \frac{SF}{10 - SF}$$

Due to device tolerances, allowance should be made to vary R_{SF} by $\pm 25\%$ using the potentiometer. Considerable reduction in bias currents, noise and drift can be achieved by decreasing SF. This has the overall effect of increasing signal gain without the customary increase in noise. Note that the peak input signal is always limited to 1.25SF (i.e., $\pm 5V$ for SF = 4V) so the overall transfer function will show a maximum gain of 1.25. The performance with small input signals, however, is improved by using a lower SF since the dynamic range of the inputs is now fully utilized. Bandwidth is unaffected by the use of this option.

Supply voltages of $\pm 15V$ are generally assumed. However, satisfactory operation is possible down to $\pm 8V$ (see curve 1). Since all inputs maintain a constant peak input capability of $\pm 1.25SF$ some feedback attenuation will be necessary to achieve output voltage swings in excess of $\pm 12V$ when using higher supply voltages.

OPERATION AS A MULTIPLIER

Figure 2 shows the basic connection for multiplication. Note that the circuit will meet all specifications without trimming.

Figure 2. Basic Multiplier Connection

In some cases the user may wish to reduce ac feedthrough to a minimum (as in a suppressed carrier modulator) by applying an external trim voltage ($\pm 30mV$ range required) to the X or Y input (see Optional Trimming Configuration, page 3). Curve 4 shows the typical ac feedthrough with this adjustment mode. Note that the Y input is a factor of 10 lower than the X input and should be used in applications where null suppression is critical.

The high impedance Z_2 terminal of the AD534 may be used to sum an additional signal into the output. In this mode the output amplifier behaves as a voltage follower with a 1MHz small signal bandwidth and a 20V/µs slew rate. This terminal should always be referenced to the ground point of the driven system, particularly if this is remote. Likewise the differential inputs should be referenced to their respective ground potentials to realize the full accuracy of the AD534.

A much lower scaling voltage can be achieved without any reduction of input signal range using a feedback attenuator as shown in Figure 3. In this example, the scale is such that $V_{OUT} = XY$, so that the circuit can exhibit a maximum gain of 10. This connection results in a reduction of bandwidth to about 80kHz without the peaking capacitor $C_F = 200pF$. In addition, the output offset voltage is increased by a factor of 10 making external adjustments necessary in some applications. Adjustment is made by connecting a 4.7M Ω resistor between Z_1 and the slider of a pot connected across the supplies to provide ±300mV of trim range at the output.

Feedback attenuation also retains the capability for adding a signal to the output. Signals may be applied to the high imped-

Figure 3. Connections for Scale-Factor of Unity

ance Z_2 terminal where they are amplified by +10 or to the common ground connection where they are amplified by +1. Input signals may also be applied to the lower end of the 10k Ω resistor, giving a gain of -9. Other values of feedback ratio, up to X100, can be used to combine multiplication with gain.

Occasionally it may be desirable to convert the output to a current, into a load of unspecified impedance or dc level. For example, the function of multiplication is sometimes followed by integration; if the output is in the form of a current, a simple capacitor will provide the integration function. Figure 4 shows how this can be achieved. This method can also be applied in squaring, dividing and square rooting modes by appropriate choice of terminals. This technique is used in the voltage-controlled low-pass filter and the differential-input voltage-tofrequency converter shown in the Applications Section.

Figure 4. Conversion of Output to Current

OPERATION AS A SQUARER

Operation as a squarer is achieved in the same fashion as the multiplier except that the X and Y inputs are used in parallel. The differential inputs can be used to determine the output polarity (positive for $X_1 = Y_1$ and $X_2 = Y_2$, negative if either one of the inputs is reversed). Accuracy in the squaring mode is typically a factor of 2 better than in the multiplying mode, the largest errors occurring with small values of output for input below 1V.

If the application depends on accurate operation for inputs that are always less than $\pm 3V$, the use of a reduced value of SF is recommended as described in the FUNCTIONAL DESCRIPTION section (previous page). Alternatively, a feedback attenuator may be used to raise the output level. This is put to use in the difference-of-squares application to compensate for the factor of 2 loss involved in generating the sum term (see Figure 7).

The difference-of-squares function is also used as the basis for a novel rms-to-dc converter shown in Figure 14. The averaging filter is a true integrator, and the loop seeks to zero its input. For this to occur, $(V_{IN})^2 - (V_{OUT})^2 = 0$ (for signals whose period is well below the averaging time-constant). Hence V_{OUT} is forced to equal the rms value of V_{IN} . The absolute accuracy of this technique is very high; at medium frequencies, and for signals near full scale, it is determined almost entirely by the ratio of the resistors in the inverting amplifier. The multiplier scaling voltage affects only open loop gain. The data shown is typical of performance that can be achieved with an AD534K, but even using an AD534J, this technique can readily provide better than 1% accuracy over a wide frequency range, even for crest-factors in excess of 10.

OPERATION AS A DIVIDER

The AD535, a pin for pin functional equivalent to the AD534, has guaranteed performance in the divider and square-rooter configurations and is recommended for such applications. Figure 5 shows the connection required for division. Unlike earlier products, the AD534 provides differential operation on both numerator and denominator, allowing the ratio of two floating variables to be generated. Further flexibility results from access to a high impedance summing input to Y_1 . As with all dividers based on the use of a multiplier in a feedback loop, the bandwidth is proportional to the denominator magnitude, as shown in curve 8.

Without additional trimming, the accuracy of the AD534K and L is sufficient to maintain a 1% error over a 10V to 1V denominator range. This range may be extended to 100:1 by simply reducing the X offset with an externally generated trim voltage (range required is ± 3.5 mV max) applied to the unused X input (see Optional Trimming Configuration). To trim, apply a ramp of +100mV to +V at 100Hz to both X₁ and Z₁ (if X₂

Figure 5. Basic Divider Connection

is used for offset adjustment, otherwise reverse the signal polarity) and adjust the trim voltage to minimize the variation in the output.*

Since the output will be near +10V, it should be ac-coupled for this adjustment. The increase in noise level and reduction in bandwidth preclude operation much beyond a ratio of 100 to 1.

As with the multiplier connection, overall gain can be introduced by inserting a simple attenuator between the output and Y_2 terminal. This option, and the differential-ratio capability of the AD534 are utilized in the percentage-computer application shown in Figure 11. This configuration generates an output proportional to the percentage deviation of one variable (A) with respect to a reference variable (B), with a scale of one volt per percent.

OPERATION AS A SQUARE ROOTER

The operation of the AD534 in the square root mode is shown in Figure 6. The diode prevents a latching condition which could occur if the input momentarily changes polarity. As shown, the output is always positive; it may be changed to a negative output by reversing the diode direction and interchanging the X inputs. Since the signal input is differential, all combinations of input and output polarities can be realized, but operation is restricted to the one quadrant associated with each combination of inputs.

Figure 6. Square-Rooter Connection

In contrast to earlier devices, which were intolerant of capacitive loads in the square root modes, the AD534 is stable with all loads up to at least 1000pF. For critical applications, a small adjustment to the Z input offset (see Optional Trimming Configuration) will improve accuracy for inputs below 1V.

*See the AD535 Data Sheet for more details.

Applications Section

The versatility of the AD534 allows the creative designer to implement a variety of circuits such as wattmeters, frequency doublers and automatic gain controls to name but a few. These applications along with many other such "idea stimulators" are described in detail in the Multiplier Application Guide. available upon request from Analog Devices.

Figure 7. Difference-of-Squares

- 1) 2)
- GAIN IS X10 PER VOLT OF E_C , ZERO TO X50 WIDEBAND (19Hz 30kHz) OUTPUT NOISE IS 3mV RMS, TYP CORRESPONDING TO A F S S/N RATIO OF 70dB NOISE REFERRED TO SIGNAL INPUT, WITH E_C = 45V, IS 60g/V RMS, TYP BANDWIDTH IS OC TO Z0KHz, 3dB, INDEPENDENT OF GAIN
- 3) 4)

Figure 8. Voltage-Controlled Amplifier

USING CLOSE TOLERANCE RESISTORS AND AD534L, ACCURACY OF FIT IS WITHIN $\pm 0.5\%$ AT ALL POINTS. θ IS IN RADIANS.

Figure 9. Sine-Function Generator

THE SF PIN OR A Z-ATTENUATOR CAN BE USED TO PROVIDE OVERALL SIGNAL AMPLIFICATION OPERATION FROM A SINGLE SUPPLY IS POSSIBLE, BIAS Y_2 TO V_S/2.

Figure 10. Linear AM Modulator

6

OTHER SCALES, FROM 10% PER VOLT TO 0.1% PER VOLT CAN BE OBTAINED BY ALTERING THE FEEDBACK RATIO

Figure 11. Percentage Computer

CALIBRATION PROCEDURE.

WITH E_C = 1.0V, ADJUST POT TO SET f = 1.000kHz. WITH E_C = 8.0V, ADJUST TRIMMER CAPACITOR TO SET f = 8.000kHz. LINEARITY WILL TYPICALLY BE WITHIN ±0.1% OF F.S. FOR ANY OTHER INPUT.

DUE TO DELAYS IN THE COMPARATOR, THIS TECHNIQUE IS NOT SUITABLE FOR MAXIMUM FREQUENCIES ABOVE 10kHz, FOR FREQUENCIES ABOVE 10kHz THE ADB37 VOLTAGE TO FREQUENCY CONVERTER IS RECOMMENDED A TRIANGLE-WAVE OF ±5V PK APPEARS ACROSS THE 0.01µF CAPACITOR; IF USED AS AN OUTPUT, A VOLTAGE-FOLLOWER SHOULD BE INTERPOSED.

Figure 13. Differential-Input Voltage-to-Frequency Converter

CALIBRATION PROCEDURE.

WITH 'MODE' SWITCH IN 'RMS + DC' POSITION, APPLY AN INPUT OF +1.00VDC, ADJUST ZERO UNTIL OUTPUT READS SAME AS INPUT. CHECK FOR INPUTS OF ±10V, OUTPUT SHOULD BE WITHIN ±0 05% (5mV)

ACCURACY IS MAINTAINED FROM 60Hz to 100kHz, AND IS TYPICALLY HIGH BY 0.5% AT 1MHz FOR VIN = 4V RMS (SINE, SQUARE OR TRIANGULAR WAVE) PROVIDED THAT THE PEAK INPUT IS NOT EXCEEDED, CREST-FACTORS UP TO AT LEAST TEN HAVE NO APPRECIABLE EFFECT ON ACCURACY. INPUT IMPEDANCE IS ABOUT $10k\Omega$, FOR HIGH ($10M\Omega$) IMPEDANCE, REMOVE MODE SWITCH AND INPUT COUPLING COMPONENTS. FOR GUARANTEED SPECIFICATIONS THE AD536A AND AD636 IS OFFERED AS A SINGLE PACKAGE RMS-TO-DC CONVERTER

Figure 14, Wideband, High-Crest Factor, RMS-to-DC Converter

Typical Performance Curves (typical at +25°C, with $V_S = \pm 15V dc$, unless otherwise stated)

Curve 1. Input/Output Signal Range Vs. Supply Voltages

Curve 2. Bias Currents Vs. Temperature (X, Y or Z inputs)

Curve 3. Common-Mode-Rejection-Ratio Vs. Frequency

Curve 4. AC Feedthrough Vs. Frequency

Curve 5. Noise Spectral Density Vs. Frequency

Curve 6. Wideband Noise Vs. Scaling Voltage

6

Curve 7. Frequency Response as a Multiplier

Curve 8. Frequency Response Vs. Divider Denominator Input Voltage

6-22 ANALOG MULTIPLIERS/DIVIDERS

Real-Time Analog Computational Unit (ACU)

AD538

FEATURES

 $V_{OUT} = V_Y \left(\frac{V_Z}{V_X}\right)^m$ Transfer Function

Wide Dynamic Range (Denominator) -1000:1Simultaneous Multiplication and Division Resistor-Programmable Powers & Roots No External Trims Required Low Input Offsets $<100 \mu$ V Low Error $\pm 0.25\%$ of Reading (100:1 Range) +2V and +10V On-Chip References Monolithic Construction

APPLICATIONS

One- or Two-Quadrant Mult/Div Log Ratio Computation Squaring/Square Rooting Trigonometric Function Approximations Linearization Via Curve Fitting Precision AGC Power Functions

PRODUCT DESCRIPTION

The AD538 is a monolithic real-time computational circuit which provides precision analog multiplication, division and exponentiation. The combination of low input and output offset voltages and excellent linearity results in accurate computation over an unusually wide input dynamic range. Laser wafer trimming makes multiplication and division with errors as low as 0.25% of reading possible, while typical output offsets of 100μ V or less add to the overall off-the-shelf performance level. Real-time analog signal processing is further enhanced by the device's 400kHz bandwidth.

The AD538's overall transfer function is $V_O = V_Y (V_Z/V_X)^m$. Programming a particular function is via pin strapping. No external components are required for one quadrant (positive input) multiplication and division. Two quadrant (bipolar numerator) division is possible with the use of external level shifting and scaling resistors. The desired scale factor for both multiplication and division can be set using the on-chip +2V or + 10V references, or controlled externally to provide simultaneous multiplication and division. Exponentiation with an m value from 0.2 to 5 can be implemented with the addition of one or two external resistors.

AD538 FUNCTIONAL BLOCK DIAGRAM

Direct log ratio computation is possible by utilizing only the log ratio and output sections of the chip. Access to the multiple summing junctions adds further to the AD538's flexibility. Finally, a wide power supply range of $\pm 4.5V$ to $\pm 18V$ allows operation from standard $\pm 5V$, $\pm 12V$ and $\pm 15V$ supplies.

The AD538 is available in two accuracy grades (A and B) over the industrial $(-25^{\circ}C \text{ to } +85^{\circ}C)$ temperature range and one grade (S) over the military $(-55^{\circ}C \text{ to } +125^{\circ}C)$ temperature range. The device is packaged in an 18-pin TO-118 hermetic side-brazed ceramic DIP.

PRODUCT HIGHLIGHTS

- 1. Real-time analog multiplication, division and exponentiation.
- 2. High accuracy analog division with a wide input dynamic range.
- 3. On-chip + 2V or + 10V scaling reference voltages.
- 4. Both voltage and current (summing) input modes.
- Monolithic construction with lower cost and higher reliability than hybrid and modular circuits.

$\label{eq:specifications} SPECIFICATIONS \ (V_s = \pm 15V, \ T_A = 25^{\circ}C \ unless \ otherwise \ specified)$

	1		D538AT	<u> </u>	Δ	D538RD		ΔΤ	1538SD		
Parameters	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
MULTIPLIER/DIVIDER PERFORMANCE Nominal Transfer			/ W	\ m		/11	\ m		(11.)	m	
Function	$10V \ge V_X, V_Y, V_Z \ge 0$	V _O =	$= V_{Y} \left(\frac{V_{Z}}{V_{X}} \right)$)	V _O	$=V_{Y}\left(\frac{V_{Z}}{V_{X}}\right)$.)	V ₀ =	$\mathbf{v}_{\mathbf{Y}}\left(\frac{\mathbf{v}_{\mathbf{Z}}}{\mathbf{v}_{\mathbf{X}}}\right)$)	
	$400\mu A{\geq}I_X, I_Y, I_Z{\geq}0$	V _O = 2	5kΩx I _y	$r \left(\frac{I_Z}{I_X}\right)^m$	V ₀ =	25kΩx I	$Y\left(\frac{I_{Z}}{I_{X}}\right)^{m}$	$V_{O} = 2$	5kΩx I _y	$\left(\frac{\mathbf{I}_{\mathbf{Z}}}{\mathbf{I}_{\mathbf{X}}}\right)^{\mathbf{m}}$	
Total Error Terms 100:1 Input Range ¹	$100mV \le V_X \le 10V$ $100mV \le V_Y \le 10V$ $100mV \le V_Z \le 10V$ $V_Z \le 10V_X, m = 1.0$ $T_A = T_{min} \text{ to } T_{max}$		± 0.5 ± 200 ± 1	±1 ±500 ±2		± 0.25 ± 100 ± 0.5	±0.5 ±250 ±1		±0.5 ±200 ±1.25	±1 ±500 ±2.5	% of Reading + µV % of Reading +
			± 450	±750		± 350	± 500		± 750	± 1000	μV
Wide Dynamıc Range ²	$\begin{split} &10mV \leq V_X \leq 10V \\ &1mV \leq V_Y \leq 10V \\ &0V \leq V_Z \leq 10V \\ &V_Z \leq 10V_X, m = 1.0 \end{split}$		$\pm 1 \\ \pm 200 \\ \pm 100$	± 2 ± 500 ± 250		± 0.5 ± 100 ± 750	±1 ±250 ±150		$\pm 1 \\ \pm 200 \\ \pm 200$	±2 ±500 ±250	% of Reading + μV + $\mu V \times (V_Y + V_Z)/V_X$
	$T_A = T_{min}$ to T_{max}		± 1.5 ± 450 ± 450	±3 ±750 ±750		± 1 ± 350 ± 350	±2 ±500 ±500		± 2 ± 750 ± 750	±4 ±1000 ±1000	% of Reading + μV + $\mu V \times (V_Y + V_Z)/V_X$
Exponent (m) Range	$T_A = T_{min}$ to T_{max}	0.2		5	0.2		5	0.2		5	
OUTPUT CHARACTERISTICS Offset Voltage Output Voltage Swing Output Current	$\label{eq:VY} \begin{split} V_Y = 0, V_C = & -600 mV \\ T_A = T_{min} \mbox{ to } T_{max} \\ R_L = & 2 k \Omega \end{split}$	-11 5	± 200 ± 450	± 500 ± 750 ± 11	-11 5	± 100 ± 350 10	± 250 ± 500 + 11	-11	± 200 ± 750	±500 ±1000 +11	μV μV V mA
FREQUENCY RESPONSE Slew Rate Small Signal Bandwidth	$100mV \le V_Y, V_Z, V_X \le 10V$		1.4 400			1.4 400		-	1.4 400		V/µs kHz
VOLTAGE REFERENCE Accuracy Additional Error Output Current Power Supply Rejection + 2V = V _{REF} + 10V = V _{REF}	$\begin{split} V_{REF} &= 10V \text{ or } 2V \\ T_A &= T_{min} \text{ or } T_{max} \\ V_{REF} &= 10V \text{ to } 2V \\ \pm 4.5V \leq V_S \leq \pm 18V \\ \pm 13V \leq V_S \leq \pm 18V \end{split}$	1	± 25 ± 20 2.5 300 200	± 50 ± 30 600 500	1	$\pm 15 \pm 20$ 2.5 300 200	± 25 ± 30 600 500	1	± 25 ± 30 2.5 300 200	± 50 ± 50 600 500	mV mV mA μV/V μV/V
POWER SUPPLY Rated Operating Range ³ PSRR	$\begin{split} R_L &= 2k\Omega \\ \pm 4 \ 5V < V_S < \pm 18V \\ V_X &= V_Y = V_Z = 1V \\ V_{\rm OUT} &= 1V \end{split}$	±4.5	± 15 0.05	±18 0.1	±4.5	± 15 0.05	±18 0.1	±4.5	± 15 0.05	±18 0.1	V V %/V
TEMPERATURE DANCE			4.5	/		4.5	/		4.5	/	mA
Rated Storage		- 25 - 65		+ 85 + 150	- 25 - 65		+ 85 + 150	- 55 - 65		+ 125 + 150	ີ ເ
PACKAGE OPTIONS ⁴ Ceramic (D-18)		AD	538AD		A	D538BD		A	D538SD)	

NOTES

¹Over the 100mV to 10V operating range total error is the sum of a percent of reading term and an output offset. With

this input dynamic range the input offset contribution to total error is negligible compared to the percent of reading error. Thus, it is specified indirectly as a part of the percent of reading error. ²The most accurate representation of total error with low level inputs is the summation of a percent of reading term,

an output offset and an input offset multiplied by the incremental gain $(V_Y + V_Z)/V_X$. ³When using supplies below ± 13V the 10V reference pin *must* be connected to the 2V pin in order for the

AD538 to operate correctly.

⁴See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

RE-EXAMINATION OF MULTIPLIER/DIVIDER ACCURACY

Traditionally, the "accuracy" of (actually the errors of) analog multipliers and dividers have been specified in terms of percent of full scale. Thus specified, a 1% multiplier error with a 10V full scale output would mean a worst case error of + 100mV at "any" level within its designated output range. While this type of error specification is easy to test, evaluate, and interpret, it can leave the user guessing as to how useful the multiplier actually is at low output levels, those approaching the specified error limit (in this case) 100mV.

The AD538's error sources do not follow the percent of full-scale approach to specification, thus it more optimally fits the needs of the very wide dynamic range applications for which it is best suited. Rather than as a percent of full scale, the AD538's error as a multiplier or divider for a 100:1 (100mV to 10V) input range is specified as the sum of two error components: a percent of reading (ideal output) term plus a fixed output offset. Following this format the AD538AD, operating as a multiplier or divider

with inputs down to 100mV, has a maximum error of $\pm 1\%$ of reading $\pm 500\mu$ V. Some sample total error calculations for both grades over the 100:1 input range are illustrated in the chart below. This error specification format is a familiar one to designers and users of digital voltmeters where error is specified as a percent of reading \pm a certain number of digits on the meter readout.

For operation as a multiplier or divider over a wider dynamic range (>100:1), the AD538 has a more detailed error specification which is the sum of three components: a percent of reading term, an output offset term and an input offset term for the V_{Y}/V_X log ratio section. A sample application of this specification, taken from the chart below, for the AD538AD with $V_Y = 1V$, $V_Z = 100mV$ and $V_X = 10mV$ would yield a maximum error of $\pm 2.0\%$ of reading $\pm 500\mu V \pm (1V + 100mV)/10mV \times 250\mu V$ or $\pm 2.0\%$ of reading $\pm 500\mu V \pm 27.5mV$. This example illustrates that with very low level inputs the AD538's incremental gain $(V_Y + V_Z)/V_X$ has increased to make the input offset contribution to error substantial.

AD538 SAMPLE ERROR CALCULATION CHART (worst case)

	V _Y Input (in V)	V _Z Input (in V)	V _X Input (in V)	Ideal Output (in V)	Total Offset Error Term (in mV)	% of Reading Error Term (in mV)	Total Error Summation (in mV)	Total Error Summation as a % of the Ideal Output
100:1 INPUT RANGE	10	10	10	10	0.5 (AD) 0.25 (BD)	100 (AD) 50 (BD)	100.5 (AD) 50.25 (BD)	1.0 (AD) 0.5 (BD)
Total Error = $\pm \% rdg$	10	0.1	0.1	10	0.5 (AD) 0.25 (BD)	100 (AD) 50 (BD)	100.5 (AD) 50.25 (BD)	1.0 (AD) 0.5 (BD)
T Outbut 108	1	1	1	1	0.5 (AD) 0.25 (BD)	10 (AD) 5 (BD)	10.5 (AD) 5.25 (BD)	1.05 (AD) 0.5 (BD)
	0.1	0.1	0.1	0.1	0.5 (AD) 0.25 (BD)	1 (AD) 0.5 (BD)	1.5 (AD) 0.75 (BD)	1.5 (AD) 0.75 (BD)
WIDE DYNAMIC RANGE	1	0.10	0.01	10	28 (AD) 16.75 (BD)	200 (AD) 100 (BD)	228 (AD) 116.75 (BD)	2.28 (AD) 1.17 (BD)
Total Error = ±%rdg	10	0.05	2	0.25	1.76 (AD) 1 (BD)	5 (AD) 2.5 (BD)	6.76 (AD) 3.5 (BD)	2.7 (AD) 1.4 (BD)
\pm Output V _{OS} \pm Input V _{OS} \times	5	0.01	0.01	5	125.75 (AD) 75.4 (BD)	100 (AD) 50 (BD)	225.75 (AD) 125.4 (BD)	4.52 (AD) 2.51 (BD)
(vy+vz)/vx	10	0.01	0.1	1	25.53 (AD) 15.27 (BD)	20 (AD) 10 (BD)	45.53 (AD) 25.27 (BD)	4.55 (AD) 2.53 (BD)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage					±18V
Internal Power Dissipation		•			250mW
Output Short Circuit-to-Ground	•				Indefinite
Input Voltages V_X , V_Y , V_Z		•			$(+V_{\rm S}-1V), -1V$
Input Currents I _X , I _Y , I _Z , I _O .					1mA
Operating Temperature Range					-25°C to +85°C
Storage Temperature Range					-65°C to +150°
Lead Temperature, Storage					. 60 sec, + 300°C

Small Signal Bandwidth vs Denominator Voltage (One-Quadrant Mult/Div)

1kHz Output Noise Spectral Density vs. dc Output Voltage

Figure 1. Functional Block Diagram

FUNCTIONAL DESCRIPTION

As shown in Figures 1 and 2, the V_Z and V_X inputs connect directly to the AD538's input log ratio amplifiers. This subsection provides an output voltage proportional to the natural log of input voltage V_Z , minus the natural log of input voltage V_X . The output of the log ratio subsection at B can be expressed by the transfer function:

$$\mathbf{V}_{\mathbf{B}} = \frac{\mathbf{k}\mathbf{T}}{\mathbf{q}}\ln\left(\frac{\mathbf{V}_{\mathbf{Z}}}{\mathbf{V}_{\mathbf{X}}}\right)$$

(where k = 1.3806 \times 10⁻²³ J/K, q = 1.6 0219 \times 10⁻¹⁹ C, T is in Kelvins)

The log ratio configuration may be used alone, if correctly temperature compensated and scaled to the desired output level (see Applications section).

Under normal operation, the log-ratio output will be connected directly to a second functional block at input C, the antilog subsection. This section performs the antilog according to the transfer function:

$$V_{O} = V_{Y} e^{\left(V_{c} \frac{q}{kT}\right)}$$

As with the log-ratio circuit included in the AD538, the user may use the antilog subsection by itself. When both subsections are combined, the output at B is tied to C, the transfer function of the AD538 computational unit is:

$$\begin{array}{c} \left[\left(\frac{kT}{q} \right) \left(\frac{q}{kT} \right) ln \left(\frac{V_z}{V_x} \right) \right] \\ V_O = V_Y e \qquad \qquad ; V_B = V_C \end{array} \\ \end{array}$$

which reduces to:

$$V_{o} = V_{Y} \left(\frac{V_{z}}{V_{x}} \right)$$

Finally, by increasing the gain or attenuating the output of the log ratio subsection via resistor programming, it is possible to raise the quantity V_Z/V_X to the mth power. Without external programming, m is unity. Thus the overall AD538 transfer

function equals:

$$\label{eq:Vo} \begin{split} V_O \ = \ V_Y \left(\frac{V_Z}{V_X} \right)^m \\ \text{where} \ 0.2 < m < 5 \end{split}$$

When the AD538 is used as an analog divider, the V_Y input can be used to multiply the ratio V_Z/V_X by a convenient scale factor. The actual multiplication by the V_Y input signal is accomplished by adding the log of the V_Y input signal to the signal at C which is already in the log domain.

STABILITY PRECAUTIONS

At higher frequencies, the multi-staged signal path of the AD538, as illustrated in Figure 2, can result in large phase shifts. If a condition of high incremental gain exists along that path (e.g., $V_O = V_Y \times V_Z/V_X = 10V \times 10mV/10mV = 10V$ so that $\Delta V_O/\Delta V_X = 1000$), then small amounts of capacitive feedback from V_O to the current inputs I_Z or I_X can result in instability. Appropriate care should be exercised in board layout to prevent capacitive feedback mechanisms under these conditions.

Figure 2. Model Circuit

USING THE VOLTAGE REFERENCES

A stable bandgap voltage reference for scaling is included in the AD538. It is laser-trimmed to provide a selectable voltage output of +10V buffered (Pin 4), +2V unbuffered (Pin 5) or any voltages between +2V and +10.2V buffered as shown in Figure 3. The output impedance at pin 5 is approximately $5k\Omega$. Note that any loading of this pin will produce an error in the +10V reference voltage. External loads on the +2V output should be greater than $500k\Omega$ to maintain errors less than 1%.

In situations not requiring both reference levels, the +2V output can be converted to a buffered output by tying pins 4 and 5

Figure 3. + 2V to + 10.2V Adjustable Reference

ANALOG MULTIPLIERS/DIVIDERS 6-27

together. If both references are required simultaneously, the +10V output should be used directly and the +2V output should be externally buffered.

ONE-QUADRANT MULTIPLICATION/DIVISION

Figure 4 shows how the AD538 may be easily configured as a precision one-quadrant multiplier/divider. The transfer function $V_{OUT} = V_Y (V_Z/V_X)$ allows "three" independant input variables; a calculation not available with a conventional multiplier. In addition, the 1000:1 (i.e. 10mV to 10V) input dynamic range of the AD538 greatly exceeds that of analog multipliers computing one-quadrant multiplication and division.

Figure 4. One-Quadrant Combination Multiplier/Divider

By simply connecting the input V_x (pin 15) to the +10V reference (pin 4), and tying the log-ratio output at B to the antilog input at C, the AD538 can be configured as a one-quadrant analog multiplier with 10 volt scaling. If 2 volt scaling is desired, V_x can be tied to the +2V reference.

When the input V_x is tied to the +10V reference terminal the multiplier transfer function becomes:

$$\mathbf{V}_{\mathbf{O}} = \mathbf{V}_{\mathbf{Y}} \left(\frac{\mathbf{V}_{\mathbf{Z}}}{10\mathbf{V}} \right)$$

As a multiplier, this circuit provides a typical bandwidth of 400kHz with values of V_x , V_y or V_z varying over a 100:1 range (i.e. 100mV to 10V). The maximum error with a 100mV to 10V range for the two input variables will typically be +0.5% of reading. Using the optional Z offset trim scheme, as shown in Figure 5, this error can be reduced to +0.25% of reading.

By using the +10V reference as the $V_{\rm Y}$ input, the circuit of Figure 4 is configured as a one-quadrant divider with a fixed scale factor. As with the one-quadrant multiplier, the inputs accept only single (positive) polarity signals. The output of the one-quadrant divider with a +10V scale factor is:

$$V_{\rm O} = 10V \left(\frac{V_{\rm Z}}{V_{\rm X}}\right)$$

The typical bandwidth of this circuit is 370kHz with 1V to 10V denominator input levels. At lower amplitudes, the bandwidth gradually decreases to approximately 200kHz at the 2mV input level.

TWO-QUADRANT DIVISION

The two-quadrant linear divider circuit illustrated in Figure 5 uses the same basic connections as the one-quadrant version. However, in this circuit the numerator has been offset in the positive direction by adding the denominator input voltage to it. The offsetting scheme changes the divider's transfer function from:

 $V_{\rm o} = 10V \left(\frac{V_z}{V_x}\right)$

To:

$$V_{O} = 10V \frac{(V_{Z} + AV_{X})}{V_{X}} = 10V \left(1A + \frac{V_{Z}}{V_{X}}\right)$$
$$= 10A + 10V \left(\frac{V_{Z}}{V_{X}}\right); \text{ where } A = \frac{35k\Omega}{25k\Omega}$$

As long as the magnitude of the denominator input is equal to or greater than the magnitude of the numerator input, the circuit will accept bipolar numerator voltages. However, under the conditions of a 0V numerator input, the output would incorrectly equal + 14V. The offset can be removed by connecting the + 10V reference through resistors R1 and R2 to the output section's summing node I at pin 9 thus providing a gain of 1.4 at the center of the trimpot. The pot R2 adjusts out or corrects this offset, leaving the desired transfer function of 10V (V_Z/V_X).

Figure 5. Two-Quadrant Division with 10V Scaling

LOG RATIO OPERATION

Figure 6 shows the AD538 configured for computing the log of the ratio of two input voltages (or currents). The output signal from B is connected to the summing junction of the output amplifier via two series resistors. The 90.9 Ω metal film resistor effectively degrades the temperature coefficient of the \pm 3500ppm/°C resistor to produce a 1.09k Ω + 3300ppm/°C equivalent value. In this configuration the V_Y input, must be tied to some voltage less than zero (-1.2V in this case) removing this input from the transfer function.

The 5k Ω potentiometer controls the circuit's scale factor adjustment providing a +1V per decade adjustment. The output offset potentiometer should be set to provide a zero output with $V_X = V_Z = 1V$. The input V_O adjustment should be set for an output of 3V with $V_Z = 1mV$ and $V_X = 1V$.

Figure 6. Log Ratio Circuit

The log ratio circuit shown achieves $\pm 0.5\%$ accuracy in the log domain for input voltages within three decades of input range: 10mV to 10V. This error is not defined as a percent of full-scale output, but as a percent of input. For example, using a 1V/decade scale factor, a 1% error in the positive direction at the INPUT of the log ratio amplifier translates into a 4.3mV deviation from the ideal OUTPUT (i.e., $1V \times \log_{10} (1.01) = 4.3214$ mV). An input error 1% in the negative direction is slightly different, giving an output deviation of 4.3648mV.

ANALOG COMPUTATION OF POWERS AND ROOTS

Often it is necessary to raise the quotient of two input signals to a power or take a root. This could be squaring, cubing, square-rooting or exponentiation to some noninteger power. Examples include power series generation. With the AD538, only one or two external resistors are required to set ANY desired power, over the range of 0.2 to 5. Raising the basic quantity V_Z/V_X to a power greater than one requires that the gain of the AD538's log ratio subtractor be increased, via an external resistor between

Figure 7. Basic Configurations and Transfer Functions for the AD538

pins A and D. Similarly, a voltage divider which attenuates the log ratio output between points B and C will program the power to a value less than one.

SQUARE ROOT OPERATION

The explicit square root circuit of Figure 8 illustrates a precise method for performing a real time square root computation. For added flexibility and accuracy this circuit has a scale factor adjustment.

The actual square rooting operation is performed in this circuit by raising the quantity V_Z/V_X to the 1/2 power via the resistor divider network consisting of resistors R_B and R_C . For maximum linearity, the two resistors should be 1% (or better) ratio-matched metal film types.

Figure 8. Square Root Circuit

One volt scaling is achieved by dividing-down the 2V reference and applying approximately 1V to both the V_Y and V_X inputs. In this circuit, the V_X input is intentionally set low, to about 0.95V, so that the V_Y input can be adjusted high; permitting a \pm 5% scale factor trim. Using this trim scheme, the output voltage will be within \pm 3mV \pm 0.2% of the ideal value over a 10V to 1mV input range (80dB). For a decreased input dynamic range of 10mV to 10V (60dB) the error is even less; here the output will be within \pm 2mV \pm 0.2% of the ideal value. The bandwidth of the AD538 square root circuit is approximately 280kHz with a 1V p-p sinewave with a +2V dc offset.

This basic circuit may also be used to compute the cube, fourth or fifth roots of an input waveform. All that is required for a given root is that the correct ratio of resistors, R_C and R_B , be selected such that their sum is between 150 Ω and 200 Ω .

The optional absolute value circuit shown preceding the AD538 allows the use of bipolar input voltages. Only one op-amp is required for the absolute value function, because the I_Z input of the AD538 functions as a summing junction. If it is necessary to preserve the sign of the input voltage, the polarity of the op-amp output may be sensed and used after the computation to switch the sign bit of a D.V.M. chip.

TRANSDUCER LINEARIZATION

Many electronic transducers used in scientific, commercial or industrial equipment monitor the physical properties of a device and/or its environment. Sensing (and perhaps compensating for) changes in pressure, temperature, moisture or other physical phenomenon can be an expensive undertaking, particularly where high accuracy and very low nonlinearity are important. In conventional analog systems accuracy may be easily increased by offset and scale factor trims, however, nonlinearity is usually the absolute limitation of the sensing device.

With the ability to easily program a complex analog function, the AD538 can effectively compensate for the nonlinearities of an inexpensive transducer. The AD538 can be connected between the transducer preamplifier output and the next stage of monitoring or transmitting circuitry. The recommended procedure for linearizing a particular transducer is first to find the closest function which best approximates the nonlinearity of the device and then, to select the appropriate exponent resistor value(s).

ARC-TANGENT APPROXIMATION

The circuit of Figure 9 is typical of those AD538 applications where the quantity V_Z/V_X is raised to powers greater than one. In an approximate arc-tangent function, the AD538 will accurately compute the angle that is defined by X and Y displacements represented by input voltages V_X and V_Z . With accuracy to within one degree (for input voltages between 100 μ V and 10 volts), the AD538 arc-tangent circuit is more precise than conventional analog circuits and is faster than most digital techniques. For a direct arc-tangent computation that requires fewer external components refer to the AD639 data sheet. The circuit shown is set-up for the transfer function:

$$\mathbf{V}_{\theta} = (\mathbf{V}_{\theta ref} - \mathbf{V}_{\theta}) \left[\frac{(\mathbf{V}_{Z})}{(\mathbf{V}_{X})} \right]^{1.21}$$

Where $\theta = \mathrm{Tan}^{-1} \left(\frac{Z}{X} \right)$

The $(V_{\theta ref} - V_{\theta})$ function is implemented in this circuit by adding together the output, V_{θ} , and an externally applied reference voltage, $V_{\theta ref}$, via an external AD547 op-amp. The 1µF capacitor

Figure 9. The Arc-Tangent Function

connected around the AD547's 100k Ω feedback resistor frequency compensates the loop (formed by the amplifier between V_{θ} and V_Y).

The V_B/V_A quantity is calculated in the same manner as in the one-quadrant divider circuit, except that the resulting quotient is raised to the 1.21 power. Resistor R_A (nominally 931 Ω) sets the power or m factor.

For the highest arc-tangent accuracy the external resistors R1 and R2 should be ratio matched, however, the offset trim scheme shown in other circuits is not required, since nonlinearity effects are the predominant source of error. Also note, that instability will occur as the output approaches 90° because, by definition, the arc-tangent function is infinite and therefore, the AD538's gain will be extremely high.

Wideband Dual-Channel Linear Multiplier/Divider

AD539

FEATURES

Two Quadrant Multiplication/Division Two Independent Signal Channels Signal Bandwidth of 60MHz (Ι_{ΟUT}) Linear Control Channel Bandwidth of 5MHz Low Distortion (to 0.01%) Fully-Calibrated, Monolithic Circuit

APPLICATIONS

Precise High Bandwidth AGC and VCA Systems Voltage-Controlled Filters Video-Signal Processing High-Speed Analog Division Automatic Signal-Leveling Square-Law Gain/Loss Control

PRODUCT DESCRIPTION

The AD539 is a low-distortion analog multiplier having two identical signal channels (Y1 and Y2), with a common X-input providing linear control of gain. Excellent ac characteristics up to video frequencies and a 3dB bandwidth of over 60MHz are provided. Although intended primarily for applications where speed is important the circuit exhibits good static accuracy in "computational" applications. Scaling is accurately determined by a band-gap voltage reference and all critical parameters are laser-trimmed during manufacture.

The full bandwidth can be realized over most of the gain range using the AD539 with simple resistive loads of up to 100Ω . Output voltage is restricted to a few hundred millivolts under these conditions. Using external op amps such as the AD5539 in conjunction with the on-chip scaling resistors, accurate multiplication can be achieved, with bandwidths typically as high as 50MHz.

The two channels provide flexibility. In single-channel applications they may be used in parallel, to double the output current, or in series, to achieve a square-law gain function with a control range of over 100dB, or differentially, to reduce distortion. Alternatively, they may be used independently, as in audio stereo applications, with low crosstalk between channels. Voltagecontrolled filters and oscillators using the "state-variable" approach are easily designed, taking advantage of the dual channels and common control. The AD539 can also be configured as a divider with signal bandwidths up to 15MHz.

Power consumption is only 135mW using the recommended $\pm 5V$ supplies. The AD539 is available in three versions: the "J" and "K" grades are specified for 0 to $+70^{\circ}$ C operation and "S" grade is guaranteed over the extended range of -55° C to $+125^{\circ}$ C. The J and K grades are available in either a hermetic ceramic DIP (D) or a low cost plastic DIP (N), while the S grade is available only in ceramic.

AD539 FUNCTIONAL BLOCK DIAGRAM

DUAL SIGNAL CHANNELS

The signal voltage inputs, V_{Y1} and V_{Y2} , have nominal full-scale (FS) values of $\pm 2V$ with a peak range to $\pm 4.2V$ (using a negative supply of 7.5V or greater). For video applications where differential phase is critical a reduced input range of ± 1 volt is recommended, resulting in a phase variation of typically $\pm 0.2^{\circ}$ at 3.579MHz for full gain. The input impedance is typically 400k Ω shunted by 3pF. Signal channel distortion is typically well under 0.1% at 10kHz and can be reduced to 0.01% by using the channels differentially.

COMMON CONTROL CHANNEL

The control channel accepts positive inputs, V_X , from 0 to +3V FS, $\pm 3.3V$ peak. The input resistance is 500Ω . An external, grounded capacitor determines the small-signal bandwidth and recovery time of the control amplifier; the minimum value of 3nF allows a bandwidth at mid-gain of about 5MHz. Larger compensation capacitors slow the control channel but improve the high-frequency performance of the signal channels.

FLEXIBLE SCALING

Using either one or two external op amps in conjunction with the on-chip $6k\Omega$ scaling resistors, the output currents (nominally $\pm 1mA$ FS, $\pm 2.25mA$ peak) can be converted to voltages with accurate transfer functions of $V_W=-V_XV_Y/2$, $V_W=-V_XV_Y$ or $V_W=-2V_XV_Y$ (where inputs V_X and V_Y and output V_W are expressed in volts), with corresponding full-scale outputs of $\pm 3V$, $\pm 6V$ and $\pm 12V$. Alternatively, low-impedance grounded loads can be used to achieve the full signal bandwidth of 60MHz, in which mode the scaling is less accurate.

6

SPECIFICATIONS ($@T_A = 25^{\circ}C$, $V_S = \pm 5V$, unless otherwise specified)

				· · · · · ·	1		······				·
Parameter	Conditions	Min	AD539J Typ	Max	Min	АD539К Тур	Max	Min	AD539S Typ	Max	Units
SIGNAL-CHANNEL DYNAMICS Minimal Configuration Bandwidth, – 3dB Maximum Output	Reference Figure 6a $R_L = 50\Omega$, $C_C = 0.01\mu$ F $+ 0.1V < V_X < + 3V$, $V_{YaC} = 1V$ rms	30	60 - 10		30	60 10		30	60 - 10		MHz dBm
Feedthrough, f<1MHz f=20MHz Differential Phase Linearity	$V_X = 0$, $V_Y ac = 1.5 V rms$		75 55			75 55			- 75 - 55		dBm dBm
$-1V < V_{Y}dc < +1V$ $-2V < V_{Y}dc < +2V$ Group Delay	$f=358MHz, V_X = +3V,$ $V_{Yac} = 100mV$ $V_X = +3V, V_{yac} = 1V rms, f = 1MHz$		$^{\pm 02}_{\pm 0.5}$			$^{\pm 0.2}_{\pm 0.5}$			±0.2 ±0.5 4		Degrees Degrees ns
Standard Dual-Channel Multiplier Maximum Output Feedthrough, f<100kHz Crosstalk (CH1 to CH2)	Keterence Figure 2 $V_X = + 3V$, $V_{Yac} = 1.5V \text{ rms}$ $V_X = 0$, $V_{Yac} = 1.5V \text{ rms}$ $V_{Y1} = 1V \text{ rms}$, $V_{Y2} = 0$		4.5 1			4.5 1			4.5 1		V mV rms
RTO Noise, 10Hz to 1MHz THD + Noise, $V_X = +1V$, $V_Y = +3V$	$V_{X} = + 3V, f < 100 kHz$ $V_{X} = + 1.5V, V_{Y} = 0, Figure 2$ $f = 10kHz, V_{Yac} = 1V rms$ $f = 10kHz, V_{Yac} = 1V rms$		- 40 200 0.02 0.04			40 200 0.02 0.04			- 40 200 0.02 0.04		dB nV/√Hz % %
Wide Band Two-Channel Multiplier Bandwidth, $-3dB (LH0032)$ Maximum Output $V_X = +3V$ Feedthrough $V_X = 0V$ Wide Band Single Channel VCA	Figure 2 + $0.1V < V_X < + 3V$, $V_{Yac} = 1V$ rms $V_{Yac} = 1.5V$ rms, $f = 3MHz$ $V_{Yac} = 1.0V$ rms, $f = 3MHz$		25 4.5 14			25 4.5 14			25 4.5 14		MHz V rms mV rms
(AD5539) Bandwidth, - 3dB Maximum Output Feedthrough	Reference Figure 8 + 0.1V $<$ V _X $<$ + 3V, V _Y ac = 1V rms 75 Ω Load V _X = -0.01, f = 5MHz		50 ±1 -54			50 ±1 -54			50 ±1 -54		MHz V dB
CONTROL CHANNEL DYNAMICS Bandwidth, - 3dB	$C_{C} = 3000 pF, V_{X} dc = +1.5V,$ $V_{X} ac = 100 mV rms$		5			5			5		MHz
SIGNAL INPUTS, V _{Y1} & V _{Y2} Nominal Full-Scale Input Operational Range, Degraded Performance Input Resistance Bus Current	- V _S >7V	±4.2	±2 400 10	30	±4.2	±2 400 10	20	±4.2	±2 400 10	30	V V kΩ
Offset Voltage (T _{mun} to T _{mlx}) Power Supply Sensitivity	$V_{X} = +3V, V_{Y} = 0$ $V_{X} = +3V, V_{Y} = 0$		5 10 2	20		5 5 2	10		5 15 2	20 35	mV mV mV/V
CONTROL INPUT, V _X Nominal Full-Scale Input			+ 3.0			+ 3.0			+ 3.0		v
Operational Range, Degraded Performance Input Resistance ¹ Offset Voltage (T _{min} to T _{max})		+3.2	500 1 3	4	+3.2	500 1 2	2	+3.2	500 1 2	4 5	V Ω mV mV
Fower Supply Sensitivity Gain Absolute Gain Error (T _{min} to T _{max})	(Figure 2) $V_X = +0.1V$ to +3 0V and $V_y = \pm 2V$		0.2 0.3	0.4		0 1 0.15	0.2		50 0 2 0.25	0.4 0.5	dB dB
CURRENT OUTPUT ¹ Full-Scale Output Current Peak Output Current Output Offset Current Output Offset Voltage ²	$\label{eq:VX} \begin{split} V_X &= + 3V, V_Y = \pm 2V \\ V_X &= + 3.3V, V_Y = \pm 5V, V_S = \pm 7.5V \\ V_X &= 0, V_Y = 0 \\ F_{19} urc 2, V_X = 0, V_Y = 0 \end{split}$	±2	±1 ±2.8 0.2 3	1.5 10	±2	±1 ±2.8 0.2 3	1.5 10	±2	±1 ±28 0.2 3	1.5 10	mA mA μA mV
Output Resistance ¹ Scaling Resistors CH1 CH2	Z1, W1 to CH1 Z2, W2 to CH2		1.2 6 6			1.2 6 6			1.2 6 6		kΩ kΩ kΩ
VOLTAGE OUTPUTS, Vw1 & Vw2 ² Multiplier Transfer Function, Either Channel	(Figure 2)	Vw	n ≐ – Vx Vx	/V.,	Vw	= - Vx Vx	/V11	Vw	= - Vx Vv	Vu	
Multiplier Scaling Voltage, V _U Accuracy (T _{min} to T _{max}) Power Supply Sensitivity		0.98	10 05 1 004	1.02 2	0.99	1.0 0.5 0.5 0.04	1.01 1	0.98	1.0 0.5 1.0 0.04	1.02 2 3	V % % %/V
Total Multiplication Error ³ T _{min} to T _{max} Control Feedthrough	$V_X <= +3V, -2V < V_Y < 2V$ $V_X = 0$ to $+3V, V_Y = 0$		1 2 25 30	2.5 60		0.6 1 15	1.5 30		1 2 15	2.5 4 60 120	% FSR % mV mV
TEMPERATURE RANGE Rated Performance		0		+ 70	0		+ 70	- 55		+ 125	°C
POWER SUPPLIES Operational Range		±4.5		±16.5	±45		± 16.5	±45		±16.5	v
			8.5 18.5	10.2 22.2		8.5 18 5	10.2 22.2		8.5 18.5	10.2 22.2	mA mA
PACKAGE OPTIONS ⁴ Plastic (N-16) TO-116 (D-16)			AD539JN AD539JD		A	AD539KN AD539KD		A	D5398D		

NOTES Resistance value and absolute current outputs subject to 20% tolerance ²Spec assumes the external op amp is trummed for negligible input offset ³Includes all errors ⁴See Section 16 for package outline information.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units

Specifications subject to change without notice

CIRCUIT DESCRIPTION

Figure 1 is a simplified schematic of the AD539. Q1-Q6 are large-geometry transistors designed for low distortion and low noise. Emitter-area scaling further reduces distortion: O1 is 3 times larger than Q2; Q4, Q5 are each 3 times larger than Q3, Q6, and these transistors are twice as large as Q1, Q2. A stable reference current $I_{REF} = 1.375 \text{mA}$ is produced by a band-gap reference circuit and applied to the common emitter node of a controlled-cascode formed by Q1 and Q2. When $V_x = 0$, all of IREF flows in Q1, due to the action of the high-gain control amplifier which lowers the voltage on the base of Q2. As V_x is raised the fraction of I_{REF} flowing in Q2 is forced to balance the control current, $V_X/2.5k$. At the full-scale value of V_X (+3V) this fraction is 0.873. Since the bases of Q1, Q4 and Q5 are at ground potential and the bases of Q2, Q3 and Q6 are commoned, all three controlled-cascodes divide the current applied to their emitter nodes in the same proportion. The control loop is stabilized by the external capacitor, C_C.

Figure 1. Simplified Schematic of AD539 Multiplier

The signal voltages V_{Y1} and V_{Y2} (generically referred to as V_Y) are first converted to currents by voltage-to-current converters with a g_m of 575 μ mhos; thus, the full-scale input of $\pm 2V$ becomes a current of ± 1.15 mA, which is superimposed on a bias of 2.75mA, and applied to the common emitter node of controlled cascode Q3-Q4 or Q5-Q6. As just explained, the proportion of this current steered to the output node is linearly dependent on V_x. Thus for full-scale V_x and V_y inputs, a signal of ± 1 mA (0.873 $\times \pm 1.15$ mA) and a bias component of 2.4mA (0.873 \times 2.75mA) appear at the output. The bias component absorbed by the 1.25k resistors also connected to V_x, and the resulting signal current can be applied to an external load resistor (in which case scaling is not accurate) or can be forced into either or both of the 6k Ω feedback resistors (to the Z and W nodes) by an external op amp. In the latter case, scaling accuracy is guaranteed.

GENERAL RECOMMENDATIONS

The AD539 is a high speed circuit and requires considerable care to achieve its full performance potential. A high-quality ground plane should be used with the device either soldered directly into the board or mounted in a low-profile socket. In the figures used here an open triangle denotes a *direct*, *short* connection to this ground plane; pins 12 and 13 are especially prone to unwanted signal pick-up. Power supply decoupling capacitors of 0.1μ F to 1μ F should be connected from pins 4 and 5 to the ground plane. In applications using external high-speed op amps, separate supply decoupling should be used. It is good practice to insert small (10 Ω) resistors between the primary supply and the decoupling capacitor.

The control amplifier compensation capacitor, C_C , should likewise have short leads to ground and a minimum value of 3nF. Unless maximum control bandwidth is essential it is advisable to use a larger value of 0.01μ F to 0.1μ F to improve the signal channel phase response, high-frequency crosstalk and high-frequency distortion. The control bandwidth is inversely proportional to this capacitance, typically 2MHz for $C_C = 0.01\mu$ F, $V_X = 1.7V$. The bandwidth and pulse response of the control channel can be improved by using a feedforward capacitor of 5% to 20% the value of C_C between pins 1 and 2. Optimum transient response will result when the rise/fall time of V_X are commensurate with the control-channel response time.

 V_X should not exceed the specified range of 0 to +3V. The ac gain is zero for $V_x < 0$ but there remains a feedforward path (see Figure 1) causing control feedthrough. Recovery time from negative values of V_X can be improved by adding a small-signal Schottky diode with its cathode connected to pin 2 and its anode grounded. This constrains the voltage swing on C_C. Above $V_X = +3.2V$, the ac gain limits at its maximum value, but any overdrive appears as control feedthrough at the output.

The power supplies to the AD539 can be as low as $\pm 4.5V$ and as high as $\pm 16.5V$. The maximum allowable range of the signal inputs, V_Y , is approximately 0.5V above $+V_S$; the minimum value is 2.5V above $-V_S$. To accommodate the peak specified inputs of $\pm 4.2V$ the supplies should be nominally +5V and -7.5V. While there is no performance advantage in raising supplies above these values, it may often be convenient to use the same supplies as for the op amps. The AD539 can tolerate the excess voltage with only a slight effect on dc accuracy but dissipation at $\pm 16.5V$ can be as high as 535mW and some form of heat-sink is essential in the interests of reliability.

TRANSFER FUNCTION

In using any analog multiplier or divider careful attention must be paid to the matter of *scaling*, particularly in computational applications. To be *dimensionally consistent* a scaling voltage must appear in the transfer function, which, for each channel of the AD539 in the standard multiplier configuration (Figure 2) is

$$V_W = -V_X V_Y / V_U$$

where the inputs V_X and V_Y , the output V_W and the scaling voltage V_U are expressed in a consistent unit, usually volts. In this case, V_U is fixed by the design to be 1V and it is often acceptable in the interest of simplification to use the less rigorous expression

$$\mathbf{V}_{\mathbf{W}} = -\mathbf{V}_{\mathbf{X}}\mathbf{V}_{\mathbf{Y}}$$

where it is understood that all signals must be expressed in volts, that is, they are rendered dimensionless by division by (1V).

The accuracy specifications for V_U allow the use of either of the two feedback resistors supplied with each channel, since these are very closely matched, or they may be used in parallel to half the gain (double the effective scaling voltage), when

$$V_{W} = -V_X V_Y/2.$$

When an external load resistor, R_L , is used the scaling is no longer exact since the internal thin-film resistors, while trimmed to high *ratiometric* accuracy, have an absolute tolerance of 20%. However, the nominal transfer function is

$$\mathbf{V}_{\mathbf{W}} = -\mathbf{V}_{\mathbf{X}}\mathbf{V}_{\mathbf{Y}}/\mathbf{V}_{\mathbf{U}}$$

where the effective scaling voltage, V_{U}' can be calculated for each channel using the formula $V_{U}' = V_U (5R_L + 6.25)/R_L$, where R_L is expressed in kilohms. For example, when $R_L =$ 100Ω , $V_{U}' = 67.5V$. Table II provides more detailed data for the case where both channels are used in parallel. The AD539 can also be used with no external load (output pin 11 or 14 open-circuit), when V_{U}' is quite accurately 5V.

BASIC MULTIPLIER CONNECTIONS

Figure 2 shows the connections for the standard two-channel multiplier, using op amps to provide useful output power and the AD539 feedback resistors to achieve accurate scaling. The transfer function for each channel is

$$V_{W} = -V_{X}V_{Y}$$

where inputs and outputs are expressed in volts (see TRANSFER FUNCTION). At the nominal full-scale inputs of $V_X = +3V$, $V_Y = \pm 2V$ the full-scale outputs are $\pm 6V$. Depending on the choice of op amp, their supply voltages usually need to be about 2V more than the peak output. Thus, supplies of at least $\pm 8V$ are required; the AD539 can share these supplies. Higher outputs are possible if V_X and V_Y are driven to their peak values of +3.2V and $\pm 4.2V$ respectively, when the peak output is $\pm 13.4V$. This requires operating the op amps at supplies of $\pm 15V$. Under these conditions it is advisable to reduce the supplies to the AD539 to $\pm 7.5V$ to limit its power dissipation; however, with some form of heat sinking it is permissible to operate the AD539 directly from $\pm 15V$ supplies.

Figure 2. Standard Dual-Channel Multiplier

Viewed as a voltage-controlled amplifier, the decibel gain is simply

$$G = 20 \log V_X$$

where V_X is expressed in volts. This results in a gain of 10dB at $V_X = +3.162V$, 0dB at $V_X = +1V$, -20dB at $V_X = +0.1V$, and so on. In many ac applications the output offset voltage (for $V_X = 0$ or $V_Y = 0$) will not be of major concern; however, it can be eliminated using the offset nulling method recommended for the particular op amp, with $V_X = V_Y = 0$.

At small values of V_x the offset voltage of the control channel will degrade the gain/loss accuracy. For example, $a \pm 1mV$ offset uncertainty will cause the nominal 40dB attenuation at V_x = +0.01V to range from 39.2dB to 40.9dB. Figure 3a shows the maximum gain error boundaries based on the guaranteed control-channel offset voltages of $\pm 2mV$ for the AD539K and $\pm 4mV$ for the AD539J. These curves include all scaling errors and apply to all configurations using the internal feedback resistors (W1 and W2; alternatively, Z1 and Z2).

Figure 3a. Maximum ac Gain Error Boundaries

Distortion is a function of the signal input level (V_Y) and the control input (V_X) . It is also a function of frequency, although in practice the op amp will generate most of the distortion at frequencies above 100kHz. Figure 3b shows typical results at f = 10kHz as a function of V_X with $V_Y = 0.5$ and 1.5V rms.

Figure 3b. Total Harmonic Distortion vs. Control Voltage

In some cases it may be desirable to alter the scaling. This can be achieved in several ways. One option is to use both the Z and W feedback resistors (see Figure 1) in parallel, in which case $V_W = -V_X V_Y/2$. This may be preferable where the output swing must be held at $\pm 3V$ FS ($\pm 6.75V$ pk), for example, to allow the use of reduced supply voltages for the op amps. Alternatively, the gain can be doubled by connecting both channels in parallel and using only a single feedback resistor, in which case $V_W = -2V_X Y_Y$ and the full-scale output is $\pm 12V$. Another option is to insert a resistor in series with the control-channel input, permitting the use of a large (for example, 0 to +10V) control voltage. A disadvantage of this scheme is the need to adjust this resistor to accommodate the tolerance of the nominal 500 Ω input resistance at pin 1. The signal channel inputs can also be resistively attenuated to permit operation at higher values of V_Y, in which case it may often be possible to partially compensate for the response roll-off of the op amp by adding a capacitor across the upper arm of this attenuator.

Signal-Channel ac and Transient Response

The HF response is dependent almost entirely on the op amp. Note that the "noise gain" for the op amp in Figure 2 is determined by the value of the feedback resistor ($6k\Omega$) and the $1.25k\Omega$ control-bias resistors (Figure 1). Op amps with provision for external frequency compensation (such as the AD301 and AD518) should be compensated for a closed-loop gain of 6.

The layout of the circuit components is very important if low feedthrough and flat response at low values of V_X is to be maintained (see GENERAL RECOMMENDATIONS).

For wide-bandwidth applications requiring an output voltage swing greater than $\pm 1V$, the ADLH0032 hybrid op-amp is recommended. Figure 4a shows the HF response of the circuit of Figure 2 using this amplifier with $V_{\rm Y} = 1V$ rms and other conditions as shown in Table I. C_F was adjusted for 1dB peaking at $V_{\rm X} = +1V$; the -3dB bandwidth exceeds 25MHz. The effect of signal feedthrough on the response becomes apparent at $V_{\rm X} = +0.01V$. The minimum feedthrough results when $V_{\rm X}$ is taken slightly negative to ensure that the residual control-channel offset is exceeded and the dc gain is reliably zero. Measurements show that the feedthrough can be held to -90dB relative to full

Figure 4a. Multiplier HF Response Using ADLH0032 Op Amps

output at low frequencies and to -60dB up to 20MHz with careful board layout. The corresponding pulse response is shown in Figure 4b for a signal input of V_Y of $\pm 1V$ and two values of V_X (+3V and +0.1V).

Figure 4b. Multiplier Pulse Response Using ADLH0032 Op

	AD711 ¹	AD5539 ²	ADLH00321
Op Amp Supply Voltages	±15V	±9V	±10V
Op Amp Compensation Capacitor	None	None	1-5pF
Feedback Capacitor, CF	None	0.25-1.5pF	1-4pF
-3 dB Bandwidth, $V_x = +1V$	900kHz	50MHz	25MHz
Load Capacitance	<lnf< td=""><td><10pF</td><td><100pF</td></lnf<>	<10pF	<100pF
HF Feedthrough,			
$V_{x} = -0.01V, f = 5MHz$	N/A	- 54dB	- 70dB
rms Output Noise,			
$V_x = +1V$, BW 10Hz-10kHz	50µV	40µV	30µV
$V_{x} = +1V_{z}BW_{z} = +1V_{z}BW_{z}$	120uV	620uV	500 V

In all cases, $0.47\mu F$ ceramic supply-decoupling capacitors were used at each IC pin, the AD539 supplies were $\pm\,5V$ and the control-compensation capacitor C_C was 3nF. NOTES

¹For the circuit of Figure 2. ²For the circuit of Figure 8.

Table I. Summary of Operating Conditions and Performance for the AD539 When Used with Various External Op-Amp Output Amplifiers

Minimal Wide-Band Configurations

The maximum bandwidth can be achieved using the AD539 with simple resistive loads to convert the output currents to voltages. These currents (nominally ± 1 mA FS, ± 2.25 mA pk, into short-circuit loads) are shunted by their source resistance of 1.25k Ω (each channel). Calculations of load power and effective scaling-voltage must allow for this shunting effect when using resistive loads. The output power is quite low in this mode, and the device behaves more like a voltage-controlled attenuator than a classical multiplier. The matching of gain and phase between the two channels is excellent. From dc to 10MHz the gains are typically within ± 0.025 dB (measured using precision 50 Ω load resistors) and the phase difference within $\pm 0.1^\circ$.

Load Resistance	50Ω	75Ω	100Ω	150Ω	600Ω	0/C
FS Output Voltage	±92.6mV	±134mV	±172mV	± 242mV	±612mV	±1V
	65.5mV rms	94.7mV rms	122mV rms	171mV rms	433mV rms	*
FS Output-	0.086mW	0.12mW	0.15mW	0.195mW	0.312mW	-
Power in Load	- 10.5dBm	- 9.2dBm	-8.3dBm	-7.1dBm	- 5.05dBm	-
Pk Output Voltage	±210mV	± 300mV	± 388mV	± 544mV	±1V	± 1V
	148mV rms	212mV rms	274mV rms	385mV rms	*	*
Pk Output-	0.44mW	0.6mW	0.75mW	lmW	± 1V	±1V
Power in Load	— 7dBm	-4.4dBm	-2.5dBm	0dBm	*	*
Effective Scaling	67.5V	46.7V	36.3V	25.8V	10.2V	5V
Voltage, V _U '			1			

*Peak negative voltage swing limited by output compliance

Table II. Summary of Performance for Minimal Configuration

For a given load resistance the output power can be quadrupled by using both channels in parallel, as shown in Figure 5a. The small-signal silicon diode D connected between ground and pins 12 and 13 provides extra voltage compliance at the output nodes in the negative direction (to -1V at 25°C); it is not required if the output swing does not exceed -300mV. Table II compares performance for various load resistances, using this configuration.

Figure 5a. Minimal Single-Channel Multiplier

Figure 5b shows the HF response for Figure 5a with the AD539 in a carefully-shielded 50Ω test-environment; the test system response was first characterized and this background removed by digital signal processing to show the inherent circuit response.

Figure 5b. HF Response in Minimal Configuration

In many applications *phase linearity* over frequency is important. Figure 5c shows the deviation from an ideal linear-phase response for a typical AD539 over the frequency range dc to 10MHz, for

Figure 5c. Phase Linearity Error in Minimal Configuration

 $V_X = +3V$; the peak deviation is slightly more than 1°. *Differential phase linearity* (the stability of phase over the signal window at a fixed frequency) is shown in Figure 5d for f = 3.579MHz and various values of V_X . The most rapid variation occurs for V_Y above +1V; in applications where this characteristic is critical, it is recommended that a ground-referenced, negative-going signal be used.

Figure 5d. Differential Phase Linearity in Minimal Configuration for a Typical Device

Differential Configurations

When only one signal channel must be handled it is often advantageous to use the channels differentially. By subtracting the CH1 and CH2 outputs any residual transient control feedthrough is virtually eliminated. Figure 6a shows a minimal configuration where it is assumed that the host system uses differential signals and a 50 Ω environment throughout. This figure also shows a recommended control-feedforward network to improve large-signal

Figure 6a. High-Speed Differential Configuration

response time. The control feedthrough glitch is shown in Figure 6b, where the input was applied to CH1 and only the output of CH1 was displayed on the oscilloscope. The improvement obtained when CH1 and CH2 outputs are viewed differentially is clear in Figure 6c. The envelope rise-time is of the order of 40ns.

Lower distortion results when CH1 and CH2 are driven by *complementary* inputs and the outputs are utilized differentially, using a circuit such as Figure 7a. Resistors R1 and R2 should have a value in the range 100 to 1000Ω .

Figure 6b. Control Feedthrough One Channel of Figure 6a

Figure 6c. Control Feedthrough Differential Mode, Figure 6a

They minimize a secondary distortion mechanism caused by a collector-modulation effect in the controlled cascodes (see CIR-CUIT DESCRIPTION) by keeping the voltage-swing at the outputs to an acceptable level. Figure 7b shows the improvement in distortion over the standard configuration (compare Figure 3b). Note that the Z nodes (pins 10 and 15) are returned to the control input; this prevents the early onset of output-transistor saturation.

Figure 7a. Low-Distortion Differential Configuration

Figure 7b. Distortion in Differential Mode Using ADLH0032 Op-Amp

Even lower distortion (0.01%, or -80dB) has been measured using two output op amps in a configuration similar to Figure 2 connected as virtual-ground current-summers (to prevent the modulation effect). Note that to generate the difference output it is merely necessary to connect the output of the CH1 op amp to the Z node of CH2. In this way, the net input to the CH2 op amp is the difference signal, and the low-distortion resultant appears as its output.

A 50MHz VOLTAGE-CONTROLLED AMPLIFIER

Figure 8 is a circuit for a 50MHz voltage-controlled amplifier (VCA) suitable for use in high-quality-video-speed applications. The outputs from the two-signal channels of the AD539 are applied to the op-amp in a subtracting configuration. This connection has two main advantages: first, it results in better rejection of the control voltage, particularly when over-driven ($V_X < 0$ or $V_X > 3.3V$). Secondly, it provides a choice of either non-inverting or inverting responses, using either inputs V_{Y1} or V_{Y2} respectively. In this circuit, the output of the op-amp will equal:

$$V_{OUT} = \frac{V_X (V_{Y1} - V_{Y2})}{2V}$$
 for $V_X > 0$

Hence, the gain is unity at $V_X = +2V$. Since V_X can over-range to +3.3V, the maximum gain in this configuration is about 4.3dB. (Note: If pin 9 of the AD539 is grounded, rather than connected to the output of the 5539N, the maximum gain becomes 10dB.)

Figure 8. A Wide Bandwidth Voltage-Controlled Amplifier

The -3dB bandwidth of this circuit is over 50MHz at full gain, and is not substantially affected at lower gains. Of course, when V_X is zero (or slightly negative, to override the residual input offset) there is still a small amount of capacitive feedthrough at high frequencies; therefore, *extreme* care is needed in laying out the PC board to minimize this effect. Also, for small values of V_X , the combination of this feedthrough with the multiplier output can cause a dip in the response where they are out of phase. Figure 9a shows the ac response from the noninverting

Figure 9a. AC Response of the VCA at Different Gains $V_Y = 0.5V \text{ RMS}$

input, with the response from the inverting input, V_{Y2} , essentially identical. Test conditions: $V_{Y1}=0.5V$ rms for values of V_X from + 10mV to + 3.16V; this is with a 75 Ω load on the output. The feedthrough at $V_X = -10mV$ is also shown.

The transient response of the signal channel at $V_x = +2V$, $V_y = V_{OUT} = \pm 1V$ is shown in Figure 9b; with the VCA driving a 75 Ω load. The rise and fall-times are approximately 7ns.

Figure 9b. Transient Response of the Voltage-Controlled Amplifier $V_X = +2$ Volts $V_Y = \pm 1$ Volt

A more detailed description of this circuit, including differential gain and phase characteristics, is given in the application note "Low Cost, Two Chip Voltage-Controlled Amplifier and Video Switch" available from Analog Devices.

BASIC DIVIDER CONNECTIONS Standard Scaling

The AD539 provides excellent operation as a two-quadrant analog divider in wide-band wide gain-range applications, with the advantage of dual-channel operation. Figure 10a shows the simplest connections for division with a transfer function of

$$V_{\rm Y} = -V_{\rm U}V_{\rm W}/V_{\rm X}$$

Recalling that the nominal value of V_U is 1V, this can be simplified to

$$V_{Y} = -V_{W}/V_{X}$$

where all signals are expressed in volts. The circuit thus exhibits unity gain for $V_x = +1V$ and a gain of 40dB when $V_x = +0.01V$.

The output swing is limited to $\pm 2V$ nominal full-scale and $\pm 4.2V$ peak (using a $-V_s$ supply of at least 7.5V for the AD539). Since the maximum *loss* is 10dB (at $V_x = 3.162V$), it follows that the maximum input to V_w should be $\pm 6.3V$ (4.4V rms) for low distortion applications, and no more than $\pm 13.4V$ (9.5V rms) to avoid clipping. Note that offset adjustment will be needed

Figure 10a. Two-Channel Divider with 1V Scaling

Figure 10b. HF Response of Figure 10a Divider

for the op amps to maintain accurate dc levels at the output in high gain applications: the "noise gain" is $6V/V_X$, or 600 at $V_X = +0.01V$.

The gain-magnitude response for this configuration using the ADLH0032 op amps with nominally 12pF compensation (pins 2 to 3) and $C_F = 7pF$ is shown in Figure 10b; of course, other amplifiers may also be used. Since there is some manufacturing variation in the HF response of the op amps, and load conditions will also affect the response, these capacitors should be adjustable: 5-15pF is recommended for both positions. The bandwidth in this configuration is nominally 17MHz at $V_X = +3.162V$, 4.5MHz at $V_X = +1V$, 350kHz at $V_X = +0.1V$ and 35kHz at $V_X = +0.01V$. The general recommendations regarding the use of a good ground plane and power-supply decoupling should be carefully observed.

AD632

FEATURES

Pretrimmed to $\pm 0.5\%$ Max 4-Quadrant Error All Inputs (X, Y and Z) Differential, High Impedance for $[(X_1-X_2)(Y_1-Y_2)/10] + Z_2$ Transfer Function

Scale-Factor Adjustable to Provide up to X10 Gain Low Noise Design: 90µV rms, 10Hz-10kHz Low Cost, Monolithic Construction Excellent Long Term Stability

APPLICATIONS

High Quality Analog Signal Processing Differential Ratio and Percentage Computations Algebraic and Trigonometric Function Synthesis Accurate Voltage Controlled Oscillators and Filters

AD632 PIN CONFIGURATIONS

6

PRODUCT DESCRIPTION

The AD632 is an internally-trimmed monolithic four-quadrant multiplier/divider. The AD632B has a maximum multiplying error of $\pm 0.5\%$ without external trims.

Excellent supply rejection, low temperature coefficients and long term stability of the on-chip thin film resistors and buried zener reference preserve accuracy even under adverse conditions. The simplicity and flexibility of use provide an attractive alternative approach to the solution of complex control functions.

The AD632 is pin for pin compatible with the industry standard AD532 with improved specifications and a fully differential high impedance Z-input. The AD632 is capable of providing gains of up to X10, frequently eliminating the need for separate instrumentation amplifiers to precondition the inputs. The AD632 can be effectively employed as a variable gain differential input amplifier with high common mode rejection. The effectiveness of the variable gain capability is enhanced by the inherent low noise of the AD632: $90\mu V$ rms.

PRODUCT HIGHLIGHTS

Guaranteed Performance Over Temperature: The AD632A and AD632B are specified for maximum multiplying errors of $\pm 1.0\%$ and $\pm 0.5\%$ of full scale, respectively at $+25^{\circ}$ C and are rated for operation from -25° C to $+85^{\circ}$ C. Maximum multiplying errors of $\pm 2.0\%$ (AD632S) and $\pm 1.0\%$ (AD632T) are guaranteed over the extended temperature range of -55° C to $+125^{\circ}$ C.

High Reliability: The AD632S and AD632T series are also available with MIL-STD-883 Level B screening and all devices are available in either the hermetically-sealed TO-100 metal can or TO-116 ceramic DIP package.

$\label{eq:spectrum} SPECIFICATIONS ~~(@~+25^\circ\!\!C,~V_s=\pm15V,~R{\geq}2k\Omega~~unless~~otherwise~~noted)$

Model	AD632A	AD632B	AD632S	AD632T	T.
MULTIPLIER PERFORMANCE	Min Typ Max	Min Typ Max	Min Typ Max	Min Typ Max	Units
Transfer Function	$\frac{(X_1 - X_2)(Y_1 - Y_2)}{(Y_1 - Y_2)} + Z_2$	$\frac{(X_1 - X_2)(Y_1 - Y_2)}{(X_1 - Y_2)} + Z_2$	$\frac{(X_1 - X_2)(Y_1 - Y_2)}{(Y_1 - Y_2)} + Z_2$	$\frac{(X_1 - X_2)(Y_1 - Y_2)}{(Y_1 - Y_2)} + Z_2$	
Total Error ¹ ($-10V \le X, Y \le +10V$)	$10V = \frac{1}{2}$	10V ±0.5	10V ±1.0	10V 2 ±0.5	%
$T_A = \min to \max$	±1.5	±1.0	±2.0	±1.0	%
Scale Factor Error	±0.022	±0.015	±0.02	±0.01	%/*℃
$(SF = 10.000V Nominal)^2$	± 0.25	±0.1	±0.25	±0.1	%
Scaling-Voltage	±0.02	±0.01	±0.2	±0.005	%/°C
Supply Rejection $(\pm 15V \pm 1V)$ Nonlinearity, X (X = 20V pk-pk, Y = 10V)	± 0.01 ± 0.4	± 0.01 ± 0.2 ± 0.3	± 0.01 ± 0.4	± 0.01 ± 0.2 ± 0.3	%
Nonlinearity, $Y (Y = 20V \text{ pk-pk}, X = 10V)$	± 0.2	± 0.1 ± 0.1	±0.2	±0.1 ±0.1	%
Feedthrough ² , X (Y Nulled, X = 20V pk-pk 50Hz)	±0.3	±0.15 ±0.3	±0.3	±0.15 ±0.3	%
Feedthrough ³ , Y (X Nulled, X = 20V pk-pk 50 Hz)	+0.01	+0.01 +0.1	+0.01	+0.01 +0.1	%
Output Offset Voltage	±5 ±30	±2 ±15	±5 ±30	±2 ±15	mV
Output Offset Voltage Drift	200	100	500	300	μ∇/⁰Ç
DYNAMICS Small Signal BW, (V _{OUT} = 0.1rms)	1	1	1	1	MHz
1% Amplitude Error ($C_{LOAD} = 1000 \text{pF}$)	50	50 20	50 20	50 20	kHz V/us
Settling Time (to 1%, $\Delta V_{OUT} = 20V$)	20	20	2	. 2	μs
NOISE					110/11-
Noise Spectral-Density $SF = 10V$ $SF = 3V^4$	0.8 0.4	0.8 0.4	0.4	0.8	$\mu V/\sqrt{Hz}$ $\mu V/\sqrt{Hz}$
Wideband Noise A = 10Hz to 5MHz	1.0	1.0	1.0	1.0	μV/rms
	90	70		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	μνητιιό
Output Voltage Swing	±11	±11	±11	±11	v
Output Impedance (f≤1kHz) Output Short Circuit Current	0.1	0.1	0.1	01	11
$(\mathbf{R}_{L} = 0, \mathbf{T}_{A} = \min \operatorname{to} \max)$	30 70	30 70	30 70	30 70	mA dB
INPUT AMPLIFIERS (X, Y and Z) ⁵	/0	/0	/0	,,,	- u2
Signal Voltage Range (Diff. or CM	± 10	± 10	± 10	± 10	V
Operating Diff.) Offset Voltage X, Y	± 12 ± 5 ± 20	$\pm 12 \pm 2 \pm 10$	$\pm 12 \pm 5 \pm 20$	± 12 ± 2 ± 10	mV
Offset Voltage Drift X, Y	100	50 + 2 + 15	100 +5 +30	150	µV/℃ mV
Offset Voltage Drift Z	200	100	500	300	μV/°C
CMRR Bias Current	60 80 0.8 2.0	70 90 0.8 2.0	60 80 0.8 2.0	70 90 08 2.0	dΒ μA
Offset Current	0.1	0.1	0.1	01	μΑ
Differential Resistance	10	10	10	10	14111
	$(Z_2 - Z_1)$	$(Z_2 - Z_1) + Y$	$10V \frac{(Z_2 - Z_1)}{Z_1 + V_1}$	$10V \frac{(Z_2 - Z_1)}{Z_2 - Z_1} + V_2$	
I ransfer Function $(X_1 > X_2)$	$(\mathbf{X}_1 - \mathbf{X}_2)^+ 1_1$	$(\mathbf{X}_1 - \mathbf{X}_2)^{+1}$	$(X_1 - X_2)^{+1}$	$(X_1 - X_2)^{-1}$	
$(X = 10V, -10V \le Z \le +10V)$	±0.75	±0.35	±0.75	±0.35	%
$(X = 1V, -1V \le Z \le +1V)$	±20 +25	± 1.0 + 1.0	± 2.0 + 2.5	± 1.0 ± 1.0	%
SOUARER PERFORMANCE			_ = = = = = = = = = = = = = = = = = = =		
Transfer Function	$\frac{(X_1 - X_2)^2}{2} + Z_2$	$\frac{(X_1 - X_2)^2}{(X_1 - X_2)^2} + Z_2$	$\frac{(X_1 - X_2)^2}{(X_1 - X_2)^2} + Z_2$	$\frac{(X_1 - X_2)^2}{10X_1} + Z_2$	
Total Error $(-10V \le X \le 10V)$	10V = 2 ±0.6	10V 2 ±0.3	±0.6	±0.3	%
SQUARE-ROOTER PERFORMANCE					
Transfer Function, $(Z_1 \leq Z_2)$	$\sqrt{10V(Z_2-Z_1)} + X_2$	$\sqrt{10V(Z_2 - Z_1)} + X_2$	$\sqrt{10}V(Z_2-Z_1) + X_2$	$\sqrt{10V(Z_2 - Z_1)} + X_2$	94
	± 1.0	±0.5	± 1.0	±0.5	/0
Supply Voltage					
Rated Performance	±15	±15	±15	±15	V
Supply Current	±0 ±10	±0 ±18	±22		
Quiescent	4 6	4 6	4 6	4 6	mA
TO-100(H-10A)	AD632AH	AD632BH	AD632SH	AD632TH	
TO-116(D-14)	AD632AD	AD632BD	AD632SH	AD632TD	

$$\label{eq:NOTES} \begin{split} &NOTES \\ ^{1}Figures given are percent of full-scale, \pm 10V (i.e., 0.01\% = 1mV) \\ ^{2}May be reduced down to 3V using external resistor between <math display="inline">-V_{S}$$
 and SF \\ ^{1}Irreducible component due to nonlinearity: excludes effect of offsets. \\ ^{4}Using external resistor adjusted to give SF = 3V. \\ ^{5}See functional block diagram for definition of sections \\ ^{6}See Section 16 for package outline information. \end{split}

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electri-cal test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Typical Performance Curves (typical at +25°C with $\pm V_S$ = 15V)

Figure 1. AC Feedthrough vs. Frequency

Figure 2. Frequency Response as a Multiplier

Figure 3. Frequency Response vs. Divider Denominator Input Voltage

CHIP DIMENSIONS & PAD LAYOUT

For further information, consult factory

Figure 4. AD632 Functional Block Diagram

OPERATION AS A MULTIPLIER

Figure 5 shows the basic connection for multiplication. Note that the circuit will meet all specifications without trimming.

Figure 5. Basic Multiplier Connection

In some cases the user may wish to reduce ac feedthrough to a minimum (as in a suppressed carrier modulator) by applying an external trim voltage (± 30 mV range required) to the X or Y input. Curve 1 shows the typical ac feedthrough with this adjustment mode. Note that the feedthrough of the Y input is a factor of 10 lower than that of the X input and should be used in applications where null suppression is critical.

The Z_2 terminal of the AD632 may be used to sum an additional signal into the output. In this mode the output amplifier behaves as a voltage follower with a 1MHz small signal bandwidth and a 20V/ μ s slew rate. This terminal should always be referenced to the ground point of the driven system, particularly if this is remote. Likewise the differential inputs should be referenced to their respective signal common potentials to realize the full accuracy of the AD632.

A much lower scaling voltage can be achieved without any reduction of input signal range using a feedback attenuator as shown in Figure 6. In this example, the scale is such that $V_{OUT} = XY$, so that the circuit can exhibit a maximum gain of 10. This connection results in a reduction of bandwidth to about 80kHz without the peaking capacitor C_F. In addition, the output offset voltage is increased by a factor of 10 making external adjustments necessary in some applications.

Feedback attenuation also retains the capability for adding a signal to the output. Signals may be applied to the Z_1 terminal where they are amplified by -10 or to the common ground connection where they are amplified by -1. Input signals may also be applied to the lower end of the 2.7k Ω resistor, giving a gain of +9.

Figure 6. Connections for Scale-Factor of Unity

OPERATION AS A DIVIDER

Figure 7 shows the connection required for division. Unlike earlier products, the AD632 provides differential operation on both numerator and denominator, allowing the ratio of two floating variables to be generated. Further flexibility results from access to a high impedance summing input to Y_1 . As with all dividers based on the use of a multiplier in a feedback loop, the bandwidth is proportional to the denominator magnitude, as shown in Figure 3.

Without additional trimming, the accuracy of the AD632B is sufficient to maintain a 1% error over a 10V to 1V denominator range (The AD535 is functionally equivalent to the AD632 and has guaranteed performance in the divider and square-rooter configurations and is recommended for such applications).

This range may be extended to 100:1 by simply reducing the X offset with an externally generated trim voltage (range required is ± 3.5 mV max) applied to the unused X input. To trim, apply a ramp of ± 100 mV to $\pm V$ at 100Hz to both X₁ and Z₁ (if X₂ is used for offset adjustment, otherwise reverse the signal polarity) and adjust the trim voltage to minimize the variation in the output.*

Since the output will be near +10V, it should be ac-coupled for this adjustment. The increase in noise level and reduction in bandwidth preclude operation much beyond a ratio of 100 to 1.

*See the AD535 Data Sheet for more details.

Very High Frequency **Four-Quadrant Multiplier**

AD834

6

FEATURES

500MHz Large-Signal Bandwidth Differential ±1V Full-Scale Inputs Differential ±4mA Full Scale Output Current Low Distortion (≤0.05% for 10dBm Input) Supply Voltages from ±4V to ±9V Low Power (290mW at $V_s = \pm 5V$)

APPLICATIONS

High-Speed Real-Time Computation Wideband Modulation and Gain Control Signal Correlation and Power Measurement **Voltage-Controlled Filters and Oscillators** Linear Kevers for High Resolution Television Wideband True RMS

PRODUCT DESCRIPTION

The AD834 is a monolithic laser-trimmed four-quadrant analog multiplier intended for use in high frequency applications, having differential voltage inputs and a differential current output. The transconductance bandwidth ($R_{I} = 50\Omega$) is typically 500MHz from either input. Performance is relatively insensitive to temperature and supply variations, due to the use of stable busing ť., based on a bandgap reference generator and other design features. 114 114 114 114

To preserve the full bandwidth potential of the high-speed bipolar process used to fabricate the AD834, the outputs appear as current as a differential pair of currents at open collectors. The transfer function is accurately trimmed such that when $X = Y \pm 1V$, the differential output is $\pm 4mA$ 嚌

In multiplier modes, the maximum total full-scale error is 2%; dependent on the application mode and the external circuitry. A square-law transfer function can be achieved by connecting the inputs in parallel; in this mode, the AD834 can be used as a

AD834 FUNCTIONAL BLOCK DIAGRAM

power detector/up to 500MHz. The AD834J is specified for use over the commercial temperature range of 0°C to +70°C, and is available in either an 8-pin SO package or 8-pin cerdip. The AD834S is specified for use over the military temperature range of 55°C to + 125°C, and is available in an 8-pin cerdip.

PRODUCT HIGHLIGHTS

TC:

1. The AD834 performs four-quadrant multiplication with a large-signal bandwidth in excess of 500MHz.

- 2. Multiplier static accuracy of 2% of full-scale can be achieved.
- 3. Unique design techniques result in low output distortion (≤0.05% for + 10dBm inputs).
- 54. Low power consumption (290mW at ±5V supplies).
 - 5. Differential current outputs ensure maximum usable bandwidth is available.
 - 6. Laser-trimmed offsets and scale.

SPECIFICATIONS ($T_A = +25^{\circ}C$ and $\pm V_S = \pm 5V$, unless otherwise noted)

Model	Conditions	Min	AD834J	Mar	Min	AD834S	Mar	Unito
	Conditions	win	Тур	/viax	IVLIN	Тур	Max	Units
INPUT (X1, X2, Y1, Y2)								
Full-Scale Range	Differential		±1			± 1		V
Clipping Level	Differential	±1.2	±1.4		±1.2	±1.4		V
Input Resistance	Differential	15	25	_	15	25	_	kΩ
Offset Voltage	$X_1, X_2, Y_1, Y_2 = 0$		0.5	5		0.5	5	mV
vs. Temperature	T_{min} to T_{max}		10			10	20	μV/°C
vs. Supplies ¹	$+V_{S} to -V_{S}$		25			25		μν/ν
Bias Current			45			45		μA
Common-Mode Rejection	f≤100kHz		70			70		dB
Distortion ²	f = 10kHz							
	$\mathbf{X} = +10 \mathbf{dBm}, \mathbf{Y} = 1\mathbf{V}$		- 66			- 66		dB
	$\mathbf{X} = 1\mathbf{V}, \mathbf{Y} = +10\mathbf{dBm}$		- 55			- 55		dB
OUTPUTS (W1, W2)								
Zero-Signal Current	Each Output		8.5			8.5		mA
Differential Offset	$\mathbf{X}=0,\mathbf{Y}=0$		±10	± 50 🛔		± 10	±50	μA
vs. Temperature	T _{mun} to T _{max}		1	and the second		1		μA/℃
Full-Scale Output	Differential		±4 ,50	States 19		±4		mA
	X1 = Y1 = +1V		i line	the the				
	X2 = Y2 = 0V		San A	and the				
Full-Scale Accuracy		بوسعير	±0.1	2 41	يەر.	± 0.1	±1	%FS
Peak Output	Differential			187 - 19 A.	1.0.	±16		mA
-	$X = Y = \pm 2V$	1.1.1		45. 34				
Output Compliance	at they were	4:75		9	4.75		9	v
MULTIPLIER PERFORMANCE	S. at. S. Sala	6.13	10 3 28 A 13	74				
Transfer Function	(Figure 3)	*/d	N	VAN		Vour - XV	IV	
Total Frror ³	=1V < V = +1V	1974 - NY 14	*** * 001	The second second		V001-A1	· ·	%FS
	TotoT	The second	anan 🕅	新 仁 13		TRD	2	% FS/%C
vs. Supplies ¹	$\pm \hat{\mathbf{V}}_{-}$ to $-\hat{\mathbf{V}}_{-}$		TRO			TBD		% FS/V
AC Feedthrough ⁴	Sine Input	1997	W. W.			TBD		701°3/ V
$\mathbf{X} = \pm 1\mathbf{V} \cdot \mathbf{V} = 0$	f = 10 kHz	9'A (43)	^j _54			_ 54		dB
X- 11, 1-0	$f = 10 MH_7$, i	- 50			50		dB
X = 0 $Y = +1V$	f = 10kHz		- 50			- 50		dB
$X = 0, 1 = \pm 1 V$	f = 10 MHz		- 50			- 50		dB
Noise Spectral Density	f = 10kHato 1MHa	[- 50 TPD			- 50 TRD		
Widehand Noise	f = 10 Hz to 100 Hz					TBD		Wrme
	1 - 10112 10 100/0112	·						v 11115
POWER SUPPLIES								
Rated Performance			± 5			±5		v
Operating Range		4		9	4		9	V
Quiescent Current ⁵	T _{min} to T _{max}							
$+V_{S}$			10			10		mA
- V _s			29			29		mA
TEMPERATURE RANGE								
Commercial (0°C to +70°C)		.	AD834JR, AD	834JQ				
Military $(-55^{\circ}C \text{ to } + 125^{\circ}C)$						AD834SQ		
PACK AGE OPTIONS ⁶					· · · · · · · · · · · · · · · · · · ·			
Small Outline (R-8)		ļ	AD8341	2				
Cerdin $(\Omega-8)$			AD83410)		AD83450		
	1		11/00400	~		ALCOSTOQ.		1

NOTES

¹Either supply taken separately; sinusoidal input at $f \le 10$ kHz.

²Specified in a 50 Ω system.

³Error is defined as the maximum deviation from the ideal output, and expressed as a percentage of the full-scale output.

 4 Relative to full-scale output (X = 1V or Y = 1V); zero-input port nulled. At 10kHz, feed through is predominantly nonlinear residues.

At frequencies above 10MHz, it is largely determined by inevitable stray capacitances.

⁵Negative supply current is approximately equal to the sum of the positive supply current and the signal currents into each output, W1 and W2. ⁶See Section 16 for package outline information.

Specifications shown in boldface are tested on all production units at final electrical test. Results from these tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units. Specifications subject to change without notice.

Applying the AD834

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $(+V_S \text{ to } -V_S)$.	•							. +16V
Internal Power Dissipation								500mW
Input Voltages (X1, X2, Y1, Y2) .								$ \pm V_S$
Operating Temperature Range								
AD834J						0	Ċt	o + 70°C
AD834S				_	5	5°(C to	+125°C
Storage Temperature Range					6	5°(C to	+150°C
Lead Temperature, Soldering 60sec	: .							+ 300°C

NOTE

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CONNECTION DIAGRAM

8-Pin Cerdip (Q) Package

Small Outline (R) Package

Figure 1. Low Frequency Multiplier Test Circuit

BASIC OPERATION

Figure 2 is a functional equivalent of the AD834. There are three differential signal interfaces: the voltage inputs X = X1 - X2and X = Y1 - Y2, and the current output, W = W1 - W2, which flows in the direction shown when X and Y are positive. The outputs W1 and W2 each have a standing current of typically 8.5mA \pm 15%.

The input voltages are first converted to differential currents which drive the translinear core. The equivalent resistance of the voltage-to-current (V-I) converters is about 285Ω. This low value results in low input-related noise and drift. However, the low full-scale input voltage results in relatively high nonlinearity in the V-I converters. This is significantly reduced by the use of distortion cancellation circuits which operate by Kelvin-sensing the voltages generated in the core-a unique feature of the AD834.

The current-mode output of the core is amplified by a special cascode stage which provides a current gain of nominally 1.6, trimmed during manufacture to set up the full-scale output current of ± 4 mA. This output appears at a pair of open collectors which must be supplied with a voltage slightly above the positive supply on Pin 6. As shown in Figure 3, this can be arranged by inserting a resistor in series with the supply to this pin and taking the load resistors to the full supply. With R3 = 60 Ω , the voltage drop across it is about 600mV. Using two 50 Ω load resistors, the full-scale differential output voltage is ± 400 mV (about + 2dBm for a sinusoidal waveform).

Figure 2. AD834 Functional Block Diagram

The full bandwidth potential of the AD834 can only be realized when very careful attention is paid to grounding and decoupling. The device must be mounted close to a high-quality ground plane and all lead lengths must be extremely short, in keeping with UHF circuit layout practice. In fact, the AD834 shows useful response to well beyond 1GHz, and the actual upper frequency in a typical application will usually be determined by the care with which the layout is effected. Note that R4 (m series with the $-V_S$ supply) carries about 30mA, and thus introduces a voltage drop of about 150mV. It is made large enough to reduce the Q of the resonant circuit formed by the supply lead and the decoupling capacitor. Slightly larger values can be used, particularly when using higher supply voltages: Alternatively, lossy RF chokes or ferrite beads on the supply leads may prove effective.

Figure 3. Basic Connections for Wideband Operation

Figure 3 shows the use of optional termination resistors at the inputs. Note that although the resistive component of the input impedance is quite high (about $25k\Omega$), the input bias current of typically 45μ A can generate quite significant offset voltages if not compensated. For example, with a source and termination resistance of 50Ω (net source of 25Ω) the offset would be $25\Omega \times 45\mu$ A = 1.125mV. This can be almost fully cancelled by including (in this example) another 25Ω resistor in series with the "unused" input (in Figure 3, either X2 or Y2). In order to

minimize crosstalk the input pins closest to the output (X1 and Y2) optionally may be grounded; the effect is merely to reverse the phase of the X input and thus alter the polarity of the output.

TRANSFER FUNCTION – The output current W is the linear product of input voltages X and Y divided by $(1V)^2$ and multiplied by the "scaling current" of 4mA:

$$W = \frac{XY}{(1V)^2} 4mA$$

Provided that it is understood that the inputs are specified in volts, a simplified expression can be used:

$$\mathbf{W} = (\mathbf{X}\mathbf{Y}) \, \mathbf{4}\mathbf{m}\mathbf{A}$$

Alternatively, the full transfer function can be written:

$$\mathbf{W} = \frac{\mathbf{X}\mathbf{Y}}{\mathbf{1}\mathbf{V}} \cdot \frac{1}{250\Omega}$$

When both inputs are driven to their clipping level of about 1.4V, the peak output current is roughly doubled, to ± 8 mA, but distortion levels will then be very high.

TRANSFORMER COUPLING

i.

In many high frequency applications where baseband operation is not required at either inputs or output, transformer coupling can be used. Figure 4 shows the use of a center-tapped output transformer, which provides the necessary dc load condition at the outputs W1 and W2, and is designed to match into the desired to a impedance by appropriate choice of turns ratio.

The specific choice of the transformer design will depend entirely on the application. Transformers may also be used at the inputs. Center-tapped transformers can reduce high-frequency distortion and lower HF feedthrough by driving the inputs with balanced signals.

Figure 4. Transformer – Coupled Output

A particularly effective type of transformer is the balun, which is a short length of transmission line wound on to a toroidial ferrite core. Figure 5 shows this arrangement used to convert the 'bal'anced output to an 'un'-balanced one (hence the use of the term). Although the symbol used is identical to that for a transformer, the mode of operation is quite different. In the first place, the load should now be equal to the characteristic impedance of the line, although this will usually not be critical for short line lengths. The collector load resistors R_C may also be chosen to reverse-terminate the line, but again this will only be necessary when an electrically long line is used. In most cases, R_C will be made as large as the dc conditions allow, to minimize power loss to the load. The line may be a miniature coaxial cable or a twisted pair.

Figure 5. Using a Balun at the Output

It is important to note that the upper bandwidth limit of the balun is determined only by the quality of the transmission line, hence, it will usually exceed that of the multiplier. This is unlike a conventional transformer, where the signal is conveyed as a flux in a magnetic core, and is limited by core tosses and leakage inductance. The lower limit on bandwidth is determined by the series inductance of the line, taken as a whole, and the load resistance (if the blocking capacitors C are sufficiently large). In practice, a balun can provide excellent differential-to-single-sided conversion over much wider bandwidths than a transformer.

WIDEBAND MULTIPLIER CONNECTIONS

Where operation down to dc and a ground-based output are necessary, the configuration shown in Figure 6 can be used.

Figure 6. Wideband dc-Coupled Multiplier with ± 1V Output

The element values were chosen in this example to result in a full-scale output of $\pm 1V$, so the overall multiplier transfer function is

$$W = (X1 - X2)(Y1 - Y2)$$

where it is understood that the inputs and output are in volts. The polarity of the output can be reversed simply by reversing either the X or Y input.

The op amp should be chosen to support the desired output bandwidth. The AD842 and AD5539 may be used in wideband applications – the former providing about 50MHz of usuable bandwidth. Many other choices are possible where lower postmultiplication bandwidths are acceptable. The level-shifting network places the input nodes of the op amp to within a few hundred millivolts of ground using the recommended balanced supplies. The output offset may be nulled, either by use of a 100 Ω trimpot included between each of the lower pair of resistors (4.7k Ω) and the negative supply, or by the use of an adjustment to the op amp trim pins.

The scaling can be altered so that the output is $\pm 10V$ full scale by raising the 125Ω feedback resistors to $1.25k\Omega k$, raising the surply voltages to the op amp to $\pm 15V$, and optionally raising the AD834 load resistors to 100Ω . As always, attention to power surply decoupling is essential for stable wideband operation.

VIDEBAND SQUARING OPERATION

The AD834 can be used as a signal squarer by connecting the X and Y inputs in parallel, as shown in Figure 7, which shows the input arranged to provide a 50Ω termination to the source, using a pair of 100 Ω resistors in a symmetrical layout to reduce the effect of resistor lead inductance. Minimum lead lengths and direct routes to the ground plane are important. The 50Ω resistors included in series with the X1 and Y2 pins reduce offset voltages generated by the input bias currents.

The same output system as used for the wideband multiplier is used here, and similar measures may be taken to alter the scaling factor and deal with output offset. Alternatively, one of the several transformer-coupled arrangements may be used.

Figure 7. Wideband Squarer Connection
POWER MEASUREMENT (MEAN-SQUARE)

The wide bandwidth of the AD834 makes it well suited to measurement of power, either as a multiplier for the determination of the average $V \times I$ product, or as a squarer for use with a single input. In these applications, the AD834 is followed by some sort of low-pass filtering to extract the long-term average value. If the first pole of this filter is formed by the addition of capacitors placed directly at the output Pins W1 and W2, the effective multiplication or squaring bandwidth can be limited solely by the AD834, since the following active circuitry is required to process only low-frequency signals.

Figure 8 shows a general configuration which can be adapted to suit a variety of scaling needs. The load resistors R1 are chosen to result in minimal low-frequency voltage variation at the output nodes W1 and W2, consistent with also achieving low drift in the following subtraction stage formed by the op amp U1 and resistor pairs R2 and R3. The first pole is formed by R1 and C1, the second by R3 and C2. Extreme care must be taken in the layout of the circuit near the input and in the placement of the capacitors C1; these will dominate the high-frequency behavior of the circuit, which, under favorable conditions, will extend to beyond 1GHz. Representative values are R1 = 51 Ω , R2 = 430k Ω , R3 = 1M Ω , C1 = 1 μ F ceramic in parallel with (physically-smaller) 0.01 μ F capacitors, C2 = 0.01 μ F. The op amp may be an AD711; for maximum accuracy at the low end of the dynamic range, use the offset-nulling pins of the op amps.

Figure 8. Connections for Extracting the Mean-Square Output

Log/Antilog Amplifiers Contents

Page

Selection Guide	
Orientation	
AD9521 – 250MHz Wideband Logarithmic Amplifier	
755/759 – 6-Decade, High Accuracy, Wideband Log, Antilog Amplifiers	1
757 – 6-Decade, High Accuracy, Log Ratio Amplifier	5

7-2 LOG/ANTILOG AMPLIFIERS

Model	Log Conformity Input Range	3dB Error % RTI	Bandwidth kHz	Page	Notes
755	10nA - 1mA	0.5	10	7 – 11	
757	10nA – 1mA	0.5	25	7 – 15	
759	20nA – 1mA	1.0	200	7 – 11	
AD9521	0.4V p-p	± ldB	10MHz-250MHz	7 – 7	Wideband amplifier
	-				w/logarithmic detected output

Orientation Log/Antilog Amplifiers

The devices catalogued in this section include complete, selfcontained modules that provide output voltage proportional to the logarithm or the antilogarithm (exponential) of an input quantity. These modules operate on the instantaneous values of inputs from dc to an upper cutoff frequency well below 1MHz.

Also included is the AD9521 monolithic wideband ac logarithmic amplifier with about 12dB of gain, pin compatible with the Plessey SL521 and SL1521. Wideband log amplifiers are cascaded to form "strips" with gains of 90dB and more – depending on input amplitude – over a wide dynamic range, for frequencies typically in the range of 7MHz to 250MHz.

LOGS AND LOG RATIOS

In the *logarithmic* mode, the ideal output equation is

$$E_{o} = -K \log_{10} \left\{ \frac{I_{in}}{I_{ref}} \right\}$$

 E_o can be positive or negative; it is zero when the ratio is unity, i.e., $I_{in} = I_{ref}.$ K is the output scale constant; it is equal to the number of output volts corresponding to a decade* change of the ratio. In the 755 and 759 log amplifiers, K is pin programmable to be either 1V, 2V or 2/3V, or externally adjustable to any value $\geq 2/3V$; in the model 757 log-ratio amplifier, K may be either a preset value of 1V or an arbitrary value adjustable by an external resistance ratio.

 $I_{\rm in}$ is a unipolar input current within a 6-decade range (1nA to 1mA); it may be applied directly, as a current, or derived from an input voltage via an input resistor (in which case, the ratio becomes $E_{\rm in}/(R_{\rm in}I_{\rm ref}) = E_{\rm in}/E_{\rm ref}$. In models 755 and 759, the magnitude of $I_{\rm ref}$ is internally fixed at 10 μ A ($E_{\rm ref}=0.1V$) or externally adjusted; but model 757 is *log-ratio* amplifier, in which both $I_{\rm in}$ and $I_{\rm ref}$ (or $E_{\rm in}$ and $E_{\rm ref}$, using external scaling resistors) are input variables.

Each of the log amplifiers is available as a "P" or "N" option, depending on the polarity of the input voltage. Logarithms may be computed only for positive arguments, therefore the reference current must be of appropriate polarity to make the ratio positive. "N" indicates that the input current (or voltage) for the log mode is *positive*; "P" indicates that only *negative* voltage or current may be applied in the log mode. The polarity of K also differs: K is positive for "N" versions and negative for "P" versions. Thus, +10V applied to model 759N, with K = +1V, would produce an output voltage, $E_o = -1V \log (100) = -2V$; on the other hand, -10V applied to model 759P with K = 1V, would produce an output voltage, $E_o = -(-1V) \log (100) = +2V$. The figure shows, in condensed form, the outputs of P and N log amps, with differing K values, for both voltage and current inputs, plotted on a semi-log scale.

Log amplifiers in the log mode are useful for applications requiring *compression* of wide-range analog input data, *linearization* of transducers having exponential outputs and *analog computing*,

*A decade is a 10:1 ratio, two decades is 100:1, etc. For example, if K = 2, and the ratio is 10, the magnitude of the output would be 2V, and its polarity would depend on whether the ratio were greater or less than unity. If the input signal then changed by a factor of 1,000 (3 decades), the output would change by 6V.

ranging from simple translation of natural relationships in log form (e.g., computing absorbence as the log ratio of input currents), to the use of logarithms in facilitating analog computation of terms involving arbitrary exponents and multiterm products and ratios.

Output vs. Input of Model 755N & 755P in Log Connection (Log Input Scales), Showing Voltages, and Polarity Relationships

ANTILOGS

In the antilogarithmic (exponential) mode, the ideal output equation is

$$E_0 = E_{ref} (10)^{-E_{in}/K}$$

 $E_{\rm in}$ can be positive or negative; when it is zero, $E_o=E_{\rm ref}.$ However, E_o is always of single polarity, positive for "N" versions, negative for "P" versions. Thus, for 759P, connected for K=-2V, if $E_{\rm in}=+4V$, and $E_{\rm ref}=-0.1V$, then $E_o=-0.1V\cdot10^{-4/-2}$, or -10V. If $E_{\rm in}=-4V$, then $E_o=-0.1V\cdot10^{-(-4)/-2}=-1mV$. The figure on the next page shows in condensed form, the outputs of P and N log amps, connected for antilogarithmic operation, with different K values.

Antilog amplifiers are useful for applications requiring *expansion* of compressed data, *linearization* of transducers having logarithmic outputs, *analog function fitting* or function generation, to obtain relationships or generate curves having voltage-programmable rates of growth or decay, and in *analog computing*, for such functions as compound multiplication and division of terms having differing exponents.

Antilog Operator Response Curves, Semilog Scale $E_o = E_{REF} 10^{VIN/-K}$

LOG-ANTILOG AMPLIFIER PERFORMANCE

Considerable information regarding log- and antilog-amplifier circuit design, performance, selection and applications is to be found in the *Nonlinear Circuits Handbook*¹. Several salient points will be covered here, and specifications will be defined.

A log/antilog amplifier consists of an operational amplifier and an element with antilogarithmic transconductance (i.e., the voltage into the element produces a current that is an exponential function of the voltage). As the figure shows, for logarithmic operations, the input current is applied at the op-amp summing point, and the feedback circuit causes the amplifier output to produce whatever voltage is required to provide a feedback current that will exactly balance the input current.

In antilog operation, the input voltage is applied directly to the input of the antilog element, producing an exponential input current to the op-amp circuit. The feedback resistance transduces it to an output voltage.

The wide range of log/exponential behavior is made possible by the exponential current-voltage relationship of transistor baseemitter junctions,

$$I = I_{0}(\epsilon^{qV/kT} - 1) \cong I_{0}\epsilon^{qV/kT}$$

and V = $(kT/q) \ln (I/I_o)$

where I is the collector current, I_o is the extrapolated current for V = 0, V is the base-emitter voltage, q/k (11,605 K/V) is the ratio of charge of an electron to Boltzmann's constant and T is junction temperature in kelvins. In log/antilog devices, two matched transistors are connected so as to subtract the junction voltages associated with the input and reference currents, making the ratio independent of I_o 's variation with temperature.

$$\begin{split} \Delta V &= (kT/q) \ln (I_{in}/I_o) - (kT/q) \ln (I_{ref}/I_o) \\ &= (kT/q)(\ln I_{in} - \ln I_{ref}) + (kT/q)(\ln I_o - \ln I_o) \\ &= (kT/q) \ln (I_{in}/I_{ref}) \end{split}$$

¹Nonlinear Circuits Handbook, Analog Devices, Inc., 1974, 1976, 536pp, edited by D. H. Sheingold, \$5.95; send check or complete MasterCard data to P.O. Box 796, Norwood, MA 02062

a) Log/Antilog Amplifier Connected in the Log Mode (K = 1)

b) Log/Antilog Amplifier Connected in the Exponential Mode

The temperature dependence of gain is compensated for by a resistive attenuator that uses a temperature-sensitive resistor for compensation. The attenuator also produces amplification of K to the specified nominal values, e.g., from the basic 59mV/decade, $(kT/q) \ln 10$ at room temperature, to 1V/decade.

Errors are introduced by the offset current of the amplifier (and the offset voltage) for voltage inputs; by inaccuracy of the reference current (or the effective reference voltage, for voltage inputs) in fixed-reference devices; and by inaccuracy of setting K. Additional errors are introduced by drift of these parameters with temperature. At any temperature, if these parameters are nulled out, there remains a final irreducible difference between the actual output and the theoretical output, called log-conformity error, which is manifested as a "nonlinearity" of the input-output plot on semilog coordinates. Best log conformity is realized away from the extremities of the rated signal range. For example, log-conformity error of model 755 is $\pm 1\%$ maximum, referred to the input, over the entire 6-decade range from 1nA to 1mA; but it is only $\pm 0.5\%$ maximum over the 4-decade range from 10nA to 100µA. A plot of log conformity error for model 759 is shown on the following page.

Errors occurring at the input, and log-conformity errors, can only be observed at the output, but it is useful to refer them to the input (RTI). Equal percentage errors at the input, at whatever input level, produce equal incremental errors at the output, for a given value of K. For example, if K = 1, and the RTI logconformity error is +1%, the magnitude of the output error will be

Error = Actual output - ideal output

- = $1V \cdot log (1.01 I/I_{ref}) 1V \cdot log (I/I_{ref})$
- $= 1V \cdot \log 1.01 = 0.0043V = 4.3mV$

Log Conformity Error for Models 759N and 759P

If, in this example, the input range happens to be 5 decades; the corresponding output range will be 5 volts, and the 4.3mVlog-conformity error, as a percentage of total *output* range, will be less than 0.1%. Because this ambiguity can prove confusing to the user, it is important that a manufacturer specify whether the error is referred to the input or the output. The table below indicates the conversion between RTI percentage and output error-magnitudes, for various percent errors, and various values of K.

LOG OUTPUT ERROR (mV)

K = 1V	K = 2V	K = (2/3)V
0.43	0.86	0.28
2.2	4.3	1.4
4.3	8.6	2.9
8.6	17	5.7
13	26	8.6
17	34	11
21	42	14
41	83	28
	K = 1V 0.43 2.2 4.3 8.6 13 17 21 41	$\begin{array}{cccc} K = 1V & K = 2V \\ 0.43 & 0.86 \\ 2.2 & 4.3 \\ 4.3 & 8.6 \\ 8.6 & 17 \\ 13 & 26 \\ 17 & 34 \\ 21 & 42 \\ 41 & 83 \end{array}$

For antilog operations, input and output errors are interchanged.

To arrive at the total error, an error budget should be made up, taking into account each of the error sources, and its contribution to the total error, over the temperature range of interest.

Dynamic response of log amps is a function of the input level. Small-signal bandwidths of ac input signals biased at currents above 1 μ A tend to be roughly comparable. However, below 1 μ A, bandwidth tends to be in rough proportion to current level. Similarly, rise time depends on step magnitude and direction – step changes in the direction of increasing current are responded to more quickly than step decreases of current.

DEFINITIONS OF SPECIFICATIONS

Log-Conformity Error: When the parameters have been adjusted to compensate for offset, scale-factor and reference errors, the *log-conformity error* is the deviation of the resulting function from a straight line on a semilog plot over the range of interest.

Offset Current (I_{os}) is the bias current of the amplifier, plus any stray leakage currents. This parameter can be a significant source of error when processing signals in the nanoampere region. Its contribution in antilog operation is negligible.

Offset Voltage (E_{os}) depends on the operational amplifier used for the log operation. Its effect is that of a small voltage in series with the input resistor. For current-logging operations, with high-impedance sources, its error contribution is negligible. However, for voltage logging, it modifies the value of V_{in}. Though it can be adjusted to zero at room temperature, its drift over the temperature range should be considered. In antilog operation, E_{os} appears at the output as an essentially constant voltage; its percentage effect on error is greatest for small outputs.

Reference Current (I_{ref}) is the effective internally-generated currentsource output to which all values of input current are compared. I_{ref} tolerance appears as a dc offset at the output; it can be adjusted towards zero by adjusting the reference current, adding a voltage to the output by injecting a current into the scale-factor attenuator or simply by adding a constant bias at the output's destination.

Reference Voltage (E_{ref}) is the effective internally generated voltage to which all input voltages are compared. It is related to I_{ref} by the equation: $E_{ref} = I_{ref}R_{in}$, where R_{in} is the value of input resistance. Typically, I_{ref} is less stable than R_{in} ; therefore, practically all the tolerance is due to I_{ref} .

Scale Factor (K) is the voltage change at the output for a decade (i.e., 10:1) change at the input, when connected in the log mode. Error in scale factor is equivalent to a change in gain, or slope (on a semilog plot), and is specified in percent of the nominal value.

WIDEBAND (AC) LOGARITHMIC AMPLIFIERS

Amplifiers in the class of the AD9521 are essentially *limiting* amplifiers, providing high gain for small signals and low gain for large signals. They accept high-frequency ac signals (7MHz to 250MHz) and provide two amplified outputs: a radio-frequency output (voltage) and a nonlinearly detected output (current). The amplification characteristic (current output vs. rf input) on a semilog scale is S-shaped, starting with zero slope, increasing to a linear slope, then soft-saturating (with a slight overshoot).

They are used in *strips*, or cascades, of n (for example, 6 to 9) stages, with the rf output of one unit becoming the input of the next, thus multiplying their gains. The nonlinearly detected (or *video*) outputs are connected together for current summation.

The resulting output-vs.-input characteristic (semilog scale) is S-shaped, with a lengthy log-linear region whose extent depends on the number of stages (about 12dB per device). Once an amplifier saturates, its contribution to the summation is fixed; thus, the maximum output for large signals is n times the output of one device. The maximum dynamic range has been realized when the number of stages, n, is such that the input-stage noise alone produces full output from the last stage.

250MHz Wideband Logarithmic Amplifier

AD9521

250MHz Bandwidth Monolithic Construction Low Noise Figure 4.7dB Excellent Detected Output Matching Direct Replacement for SL521/SL1521

APPLICATIONS Missile Guidance Electronic Warfare (ECM, ECCM, ESM) Miniaturized LOG Strips Nuclear Instrumentation

GENERAL DESCRIPTION

The AD9521 is a wideband amplifier stage with a logarithmic detected output. The high-performance bipolar process used to construct the AD9521 allows operation from 10MHz to 250MHz with minimal gain variation. The AD9521 is pin compatible with the SL521 and the SL1521.

The AD9521 is constructed in a well controlled monolithic process which provides very good gain tolerance $(\pm 1.5dB)$ over the full performance range. An added benefit of the high gain tolerance is a high degree of detected output current matching from device to device. The matching combined with the low 4dB noise figure allows the construction of 80dB to 90dB dynamic range LOG strips with better than $\pm 1dB$ linearity.

The AD9521 is offered in two gain tolerance grades as both a commercial temperature range device, 0 to $+70^{\circ}$ C, and as an extended temperature range device, -55° C to $+125^{\circ}$ C. All grades are available packaged in 8-pin TO-99 metal cans with the military grades also available packaged in ceramic LCC.

Device	Detected Output Matching	Temperature Range	Description	Package Options*
AD9521JH	0.2mA	0 to + 70°C	8-Pin Can, Industrial	H-08A
AD9521KH	0.1mA	0 to + 70°C	8-Pin Can, Industrial	H-08A
AD9521SE	0.2mA	- 55°C to + 125°C	20-Pin LCC, Extended Temperature	E-20A
AD9521SH	0.2mA	- 55℃ to + 125℃	8-Pin Can, Extended Temperature	H-08A
AD9521TE	0.1mA	- 55°C to + 125°C	20-Pin LCC, Extended Temperature	E-20A
AD9521TH	0.1mA	- 55°C to + 125°C	8-Pin Can, Extended Temperature	H-08A

ORDERING INFORMATION

³See Section 16 for package outline information.

7

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $(+V_S)$	+9V
Differential Voltage Between Grounds	0.5V
Maximum Input Before Overload	1.9V rms
Instantanious Voltage at the Detected	
Video Output	12V
RF Output Current	. 10mA
Power Dissipation	500mW

Operating Temperature Range ²										
AD9521JH/KH							. (0 to) +7	⁄0℃
AD9521SE/SH/TE/TH					_	55	°C	to	+12	25℃
Storage Temperature Range						55	°C	to	+15	60°С
Junction Temperature	•	•			•	• •	•		+ 17	′5℃
Lead Soldering Temperature (10sec)		•	•	•	•	• •	•	•	+ 30	ю°С

ELECTRICAL CHARACTERISTICS (Supply Votages = + 6V; INPUT connected to BIAS pin; $R_s = 50\Omega$; $C_L \le 8pF$, unless otherwise stated)

	Mil ³		Industrial Temp. Range												
	Sub		AD95211H AD9521KH				н	AD9	521SE/	SH 1	AD95				
Parameter	Group	Temp	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
ACPERFORMANCE															
Voltage Gain (f _{IN} = 30MHz)	7	+ 25°C	11.5	12.2	12.5	11.5	12.2	12.5	11.5	12.2	12.5	11.5	12.2	12.5	dB
	8	Full	11.0		13.0	11.0		13.0	11.0		13.0	11.0		13.0	dB
Voltage Gain (f _{IN} = 60MHz)	7	+ 25°C	12.0	12.8	13.0	12.0	12.8	13.0	12.0	12.8	13.0	12.0	12.8	13.0	dB
	8	Full	11.7		13.7	11.7		13.7	11.7		13.7	11.7		13.7	dB
Voltage Gain ($f_{IN} = 120MHz$)	7	+25℃	12.2	13.0	13.8	12.2	13.0	13.8	12.2	13.0	13.8	12.2	13.0	13.8	dB
	8	Full	11.5		14.5	11.5		14.5	11.5		14.5	11.5		14.5	dB
Voltage Gain ($f_{IN} = 160MHz$)	7	+25℃	12.7	13.4	14.2	12.7	13.4	14.2	12.7	13.4	14.2	12.7	13.4	14.2	dB
	8	Full	11.5		14.5	11.5		14.5	11.5		14.5	11.5		14.5	dB
Input Capacitance		+ 25°C		6			6			6			6		pF
Noise Figure ⁴	12	+ 25°C		4.7	4.9		4.7	4.9		4.7	4.9		4.7	4.9	dB
Gain Variation vs. Temperature ⁵		Full		0.67			0.67			0.67			0.67		dB
Gain Variation vs. Supply ⁶	7,8			0.74	1.15		0.74	1.15		0.74	1.15		0.74	1.15	dB/V
Frequency Response														· ·	
Upper Cutoff Frequency	7	+ 25°C	230	245		230	245		230	245		230	245		MHz
	8	Full	200			200			200			200			MHz
Lower Cutoff Frequency	7,8	Full		7	10		7	10		7	10		7	10	MHz
DETECTED VIDEO OUTPUT															
Output Current @ 60MHz (Max) ⁷	7	+ 25°	0.90	1.02	1.10	0.95	1.02	1.05	0.90	1.02	1.10	0.95	1.02	1.05	mA
	8	Full	0.80		1.20	0.85		1.15	0.80		1.20	0.85		1.15	mA
(80% Input Level) ⁸	7	+25°C	0.70	0.82	0.90	0.75	0.82	0.85	0.70	0.82	0.90	0.75	0.82	0.85	mA
(No Input) ⁹	7	+25°C		0.02	0.04		0.02	0.04		0.02	0.04		0.02	0.04	mA
Output Current @ 120MHz (Max) ⁷	7	+25°C	0.68	0.79	0.90	0.73	0.79	0.85	0.68	0.79	0.90	0.73	0.79	0.85	mA
	8	Full	0.57		0.91	0.68		0.90	0.57		0.91	0.68		0.90	mA
(80% Input Level) ⁸	7	+25℃	0.66	0.76	0.86	0.71	0.76	0.81	0.66	0.76	0.86	0.71	0.76	0.81	mA
(No Input) ⁹	7	+25°C		0.02	0.04		0.02	0.04		0.02	0.04		0.02	0.04	mA
Detected Output Variation vs. Supply ⁶	7	+25°C		28	30		28	30		28	30		28	30	%/V
Detected Output vs. Temperature ⁵		Full		9			9			9			9		%
RFOUTPUT ^{5,7}															
Maximum RF Output Voltage		+25°C		1.6			1.6			1.6			1.6		Vp-p
RF Output Propagation Delay		+ 25℃		1.4			1.4			1.4			1.4		ns
POWER SUPPLY ¹⁰									[
Supply Current (+6.0V)	1	+25℃		14.0	16.0		14.0	16.0		14.0	16.0		14.0	16.0	mA
	2,3	Full			16.5			16.5		`	16.5			16.5	mA
Nominal Power Dissipation		+ 25°C		84			84			84			84		mW

NOTES

¹Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Typical thermal impedance . . .

AD9521 Metal Can. $\theta_{JA} = 185^{\circ}C/W; \theta_{JC} = 50^{\circ}C/W$ AD9521 LCC $\theta_{JA} = 80^{\circ}C/W; \theta_{JC} = 50^{\circ}C/W.$ ³Military subgroups apply to military qualified devices only.

 ${}^{4}R_{S} = 450\Omega; 60MHz.$ $^{5}A_{IN} = 60MHz.$

⁶Measured at \pm 5% of +V_s; A_{IN} = 60MHz.

 7 Input = 0.5V rms. 8 Input = 0.09V rms.

⁹Input = 0.0V rms.

¹⁰Supply voltage should remain stable within $\pm 5\%$ for normal operation.

Specifications subject to change without notice.

EXPLANATION OF GROUP A MILITARY SUBGROUPS											
Subgroup 1 - Static tests at +25°C.	Subgroup	5 - Dynamic tests at max rated operating temp	Subgroup 9 - Switching tests at +25°C								
Subgroup 2 - Static tests at max rated operating temp	Subgroup	6 - Dynamic tests at min rated operating temp	Subgroup 10 - Switching tests at max rated operating temp.								
Subgroup 3 - Static tests at min rated operating temp.	Subgroup	7 – Functional tests at +25°C.	Subgroup 11 - Switching tests at min rated operating temp.								
Subgroup 4 – Dynamic tests at +25°C.	Subgroup	8 - Functional tests at max and min rated	Subgroup 12 - Periodically sample tested.								
		operating temp									

FUNCTIONAL DESCRIPTION									
PIN NAME	DESCRIPTION								
CASE	- Case connection for the TO-99 metal can package only.								
$+V_{S}$	- Positive supply terminal, nominally +6.0V.								
RF OUTPUT	- The RF OUTPUT is used to drive subsequent LOG detection stages. The RF OUTPUT								
	level is roughly $+ 12dB$ above the IF signal strength at the input.								
DETECTED OUTPUT	 The DETECTED OUTPUT provides a dc current logarithmicly proportional to the IF signal level at the input. 								
INPUT GROUND	 Isolated input ground connection. The input and output grounds should be connected together near the AD9521. 								
INPUT	- IF signal input.								
BIAS	- The BIAS connection is tied to the INPUT pin to provide an adequate biasing level between ac coupled stages. The bias connection should be omitted between direct dc coupled stages.								
OUTPUT GROUND	 Isolated output ground connection. The input and output grounds should be connected together near the AD9521. 								

SCHEMATIC

DIE LAYOUT AND MECHANICAL INFORMATION

Die Dimensio	on	IS								•					8	6)	×	97	×	15	(:	±2	2) r	nils
Pad Dimensio	or	IS																			4	×	4 r	nils
Metalization	•			•																	Al	un	nin	um
Backing	•			•																	•		N	one
Substrate Pot	e	ati	ial					•								•		•			•		-	·Vs
Passivation					•																0	kyı	nitı	ride
Die Attach																			(Go	ld	E١	ute	ctic
Bond Wire	•			•		1.:	25	n	nil	A	۱l	ın	niı	nu	m	;	U	ltr	as	on	ic	Bo	ond	ling
									(or	1	m	il	G	olo	1;	(of	d	Ba	all	Bo	ond	ling

TYPICAL LOG STRIP CONFIGURATION

APPLICATIONS INFORMATION

The AD9521 is primarily designed for use in successive detection LOG strips. The application circuit above, illustrates the typical configuration for one such design with roughly 90dB of dynamic range. In operation the IF input signal level is successively amplified by each stage in the upper chain. The IF signal at each stage generates a detected output current. The detected output current from each stage is summed in the common base follower stage at the end of the strip.

The key to the circuit is the limiting quality of the AD9521 logarithmic detected output. As the IF signal at each stage drives the detected output into saturation, the output current ceases to increase. In operation, the combined gain of all of the previous stages drives the last stage into saturation first. Any further increase in signal level will not increase the detected output level of the last stage, but all of the previous stages will enter saturation one-by-one as the signal level increases.

The limiting factor to the number of stages that can be combined is the input noise level. When the gain of the entire strip is sufficient to drive the last stage into saturation on the input noise of the first stage alone, further extensions of the strip will not increase the dynamic input range.

There are, however, two methods of increasing the dynamic range of the LOG strip which include bandwidth reduction and parallel strip configurations. The dynamic range can be extended by 20dB or more by incorporating a parallel log strip with an attenuated input. The main strip functions as before, but the second strip, because of the attenuation, only contributes to the output for signals in excess of the main strip saturation level. The ultimate limitation is the maximum input signal level which the main strip will tolerate. Any further signal level increases could damage the input stage of the AD9521. This should not be a major problem since with this technique the dynamic range of the total strip can be as high as 100dB.

The dynamic range can also be increased by reducing the bandwidth of the strip itself. The noise voltage is directly proportional to the square root of the circuit bandwidth. This means that large operating bandwidths produce large amounts of noise which translates into limited dynamic range. The AD9521 is a particularly low-noise device, but even it can benefit from bandwidth reduction which has been incorporated into the circuit above. The two interstage filters limit the noise to a smaller region of frequencies and thereby allow the strip to be extended further.

Because of the high-frequency nature of the AD9521, several guidelines should be followed to insure optimum performance. The first is the use of an adequate low impedance ground plane. Just as important is the use of power supply decoupling capacitors to prevent signal feedthrough on the supply lines. Chip capacitors are highly recommended because of their reduced lead inductance. Sockets are not likely to produce the best results because of the interlead capacitance, but if they must be used, pin sockets are preferred.

6-Decade, High Accuracy, Wideband Log, Antilog Amplifiers

Models 755N/755P/759N/759P

FEATURES

High Accuracy: Models 755N, 755P Wideband: Models 759N, 759P Complete Log/Antilog Amplifiers: External Components Not Required Temperature-Compensated Internal Reference 6 Decades Current Operation: 1nA to 1mA 1% max Error: 1nA to 1mA (755) 20nA to 200 μ A (759) 4 Decades Voltage Operation: 1mV to 10V 1% max Error: 1mV to 10V (755) 1mV to 2V (759) Small Size: 1.1" × 1.1" × 0.4"

MODELS 755/759 FUNCTIONAL BLOCK DIAGRAM

*POSITIVE INPUT SIGNALS, AS SHOWN; USE MODEL 759N, 755N. NEGATIVE INPUT SIGNALS, USE MODEL 759N, 755P.

GENERAL DESCRIPTION

The models 755N, 755P and 759N, 759P are low cost dc logarithmic amplifiers offering conformance to ideal log operation over 6 decades of current (1nA to 1mA) and 4 decades of voltage (1mV to 10V). For high accuracy requirements, models 755N, 755P offer maximum nonconformity of 0.5%, from 10nA to 1mA, and 1mV to 1V. For wideband applications, the models 759N, 759P provide fast response (300kHz @ I_{SIG} = 10 μ A to 1mA) and feature maximum nonconformity of 1% from 20nA to 200 μ A, and 1mV to 2V. The models 755N and 759N compute the log of positive (+) input signals, while the models 755P, 759P compute the log of negative (-) signals.

Designed for ease of use, the models 755N/P and 759N/P are complete, temperature compensated log/antilog amplifiers packaged in a compact epoxy-encapsulated module. External components are not required for logging currents over the complete 6 decade range of 1 μ A to 1mA. Both the scale factor (K=2, 1, or 2/3 volt/decade) and log/antilog operation are selected by simple pin connection. In addition, both the internal 10 μ A reference current as well as the offset voltage may be externally adjusted to improve overall accuracy.

The models 755 and 759 are ideally suited as an alternative to in-house designs of OEM applications. Advanced design techniques and superior performance place the 755 and 759 ahead of competitive designs in terms of price, performance and package design.

APPLICATIONS

When connected in the current or voltage logging configuration, as shown in Figure 1, the models 755 and 759 may be used in several key applications. A plot of input current versus output voltage is also presented to illustrate the log amplifier's transfer characteristics.

+ INPUT CURRENT (AMPS), LOG SCALE

Figure 1. Transfer Function

7

SPECIFICATIONS (typical @ +25°C and ±15V dc unless otherwise noted)

MODEL		755N/P		759N/P	759N/P				
TRANSFER FUNCTION	s		1						
Current Mode		e _O = -Kloj	B10 IREF	•					
Voltage Mode		c _O = -Klop	B10 ESIG EREF	•	•				
Antilog Mode		e _O = E _{REF}	$\frac{10}{K} \left(\frac{E_{SIG}}{K} \right)$	•	•				
TRANSFER FUNCTION	PARAMETERS								
Scale Factor (K) Select	tions ¹ , ²	2, 1, 2/3	/olt/Decade	:					
vs Temperature (0	to +70°C)	±0.04%/°	Cmax	•					
Reference Voltage (ER	$(EF)^2$	0 1V		•					
Error @ +25°C		±3% max		±4% max	-				
vs Temperature (0 Reference Current (1	to +70°C)	±0 1%/ C	max	±0.05%/*	С				
Error @ +25°C	EF /	±3% max		•					
vs Temperature (0	to +70°C)	±0 1%/°C	max	±0.05%/°	с				
MAXIMUM LOG CONFO	RMITY ERROR E _{SIG} RANGE	RTI	RTO (K=1)	RTI	RTO (K=1)				
1nA to 10nA	_	±1%	±4 3mV	±5%	±21mV				
10nA to 20nA	-	±0.5%	±2.17mV	±2%	±8.64mV				
20nA to 100µA	1mV to 1V	±0.5%	±2 17mV	±1%	±4.3mV				
200µA to 200µA	2V to 10V	±1%	±4 3mV	±1% ±2%	±4.5mv ±8.64mV				
Current Signal Range	b								
Model 755N, 759N		+1nA to +	1mA min	•					
Model 755P, 759P		-1nA to -1	lmA mın	•					
Max Safe Input Curren Bias Current @ +25°C	t	± 10 mA ma	ax A max	• (0 +) 20	On A max				
vs Temperature (0 t	o +70°C)	x2/+10°C	AT III AA	*	opremax				
Voltage Signal Range (Log Mode)								
Model 755N, 759N Model 755P, 759P		+1mV to +	10V min	:					
Voltage Signal Range, A	Antilog Mode	-2≤ ESIG	-≤2	•	•				
Offset Voltage @ +25"	C (Admetable to 0)	400uV n		+2mV m	a v				
vs Temperature (0	to +70°C)	±15µV/°C	max	±10µV/	C				
vs Supply Voltage		±15µV/%		•					
FREQUENCY RESPONS	E, Sinewave								
Isic = 1nA	u, -Jub	80Hz		250Hz					
$I_{SIG} = 1\mu A$	×	10kHz		100kHz	100kHz				
$I_{SIG} = 10\mu A$		40kHz		200kHz	200kHz				
I _{SIG} = 1mA		TUUKHZ		200KH2					
RISE TIME									
10nA to 100nA	inc .	100µs		20µs					
100nA to 1µA		7μs		3µs					
1µA to 1mA		4μs		2 5µs					
1mA to 1µA	ent	7.05		3//6					
1µA to 100nA		30µs		10µs					
100nA to 10nA		400µs		80µs					
INPUT NOISE									
voitage, 10Hz to 10kF Current, 10Hz to 10kF	12	2µV rms 2nA rms		10µV rm 10pA rm	5				
OUTPUT SPECIFICATIO		3-1-1-110			-				
Rated Output	0115								
Voltage		±10V min		•					
Current		+5		•	•				
Antilog Mode		±4mA		•					
Resistance		0 5Ω		•					
POWER SUPPLY ⁴									
Rated Performance		±15Vdc	9)17da	•					
Operating Current, Quiescent		±7mA	0/1 40	±4mA					
TEMPERATURE RANG	E								
Rated Performance		0 to +70°	C	:					
Operating		-25°C to	+85°C +125°C						
CASE SIZE ⁵ (W v I v U)		15" x 1 6	"×04"	1 125" ~	1 125" x 1 125" - 0 4"				
GIGE SIZE (WXLXH)		<u>(38 x 38)</u>	x 10.4)	<u>(29 x 29</u>	(29 x 29 x 10 4)				
NOVERO									

NUTES '1'se terminal 1 for K = 1V/decade, terminal 2 for K = 2V/decade, terminals 1 or 2 (shorted together) for K = 2/3V/decade "Specification is + for models 7589, 759N, - for 755P, 759P. *No damage due to any pin being shorted to ground *Recommended power supply, model 904, ±15V @ ±50mA output. Case suce in inches (mm)

Specifications subject to change without notice.

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

*Optional 100k Ω external trim pot. Input offset voltage may be adjusted to zero with trim pot connected as shown. With trim terminal 9 left open, input offset voltage will be ±0.4mV (755) or ±2mV (759) maximum.

MATING SOCKET AC1016

Plot of Output Voltage vs Input Current for Model 755 Connected in the Log Mode

Plot of Output Voltage vs Input Voltage for Models 755, 759 Connected in the Log Mode

Figure 2. Transfer Curves

Understanding the Log Amplifier Performance

PRINCIPLE OF OPERATION

Log operation is obtained by placing the antilog element in the feedback loop of the op amp as shown in Figure 1. At the summing junction, terminal 5, the input signal current to be processed is summed with the output current of the antilog element. To attain a balance of these two currents, the op amp provides the required output voltage to the antilog feedback element. Under these conditions the ideal transfer equation (K = 1) is:

$$e_{OUT} = 1V \log_{10} I_{SIG} / I_{REF}$$

The log is a mathematical operator which is defined only for numbers, which are dimensionless quantities. Since an input current would have the dimensions of amperes it must be referenced to another current, I_{REF} , the ratio being dimensionless. For this purpose a temperature compensated reference of $10\mu A$ is generated internally.

The scale factor, K, is a multiplying constant. For a change in input current of one decade (decade = ratio of 10:1), the output changes by K volts. K may be selected as 1V or 2V by connecting the output to pin 1 or 2, respectively. If the output is connected to both pins 1 and 2, K will be 2/3V.

REFERRING ERRORS TO INPUT

A unique property of log amplifiers is that a dc error of any given amount at the output corresponds to a constant percent of the input, regardless of input level. To illustrate this, consider the output effects due to changing the input by 1%.

The output would be:

$$e_{OUT} = 1V \log_{10} (I_{SIG}/I_{REF})(1.01) \text{ which is equivalent to}$$
$$e_{OUT} = 1V \log_{10} (I_{SIG}/I_{REF}) \pm 1V \log_{10} (1.01)$$

The change in output, due to a 1% input change is a constant value of ± 4.3 mV. Conversely, a dc error at the output of ± 4.3 mV is equivalent to a change at the input of 1%. An abbreviated table is presented below for converting between errors referred to output (R.T.O.), and errors referred to input (R.T.I.).

	ERROR R.T.O.										
ERROR R.T.I.	K = 1	K = 2	K = 2/3								
0.1%	0.43mV	0.86mV	0.28mV								
0.5	2.17	4.34	1.45								
1.0	4.32	8.64	2.88								
3.0	12.84	25.68	8.56								
4.0	17.03	34.06	11.35								
5.0	21.19	42.38	14.13								
10.0	41.39	82.78	27.59								

Table I.	Converting Output Error in mV to Input E	Error
in %		

SOURCES OF ERROR

Log Conformity Error – Log conformity in logarithmic devices is a specification similar to linearity in linear devices. Log conformity error is the difference between the value of the transfer equation and the actual value which occurs at the output of the log module, after scale factor, reference and offset errors are eliminated to taken into account. The best linearity performance for the models 755, 759 are obtained in the 5 decades from 10nA to 1mA. To obtain optimum performance, the input data should be scaled to this range.

Offset Voltage – The offset voltage, E_{os} , of models 755, 759 is the offset voltage of the internal FET amplifier. This voltage appears as a small dc offset voltage in series with the input terminals. For current logging applications, its error contribution is negligible. However, for log voltage applications, best performance is obtained by an offset trim adjustment.

Bias Current – The bias current of models 755, 759 is the bias current of the internal FET amplifier. This parameter can be a significant source of error when processing signals in the nano-amp region. For this reason, the bias current for model 755 is 10pA, maximum, and 200pA maximum for model 759.

Reference Current – I_{REF} is the internally generated current source to which all input currents are compared. I_{REF} tolerance errors appear as a dc offset at the output. The specified value of I_{REF} is ±3% referred to the input, and, from Table I, corresponds to a dc offset of ±12.84mV for K = 1. This offset is independent of input signal and may be removed by injecting a current into terminal 1 or 2.

Reference Voltage $-E_{REF}$ is the effective internally generated voltage to which all input voltages are compared. It is related to I_{REF} through the equation:

 $E_{REF} = I_{REF} \times R_{IN}$, where R_{IN} is an internal $10k\Omega$, precision resistor. Virtually all tolerance in E_{REF} is due to I_{REF} . Consequently, variations in I_{REF} cause a shift in E_{REF} .

Scale Factor – Scale factor is the voltage change at the output for a decade (i.e., 10:1) change at the input, when connected in the log mode. Error in scale factor is equivalent to a change in gain, or slope, and is specified in per cent of the nominal value. An external adjustment may be performed if fine trimming is desired for improved accuracy.

7

Trimming E_{OS} – The amplifier's offset voltage, E_{OS}, may be trimmed for improved accuracy with the models 755, 759 connected in its log circuit. To accomplish this, a 100k Ω , 10 turn pot is connected as shown in Figure 3. The input terminal, Pin 4, is connected to ground. Under these conditions the output voltage is:

$$e_{OUT} = -K \log_{10} E_{OS}/E_{REF}$$

To obtain an offset voltage of 100μ V or less, for K = 1, the trim pot should be adjusted until the output voltage is between +3 and +4 volts for models 755N, 759N, and -3V to -4V for models 755P, 759P.

For other values of K, the trim pot should be adjusted for an output of $e_{OUT} = 3 \times K$ to $4 \times K$ where K is the scale factor.

Figure 3. Trimming E_{OS} in Log Mode

Reference Current or Reference Voltage – The reference current or voltage of models 755, 759 may be shifted by injecting a constant current into the unused scale factor terminal (Pin 1 or Pin 2). The current injected will shift the reference one decade, in accordance with the expression: $I_I = 66\mu A \log 10\mu A/I_{REF}$ (755), $I_I = 330\mu A \log 10\mu A/I_{REF}$ (759), where $I_I = current to be injected and <math>I_{REF} =$ the desired reference current.

By changing I_{REF} , there is a corresponding change in E_{REF} since, $E_{REF} = I_{REF} \times R_{IN}$. An alternate method for rescaling E_{REF} is to connect an external R_{IN} , at the I_{IN} terminal (Pin 5) to supplant the 10k Ω supplied internally (leaving it unconnected). The expression for E_{REF} is then, $E_{REF} = R_{IN} I_{REF}$. Care must be taken to choose R_{IN} such that $(e_{SIG} \max)/R_{IN} \leq 1mA$.

Scale Factor (K) Adjustment – Scale factor may be increased from its nominal value by inserting a series resistor R_S between the output terminal, Pin 3, and either terminal 1 or 2. The table below should be consulted when making these scale factor changes.

RANGE OF K	CONNECT SERIES R TO PIN	VALUE OF R _S	NOTE	
2/3V to 1.01V	1	R x (K - 2/3)	use pins 1, 2	
1.01V to 2.02V	1	R x (K – 1)	use pin 1	
>2.02V	2	R x (K – 2)	use pin 2	

 $\mathbf{R}=15\mathrm{k}\Omega~(755);\,3\mathrm{k}\Omega~(759)$

Table 2. Resistor Selection Chart for Shifting Scale Factor

ANTILOG OPERATION

The models 755 and 759 may be used to develop the antilog of the input voltage when connected as shown in Figure 4. The antilog transfer function (an exponential), is:

$$e_{OUT} = E_{REF} \ 10^{-e_{IN}/K} \qquad [-2 \le e_{IN}/K \le 2]$$

Figure 4. Functional Block Diagram

Principle of Operation – The antilog element converts the voltage input, appearing at terminal 1, to a current which is proportional to the antilog of the applied voltage. The current-to-voltage conversion is then completed by the feedback resistor in a closed-loop op amp circuit.

A more complete expression for the antilog function is:

$$e_{OUT} = E_{REF} 10^{-1N/K} + E_{OS}$$

The terms K, E_{OS} , and E_{REF} are those described previously in the LOG section.

Offset Voltage (E_{OS}) Adjustment – Although offset voltage of the antilog circuit may be balanced by connecting it in the log mode, and using the technique described previously, it may be more advantageous to use the circuit of Figure 5. In this configuration, offset voltage is equal to $e_{OUT}/100$. Adjust for the desired null, using the 100k trim pot. After adjusting, turn power off, remove the external 100 Ω resistor, and the jumper from Pin 1 to +15V. For 755P, 759P use the same procedure but connect Pin 1 to –15V.

Figure 5. Trimming EOS in Antilog Mode

Reference Voltage (E_{REF}) Adjustment – In antilog operation, the voltage reference appears as a multiplying constant. E_{REF} adjustment may be accomplished by connecting a resistor, R, from Pin 5 to Pin 3, in place of the internal 10k Ω . The value of R is determined by:

 $R = E_{REF}$ desired/10⁻⁵ A

Scale Factor (K) Adjustment – The scale factor may be adjusted for all values of K greater than 2/3V by the techniques described in the log section. If a value of K less than 2/3V is desired for a given application, an external op amp would be required as shown in Figure 6. The ratio of the two resistors is approximately:

 $R1/R_{C} = (1/K - 1)$ where K = desired scale factor

Figure 6. Method for Adjusting K<2/3V

6-Decade, High Accuracy Log Ratio Amplifiers

Models 757N/757P

FEATURES

6 Decade Operation — 1nA to 1mA 1/2% Log Conformity — 10nA to 100μA Symmetrical FET Inputs Voltage or Current Operation Temperature Compensated

APPLICATIONS

Absorbence Measurements Log Ratios of Voltages or Currents Data Compression Transducer Linearization

I*sic 1V/DEC LOG 13.2kΩ A ന I*REF @ OFFSET ADJ. POSITIVE INPUT CURRENTS (AS SHOWN), US MODEL 757N. NEGATIVE INPUT CURRENTS, N), USE CON SCALE FACTOR USE MODEL 757P.

MODEL 757 FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

Model 757 is a complete, temperature compensated, dc-coupled log ratio amplifier. It is comprised of two input channels for processing signals spanning up to 6 decades in dynamic range (1nA to 1mA). By virtue of its symmetrical FET input stages, the 757 can accommodate this 6 decade signal range at either channel. Log conformity is maintained to within 1/2% over 4 decades of input (10nA to 100 μ A) and to within 1% over the full input range. Unlike other log ratio designs, model 757 does not restrict the relative magnitude of the two signal inputs to achieve rated performance. Either input can be operated within the specified range regardless of the signal level at the other channel.

The model 757 log-ratio amplifier design makes available both input amplifier summing junctions. As a result, it can directly interface with photo diodes operating in the short-circuit current mode without the need of additional input circuitry.

The excellent performance of model 757 can be further improved by means of external scale factor and output offset adjustments. A significant feature of model 757 not found on competing devices is that, when the offset adjustment is used to establish a fixed bias at the output, the output offset level does not vary as a function of input signal magnitude. On other designs, the sensitivity of output offset to input levels results in output effects resembling log conformity errors.

Model 757 can operate with either current or voltage inputs. Its excellent performance makes it ideally suited for log ratio applications such as blood analysis, chromatography, chemical analysis of liquids and absorbence measurements.

CURRENT LOG RATIO

Gurrent log ratio is accomplished by model 757 when two currents, I_{SIG} and I_{REF} , are applied directly to the input terminals (see Figure 1). The two log amps process these signals providing voltages which are proportional to the log of their respective inputs. These voltages are then subtracted and applied to an output amplifier. The scale factor, when connected as shown, is 1V/dec. However, higher scale factors may be achieved by connecting external scale factor adjusting resistors.

VOLTAGE LOG RATIO

The principle of operation for voltage log ratio is identical to that of current log ratio after the voltage signal has been converted to a current. To accomplish this conversion, an external resistor is attached from the voltage signal to the appropriate input current terminal of the 757. Input currents are then determined by:

$$l_{SIG} = \frac{e_1 - e_{os_1}}{R_1}$$
, $l_{REF} = \frac{e_2 - e_{os_2}}{R_2}$

e_{os1} = Input Offset Voltage (I_{SIG} Channel)

eos2 = Input Offset Voltage (IREF Channel)

SPECIFICATIONS

mores		757N/P
TRANSFER FUNCTION 1		
Current Mode		$e_0 = -K \log_{10} \frac{I_{SIG}}{T}$
		IRLF
Voltage Mode		$e_{o} = -K \log_{10} \left[\frac{(e_{1} - e_{os_{1}})}{(e_{2} - e_{os_{1}})} \times \frac{R_{2}}{R_{1}} \right]$
ACCUDACY		
Log Conformitu ²		
I_{COL} Inc. = 10nA to 100 μ	`	+0.5% max
I_{SIC} , IREF = 1nA to 1mA	•	±1%. max
Scale Factor (1V/Dec)		(+0, -2%) max
vs Temperature (0 to +70°C)	±0 04%/°C max
INPUT SPECIFICATIONS - Both	Input Channel	·
Current	input channel	5
Signal Range, Rated Perform	ance	
Model 757N		+1nA to +1mA min
Model 757P		-1nA to -1mA min
Max Safe		±10mA max
Bias Current, @ +25°C		(0, +) 10pA max
vs Temperature (0 to +70°C)	x2/+10°C
Offset Voltage, @ +25°C		±1mV max
vs Temperature (0 to +70°C)	
Isic Channel		$\pm 25\mu V/^{\circ}C$ max
IRFE Channel		$\pm 25 \mu V/^{\circ} C max$
vs Supply Voltage		±5µV/%
EREQUENCY RESPONSE Support		·····
Small Signal Response (-3dR)	ive	
Signal Channel		
lare = 1nA		160Hz
$I_{SIG} = 1\mu A$		60kHz
$I_{SIC} = 100\mu A$		75kHz
Reference Channel		
IREE = 1nA		60Hz
$I_{\rm REF} = 1\mu A$		30kHz
$I_{\text{REF}} = 100 \mu \text{A}$		80kHz
DICE THE	6 1 GL	
RISE I IME	Signal Channel	Reference Channel
In success Innext Comments	/1 - 10	
Increasing Input Current	$(I_{REF} = 10\mu A)$	$(I_{SIG} = 10\mu A)$
Increasing Input Current 1nA to 10nA 10nA to 100nA	$(I_{REF} = 10\mu A)$ 2.5ms	$(I_{SIG} = 10\mu A)$ $1.0ms$
Increasing Input Current 1nA to 10nA 10nA to 100nA 100nA to 10A	$(I_{REF} = 10\mu A$ 2.5ms 250 μ s 25 μ s	$(I_{SIG} = 10\mu A)$ $1.0ms$ $40\mu s$ $30\mu s$
Increasing Input Current 1nA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA	(I _{REF} = 10µA 2.5ms 250µs 25µs 10µs	$(1_{SIG} = 10\mu A) \\ 1.0ms \\ 40\mu s \\ 30\mu s \\ 25\mu s$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA Decreasing Input Current	(I _{REF} = 10µA 2.5ms 250µs 25µs 10µs) (1 _{SIG} = 10µA) 1.0ms 40µs 30µs 25µs
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA Decreasing Input Current 1000µA to 1µA	(I _{REF} = 10µA 2.5ms 250µs 25µs 10µs) (1 _{SIG} = 10μA) 1.0ms 40μs 30μs 25μs
Increasing Input Current 1nA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA	$(I_{REF} = 10\mu A$ 2.5ms 250 μ s 25 μ s 10 μ s 5 μ s 10 μ s	(1 _{SIG} = 10µA) 1.0ms 40µs 30µs 25µs 10µs 50µs
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 10μs	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 1μA μA to 100μA Decreasing Input Current 100μA to 1μA μA to 100nA 100nA to 10nA	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs) (1 _{SIG} = 10μA) (1 _{SIG} = 10μA) 10μs 30μs 25μs 10μs 50μs 50μs 10ms
Increasing Input Current 1 nA to 10nA 10nA to 100nA 100nA to 1μA μA to 100μA Decreasing Input Current 100μA to 1μA 1μA to 100nA 100nA to 10nA 10nA to 1nA	(I _{REF} = 10μA 2.5ms 250μs 250μs 10μs 5μs 10μs 50μs 500μs	$(1_{SIG} = 10\mu A)$ $(1_{SIG} = 10\mu A)$ $1.0ms$ $40\mu s$ $30\mu s$ $25\mu s$ $10\mu s$ $50\mu s$ $500\mu s$ $10ms$
Increasing Input Current 1nA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 1µA to 100nA 1µA to 10nA 10nA to 1nA INPUT NOISE Voltare (10Hz to 10KHz)	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs) (1 _{SIG} = 10µA) 1.0ms 40µs 30µs 25µs 10µs 50µs 50µs 10ms
Increasing Input Current 1nA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 10nA to 1nA 10NUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz)	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs) (1 _{SIG} = 10µA) 1.0ms 40µs 30µs 25µs 10µs 50µs 50µs 10ms 3µV rms
Increasing Input Current InA to 10nA 10nA to 10nA 100nA to 1µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz)	(I _{REF} = 10μA 2.5 ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs) (1 _{SIG} = 10µA) 1.0ms 40µs 30µs 25µs 10µs 50µs 500µs 10ms 3µV rms 0 1pA rms
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 10nA 100nA to 10nA 10nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs) (1 _{SIG} = 10μA) 1.0ms 40μs 30μs 25μs 10μs 50μs 50μs 3μV rms 0 1pA rms
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 100nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output	(I _{REF} = 10μA 2.5 ms 250μs 25μs 10μs 5μs 10μs 500μs	(1 _{SIG} = 10μA) 1.0ms 40μs 30μs 25μs 10μs 50μs 10μs 50μs 10ms 3μV rms 0 1pA rms
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 1µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current	(I _{REF} = 10μA 2.5 ms 250μs 25μs 10μs 5μs 10μs 50μs 500μs	(1 _{SIG} = 10μA) 1.0ms 40μs 30μs 25μs 10μs 50μs 50μs 10ms 3μV rms 0 1pA rms ±10V min
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 10nA 100nA to 10nA 10nA to 10nA INPUT NOISE Voltage Current Voltage Current Peretonee	$(I_{REF} = 10\mu A$ 2.5 ms 250 μs 25 μs 10 μs 50 μs 500 μs	1000000000000000000000000000000000000
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA 100nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offere Voltage	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 500μs 500μs	1000000000000000000000000000000000000
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 100nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ² (K = 1V/Decad vs. Temperature (0 to 470°C)	(I _{REF} = 10µA 2.5ms 250µs 25µs 10µs 50µs 500µs	$\frac{1}{100} \frac{1}{100} \frac{1}$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 10nA to 10nA 10nA to 10nA 10NUT NOISE Voltage Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70°C) vs Sunnly	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	1000000000000000000000000000000000000
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70°C) vs Supply	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 5μs 500μs 500μs	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 100nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLy ⁴	(I _{REF} = 10μA 2.5 ms 250μs 25μs 10μs 50μs 500μs	$\frac{1}{16 \text{ (I}_{SIG} = 10 \mu \text{A})} \\ \frac{1}{1.0 \text{ ms}} \\ \frac{40 \mu \text{s}}{40 \mu \text{s}} \\ \frac{30 \mu \text{s}}{30 \mu \text{s}} \\ \frac{25 \mu \text{s}}{25 \mu \text{s}} \\ \frac{10 \mu \text{s}}{50 \mu \text{s}} \\ \frac{50 \mu \text{s}}{10 \text{ms}} \\ \frac{3 \mu \text{V rms}}{10 \text{ms}} \\ \frac{3 \mu \text{V rms}}{10 \text{ms}} \\ \frac{110 \text{V min}}{15 \text{V m} \text{max}} \\ \frac{410 \text{V min}}{10 \text{ max}} \\ \frac{410 \text{W max}}{10 \text{ max}}$
Increasing Input Current InA to 10nA 10nA to 10nA 10nA to 100nA 100A to 10µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 10nA 10nA to 10nA 10nA to 10nA 10nA to 10nA 10NUT NOISE Voltage Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLV ⁴ Rated Performance Onserving	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	$(1) (1) SIG = 10 \mu A) (1) (1) SIG = 10 \mu A) (1) (1) SIG = 10 \mu A) (1) (1) SIG = 10$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 10nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLY ⁴ Rated Performance Operating Current Ourscent	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA 100nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70°C) vs Supply POWER SUPPLY ⁴ Rated Performance Operating Current, Quescent	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	(1) (1) (1) 1.0ms 40μs 30μs 25μs 10μs 50μs 500μs 10ms 10ms 3μV rms 10ms 3μV rms 10ms 10ms 10ms 3μV rms 10ms 10ms 10ms 3μV rms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 110ms 10ms
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 10µA 100nA to 10nA 100nA to 10nA 100nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLY ⁴ Rated Performance Operating Current, Quescent TEMPERATURE RANGE Poted Reformance	(I _{REF} = 10µA 2.5ms 250µs 25µs 10µs 50µs 500µs 500µs	$\frac{1}{15V \text{ dc}} = 10\mu\text{A}$ $\frac{1}{10}\text{ ms}$ $\frac{40\mu\text{s}}{30\mu\text{s}}$ $\frac{30\mu\text{s}}{25\mu\text{s}}$ $\frac{10\mu\text{s}}{50\mu\text{s}}$ $\frac{50\mu\text{s}}{500\mu\text{s}}$ $\frac{3\mu\text{V rms}}{10\text{ms}}$ $\frac{3\mu\text{V rms}}{10\text{ms}}$ $\frac{110V \text{ min}}{15\text{mA} \text{ min}}$ $\frac{10\Omega}{115V \text{ dc}}$ $\frac{115V \text{ dc}}{12 \text{ to 18})V \text{ dc}}$ $\frac{115V \text{ dc}}{18\text{mA}}$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 10nA 100nA to 10nA 100nA to 10nA 10nA to 10nA 10nA to 10nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLV ⁴ Rated Performance Operating Current, Quescent TEMPERATURE RANGE Rated Performance	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	$ \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA INPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70°C) vs Supply POWER SUPPLY ⁴ Rated Performance Operating Current, Quescent TEMPERATURE RANGE Rated Performance Operating Storage	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	1000000000000000000000000000000000000
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100nA 100nA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 1nA 100nA to 10nA 10nA to 10nA 10nA to 10nA 10nA to 10nA 10NUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLV ⁴ Rated Performance Operating Current, Quescent TEMPERATURE RANGE Rated Performance Operating Storage	(I _{REF} = 10μA 2.5 ms 250μs 25μs 10μs 50μs 500μs	$(1) (1) SIG = 10 \mu A)$ $1.0 ms$ $40 \mu s$ $30 \mu s$ $25 \mu s$ $10 \mu s$ $50 \mu s$ $10 ms$ $3 \mu V rms$ $0 1 p A rms$ $\frac{110 V min}{15 m A min}$ 0.1Ω $115 m V max$ $10 ms$ $\frac{115 m V max}{12 0 m V'^{2} C}$ $\frac{15 V dc}{12 to 18 V dc}$ $\frac{15 m V max}{15 V dc}$ $\frac{15 V dc}{12 to 18 V dc}$ $\frac{15 m V max}{15 V dc}$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 100nA to 10nA 10nA to 10nA 10nA to 10nA 10nA to 10nA 10nA to 10NA 10NPUT NOISE Voltage Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70° C) vs Supply POWER SUPPLV ⁴ Rated Performance Operating Current, Quescent TEMPERATURE RANGE Rated Performance Operating Storage MECHANICAL	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	$\frac{1}{1000} (1_{SIG} = 10\mu A)$ $\frac{1}{1.0ms}$ $\frac{40\mu s}{30\mu s}$ $\frac{30\mu s}{25\mu s}$ $\frac{10\mu s}{50\mu s}$ $\frac{50\mu s}{500\mu s}$ $\frac{10ms}{10ms}$ $\frac{3\mu V rms}{10ms}$ $\frac{3\mu V rms}{10ms}$ $\frac{110V mn}{15mA mn}$ $\frac{110V mn}{15mV max}$
Increasing Input Current InA to 10nA 10nA to 100nA 100nA to 100µA 100A to 10µA 1µA to 100µA Decreasing Input Current 100µA to 1µA 1µA to 100nA 100nA to 10nA 100nA to 10nA 10nA to 10nA 10nA to 10nA 10NPUT NOISE Voltage (10Hz to 10kHz) Current (10Hz to 10kHz) OUTPUT SPECIFICATIONS Rated Output Voltage Current Resistance Offset Voltage ³ (K = 1V/Decad vs Temperature (0 to +70°C) vs Supply POWER SUPPLY ⁴ Rated Performance Operating Current, Quiescent TEMPERATURE RANGE Rated Performance Operating Storage MECHANICAL Case Size Warbt	(I _{REF} = 10μA 2.5ms 250μs 25μs 10μs 50μs 500μs	$(1) (1) SIG = 10\mu A)$ $1.0ms$ $40\mu s$ $30\mu s$ $25\mu s$ $10\mu s$ $50\mu s$ $500\mu s$ $10ms$ $3\mu V rms$ $0 1pA rms$ $\frac{1}{10} V min$ $\frac{1}{10} Smax$ $10ms$ $\frac{1}{10} V min$ $\frac{1}{10} Smax$ $\frac{1}{10} V min$ $\frac{1}{10}$

NOTES

¹ For model 757N, K = +1V/Decade and input currents must be positive. For model 757P, K = -1V/Decade and input currents must be negative (Input currents are defined as positive when flowing into the input terminals, 4 and 5 Refer to TRANSFER CURVES)

 2 The log conformity error is referred to input (RTI). 1% error RTI is equivalent to 4 3mV of error at the output for K = 1V/Dec

³Externally adjustable to zero

⁴ Recommended power supply: Analog Devices model 904, ±15V @ 50mA. Specifications subject to change without notice.

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

TRANSFER CURVES

Log mode output voltage vs. input current for $I_{REF} = 10\mu A$.

Figure 2. Scale Factor Adjustment

Figure 3. Output Voltage Offset Adjustments

OPTIONAL ADJUSTMENTS AND TRIMS

Scale Factor – A one volt per decade scale factor is available when pin 1 is tied to 3 and pin 7 is connected to 9. Higher scale factors are possible by using a potentiometer, R_1 , between pins 1 and 3 and a resistor, R_2 , between pins 7 to 9 as shown in Figure 2. The value of the required resistor is $(13.2k\Omega)$ (K-1) where K is the desired scale factor. The approximate potentiometer value is also $(13.2k\Omega)$ (K-1). The scale factor adjustment procedure is as follows:

- 1. Connect the appropriate value of resistor between pins 7 and 9.
- 2. Set $I_{REF} = 1\mu A$, $I_{SIG} = 10\mu A$. Measure e_0 .
- 3. Set $I_{REF} = 1\mu A$, $I_{SIG} = 100\mu A$. Adjust R_1 until the difference in e_0 corresponding to steps 2 and 3 is K volts.
- 4. Repeat steps 2 and 3 until the change in $e_0 = K$ volts.

Output Voltage Offset — Output voltage offset must be adjusted after the desired scale factor is established as indicated above. To adjust the offset, inject equal dc input currents into the reference and signal channels. The value of the input currents should approximate the average input current levels expected to be encountered in normal operation. Adjust the potentiometer shown in Figure 3 until the output voltage is zero.

LOG CONFORMITY

Log conformity in logarithmic devices is a specification similar to linearity in linear devices. Log conformity error is the difference between the theoretical value of the log of a ratio and the actual value that appears at the output of the log-ratio module after scale factor errors have been eliminated. Measurement of this error is made after initially zeroing the module at unityratio and adjusting the desired scale factor.

Figure 4 shows the log conformity performance of model 757 over a 6 decade input range. Log conformity for each channel does not vary noticeably as the current is varied in the other channel.

Applying the Log Ratio Amplifier

Figure 4. Log Conformity Error for Model 757. Curve is for Either Input Channel with Current Held Constant at 10μ A On Other Channel.

FREQUENCY CHARACTERISTICS

Figure 5 shows a plot of small signal response (-3dB) as a function of input signal current. The graph demonstrates the frequency response performance for each input channel over the range of 1nA to 1mA, independent of current on the other channel.

APPLICATIONS

Data Compression – Processing signals with wide dynamic range is a common problem in instrumentation and data transmission. For example, digitizing an analog signal with a range of 10nA to 100 μ A with 1% accuracy requires a 20 bit A/D converter. (Required resolution = 1/100 x 1/10,000 = 1/10⁶ \cong 1/2²⁰).

By using the 757 with I_{REF} adjusted to 10nA and K set for 5/4 V/decade, the input data can be compressed into a 5 volt output range. For a 1% resolution of any signal, the allowable output error is 4.32mV x K. Log conformity contributes 2.17mV x K (0.5%) over this range. The remaining error with K = 5/4 is 2.69mV and should correspond to less than the LSB of the converter. With a 5 volt output range 2.69mV corresponds just over the LSB of an 11-bit converter. Thus the 757 module can compress the data for use with a 12 bit A/D (such as Analog Devices AD574JD) to obtain the desired 1% resolution.

Absorbence Measurements – Critical properties of materials which are of particular interest in the fields of chemistry, medicine, spectrometry and pollution control are characterized by absorbence. The relationship between absorbence, A, and light intensity, I, is: $A = \log I_0/I_T$ where $I_0 =$ intensity of incident light, and $I_T =$ intensity of transmitted light.

Figure 6 shows the 757 log-ratio module used in such a photometer application. Two inputs represent the intensities of light transmitted through space and through a medium that absorbs light. The absorbence of the medium is given by the formula

$$A = \log \frac{I_{SIGNAL}}{I_{REFERENCE}}$$

where I_{SIGNAL} and $I_{REFERENCE}$ are the currents representing the light intensities.

The transducers used in this application are photodiodes, which provide a short-circuit current proportional to the intensity of applied light. The lowest value of absorbence is determined by the value of I_{REF} , since when $I_{SIG} = I_{REF}$, A = 0. The output of the log-ratio module is externally trimmed to 1V/decade and applied to the input of a 3¹/₂-digit DPM through the scaling network R1 and R2.

Model 757 was chosen for this design because it makes available both amplifier summing junctions. When the photodiodes are connected to the summing junctions, they are operated in the short-circuit mode, that is, with zero volts across the diodes. Short-circuit loading is necessary, because accuracy of the photodiodes can be degraded several percent when operated with as little as 100mV across the diode junction.

Figure 6. Model 757N Applied to Absorbence Measurements

INTERCONNECTION GUIDELINES

Model 757 is a complete log ratio amplifier that requires no additional frequency compensation for proper operation.

Input Capacitance – Model 757 is able to operate with 1000pF at both input terminals. Therefore, the 757 can be used in applications requiring long cable lengths between the module and the signal transducers.

Input-to-Output Capacitance – When using a log ratio module the user should take care in system configurations to avoid excessive stray capacitance between input and output terminals. Such precautions include avoiding running input and output signal lines close together. If long cable runs are required where inputs and output are closely bundled together, it is advisable to enclose the inputs and/or output in separate, grounded electrostatic shields. By observing simple rules of good circuit layout, problems with oscillations that may result from excessive input-to-output capacitance can easily be avoided. Model 757 can accommodate up to 33pF of input-to-output capacitance without oscillation.

Leakage Resistance – Since model 757 can operate at extremely low input current levels, precautions must be taken to prevent current leakage into the input terminals. Such leakage can cause errors when small input or reference currents are used. This problem may arise on printed circuit layouts if the inputs are run too close to the power supply busses. Providing an etched guard around the input lines, connected to analog signal ground will also reduce unwanted current leakage.

RMS-to-DC Converters Contents

Page

Selection Guide	;
Orientation	;
AD536A – Integrated Circuit, True rms-to-dc Converter	ì
AD636 - Low Level True rms-to-dc Converter	1
AD637 - High Precision Wideband rms-to-dc Converter	7
AD736 – Low Cost, Low Power, True rms-to-dc Converter 8 – 2	25
AD737 – Low Cost, Low Power, True rms-to-dc Converter 8 – 2	:9

Selection Guide RMS-to-DC Converters

Model	Full-Scale Range V rms	Accuracy mV±% of Reading	Frequency Response MHz	dB Output	Page	Notes
AD536A	7	2.0 ± 0.2	2	X	8 – 5	General purpose
AD636	0.2	0.2 ± 0.5	1.3	х	8 - 11	
AD637	7	0.5 ± 0.2	8	х	8 - 17	Highest accuracy
AD736	0.2	0.3 ± 0.3	0.19		8 - 25	Buffered output, low power
AD737	0.2	0.2 ± 0.3	0.19		8 – 29	Unbuffered output, low power

Orientation RMS-to-DC Converters

RMS-to-DC converters continuously compute the instantaneous square of the input signal, average it, and take the square root of the result, to provide a dc voltage proportional to the rms of the input (and, in the case of the AD536, AD636 and AD736, an auxiliary dc voltage that is proportional to the *log* of the rms, for dB measurements).

Excellent pretrimmed performance, improvable by simple optional trims, makes these devices ideal for all types of laboratory and OEM rms instrumentation where amplitude measurements must be made with high accuracy, independently of waveshape.

An alternative to rms that has been widely used in the past, principally for measurements on sine waves, is mean absolutedeviation, or "ac average." It is performed by taking the absolute value of a signal (i.e., rectifying it) filtering it and scaling it by the ratio of rms to m.a.d. for sine waves, 1.111, so that it reads correctly (for undistorted sine waves). Unfortunately, this ratio varies widely as a function of the waveform; it will give grossly incorrect results in many cases. The table shows a few representative examples comparing rms with m.a.d.

An important application is noise measurement – for example, thermal noise, transistor noise, and switch-contact noise. True rms measurement is a technique that provides consistent theoretically valid measurements of noise amplitude (standard deviation) from different sources having different properties.

True rms devices are also useful for measuring electrical signals derived from mechanical phenomena, such as strain, stress, vibration, shock, expansion, bearing noise and acoustical noise. The electrical signals produced by these mechanical actions are often noisy, nonperiodic, nonsinusoidal, and superimposed on dc levels, and require true rms for consistent, valid, accurate measurements. RMS converters are also useful for accurate measurements on low-repetition-rate pulse-trains having high *crest factors* (ratio of peak to rms), and for measurements of the energy content of SCR waveforms at differing firing angles.

The basic approach used in these converters for computing the rms is to take the absolute value, square it and divide by the fed-back output (using the logarithmic characteristics of transistor junctions), and filter the result. The resulting approximation

$$E_{o} = Avg.\left[\frac{V_{in}^{2}}{E_{o}}^{2}\right] \cong \sqrt{Avg.(V_{in}^{2})}$$

is valid if the averaging time constant is sufficiently long compared with the periods of the lowest frequency ac components of the signal.

The simplest form of averaging involves a single-pole filter using an external filtering capacitor (C_{AV}). Increased values of capacitance for filtering will improve the accuracy for low frequency rms measurements and provide reduced ripple at the output, but at the cost of increased settling time. For fastest settling and minimum ripple, an additional stage of 2-pole filtering is useful. The additional filtering permits improvement of settling time or reduction of ripple (or both) because of substantial reduction of C_{AV} .

	WAVE	FORM	RMS	MAD	MAD FACTO		EST CTOR	
	0	SINE WAVE		$\frac{V_m}{\sqrt{2}}$ 0 707 V _m	$\frac{2}{\pi} V_m$ 0 637 V_m	$\frac{\pi}{2\sqrt{2}} = 1 111$	√2 = 1 414	
	↓↓↓ ↓	SYMN SQUA OR	IETRICAL RE WAVE DC	V _m	Vm	1	1	
	- Vm	TRIANGI OR SAWT	JLAR WAVE TOOTH	$\frac{V_m}{\sqrt{3}}$	Vm 2	$\frac{2}{\sqrt{3}} = 1\ 155$ $\sqrt{3} = 1\ 73$		1 732
CREST		GAUSSI CREST FA THEORET UNLIMITE THE FRAC TIME DUR GREATER BE EXPEC OCCUR	AN NOISE CTOR IS ICALLY D. q IS CTION OF ING WHICH PEAKS CAN TED TO	RMS	$\sqrt{\frac{2}{\pi}}$ RMS = 0 798 RMS	$\sqrt{\frac{\pi}{2}}$ 1 253	C.F 1 2 3 3 3 9 4 4.4 4.9 6	q 32% 4.6% 0.37% 0.1% 0 01% 63ppm 10ppm 1ppm 2x 10 ⁹
	0 	PULSE η 1 0.25 0.0625 0.0156 0.01	TRAIN MARK/SPACE 0 3333 0.0667 0 0159 0.0101	$V_{m} \sqrt{\eta}$ V_{m} $0.5V_{m}$ $0.25V_{m}$ $0.125V_{m}$ $0.1V_{m}$	V _m 7 V _m 0.25V _m 0.0625V _m 0.0156V _m 0.01V _m	$ \begin{array}{c} 1 \\ \sqrt{\eta} \\ 1 \\ 2 \\ 4 \\ 8 \\ 10 \end{array} $	1 1 2 4 10	π η 2 3 3

PERFORMANCE SPECIFICATIONS

Considerable information regarding rms-to-dc converter circuit design, performance, selection and applications is to be found in the *RMS-to-DC Conversion Application Guide*.¹ In addition, useful applications information can be found in the *Nonlinear Circuits Handbook*.²

The most-salient feature of a true rms-to-dc converter is that *it ideally has no error due to an indirect approximation to the rms.* Static errors are due only to scale-factor, linearity and offset errors; dynamic errors are due to insufficient averaging time at the low end and finite bandwidth and slewing rate at the upper end. Linearity errors affect crest factor in midband. Dynamic errors are also a function of signal amplitude, due in part to the variation of bandwidth of the "log" transistors with signal level.

Total Error, Internal Trim, a specification for quick reference, is the maximum deviation of the dc component of the output voltage from the theoretical output value over a specified range of signal amplitude and frequency. It is shown as the sum of a fixed error and a component proportional to the theoretical output (% of reading). It is specified for a sinusoidal input in a given frequency and amplitude range. The fixed error component includes all offset errors and irreducible nonlinearities; the %-ofreading component includes the linear scale-factor error.

Total Error, External Adjustment is the amount by which the output may differ from the theoretical value when the output offset and scale factor have been trimmed. Note that the fixed error-component cannot be reduced to zero, even though the output offset can be nulled at zero input. This is because of residual input offsets and inherent nonlinearities in the converter.

Total Error vs. Temperature $(T_{min} \text{ to } T_{max})$ is the average change of %-of-full-scale error component plus the average change of percent-of-reading error component per degree Celsius, over the rated temperature range.

Frequency for 1%-of-Reading Error is the minimum value of frequency (at the high end) at which the error increases from the midband value by 1% of reading. It is a function of peak-to-peak input amplitude.

Frequency for -3dB Reading Error is the minimum value of frequency (at the high end) at which the error may equal -30% of reading. It is a function of amplitude.

Crest Factor (to a property of the signal) is the ratio of peak signal voltage to the ideal value of rms; the specified value of crest factor is that for which the error is maintained within specified limits at a given rms level for a worst-case – rectangular pulse – input signal.

Averaging Time Constant and External Capacitor: The time constant of the internal averaging filter, and the increase of time constant per μ F of added external capacitance (C_{AV}).

Input: The voltage range over which specified operation is obtained, the maximum voltage for which the unit operates, the maximum safe input voltage, and the effective input resistance.

Output: The maximum output range for rated performance, the minimum current guaranteed available at full-scale output voltage, and the source resistance of the output circuit.

Power Supply: Power-supply range for specified performance, power-supply range for operation and quiescent current drain.

Temperature Range: The range of temperature variation for operation within specifications. Temperature coefficients are determined by three-point measurements ($T_H - 25^{\circ}C$), ($25^{\circ}C - T_L$), when measured.

 ¹RMS-to-DC Conversion Application Guide 2nd Edition, by C. Kitchin and L. Counts (1986-61 pages). Available free from Analog Devices.
 ²Nonlinear Circuits Handbook, Analog Devices, Inc., 1974, 1976, 536pp, edited by D.H. Sheingold. (\$5.95).

Integrated Circuit True rms-to-dc Converter

AD536A

FEATURES

True rms-to-dc Conversion Laser-Trimmed to High Accuracy 0.2% max Error (AD536AK) 0.5% max Error (AD536AJ) Wide Response Capability: Computes rms of ac and dc Signals 450kHz Bandwidth: $V_{rms} > 100mV$ 2MHz Bandwidth: $V_{rms} > 100mV$ 200mV 20

PRODUCT DESCRIPTION

The AD536A is a complete monolithic integrated circuit which performs true rms-to-dc conversion. It offers performance which is comparable or superior to that of hybrid or modular units costing much more. The AD536A directly computes the true rms value of any complex input waveform containing ac and dc components. It has a crest factor compensation scheme which allows measurements with 1% error at crest factors up to 7. The wide bandwidth of the device extends the measurement capability to 300kHz with 3dB error for signal levels above 100mV.

An important feature of the AD536A not previously available in rms converters is an auxiliary dB output. The logarithm of the rms output signal is brought out to a separate pin to allow the dB conversion, with a useful dynamic range of 60dB. Using an externally supplied reference current, the 0dB level can be conveniently set by the user to correspond to any input level from 0.1 to 2 volts rms.

The AD536A is laser trimmed at the wafer level for input and output offset, positive and negative waveform symmetry (dc reversal error), and full scale accuracy at 7V rms. As a result, no external trims are required to achieve the rated accuracy of the unit.

There is full protection for both inputs and outputs. The input circuitry can take overload voltages well beyond the supply levels. Loss of supply voltage with inputs connected will not cause unit failure. The output is short-circuit protected.

The AD536A is available in two accuracy grades (J, K) for commercial temperature range (0 to +70°C) applications, and one grade (S) rated for the -55°C to +125°C extended range. The AD536AK offers a maximum total error of $\pm 2mV \pm 0.2\%$ of reading and the AD536AJ and AD536AS have maximum errors of $\pm 5mV \pm 0.5\%$ of reading. All three versions are available in either a hermetically sealed 14-pin DIP or 10-pin TO-100 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD536A computes the true root-mean-square level of a complex ac (or ac plus dc) input signal and gives an equivalent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value since it relates directly to the power of the signal. The rms value of a statistical signal also relates to its standard deviation.
- 2. The crest factor of a waveform is the ratio of the peak signal swing to the rms value. The crest factor compensation scheme of the AD536A allows measurement of highly complex signals with wide dynamic range.
- 3. The only external component required to perform measurements to the fully specified accuracy is the capacitor which sets the averaging period. The value of this capacitor determines the low frequency ac accuracy, ripple level and settling time.
- 4. The AD536A will operate equally well from split supplies or a single supply with total supply levels from 5 to 36 volts. The one milliampere quiescent supply current makes the device well-suited for a wide variety of remote controllers and battery powered instruments.
- 5. The AD536A directly replaces the AD536, and provides improved bandwidth and temperature drift specifications.

SPECIFICATIONS (@ +25°C, and ±15V dc unless otherwise noted)

Model		AD536AJ			AD536AK	N	M'-	AD536AS		
TRANCERD FUNCTION	- <u>win</u>		Max	Mun		7 Max	Mun	Typ	Max	Units
TRANSFER FUNCTION	V _{OLT} =	= Vavg. (V _{IN})2	V _{OUT} =	= V avg (V _{IN}))*	V _{OUT}	= V avg. (V _{IN}) ⁴		
CONVERSION ACCURACY Total Error, Internal Trun ¹ (Figure 1) vs Temperature, T _{min} to + 70°C + 70°C to + 125°C vs Supply Voltage dc Reversal Error		$\pm 0.1 \pm 0.01$ ± 0.2	±5±0.5 ±01±001		±0.1 ±0 01 ±0 1	±2±0.2 ±0.05±0.005		$\pm 0.1 \pm 0.01$ ± 0.2	$\pm 5 \pm 0.5$ $\pm 0.1 \pm 0.005$ $\pm 0.3 \pm 0.005$	mV ± % of Reading mV ± % of Reading/°C mV ± % of Reading/°C mV ± % of Reading/V ± % of Reading
Total Error, External Trim' (Figure 2)	}	$\pm 3 \pm 0 3$			$\pm 2 \pm 0.1$			$\pm 3 \pm 0.3$		$mV \pm \%$ of Reading
ERROR VS CREST FACTOR ⁴ Crest Factor 1 to 2 Crest Factor = 3 Crest Factor = 7	Specific	ed Accuracy - 0.1 1 0		Specific	ed Accuracy - 0.1 - 1.0		Specifi	ed Accuracy - 0.1 - 1 0		% of Reading % of Reading
$\label{eq:response} \begin{split} FREQUENCY RESPONSE^3 \\ Bandwidth for 1% additional error (0.09dB) \\ V_{IN} = 10mV \\ V_{IN} = 10mV \\ V_{IN} = 10mV \\ V_{IN} = 10mV \\ & \pm 3dB Bandwidth \\ V_{IN} = 10mV \end{split}$		5 45 120 90			5 45 120 90	Ň		5 45 120 90		kHz kHz kHz
$V_{IN} = 100 \text{mV}$ $V_{IN} = 1 \text{V}$		450 2 3			450			450		kHz MHz
AVERAGING TIME CONSTANT (Figure 5)		25			25			25		ms/uFCAV
INPUT CHARACTERISTICS Signal Range, ± 15V Supplies Continuous rms Level Peak Transient Input Continuous rms Level, ± 5V Supplies Peak Transient Input, ± 5V Supplies		0 to 7 0 to 2	± 20 ± 7		0 to 7 0 to 2	± 20 ± 7		0 to 7 0 to 2	± 20 ± 7	V rms V peak V rms V peak
Maximum Continuous Nondestructive Input Level (All Supply Voltages) Input Resistance Input Offset Voltage	13 33	16 67 0 8	± 25 20 ± 2	13 33	16.67 0 5	±25 20 ±1	13.33	16 67 0 8	± 25 20 ± 2	V peak kΩ mV
OUTPUT CHARACTERISTICS Offset Voltage, V _{IN} = COM (Figure 1) vs. Temperature vs. Supply Voltage Voltage Swing, ± 15V Supplies ± 5V Supply	0 to + 11 0 to + 2	± 1 $\pm 0 1$ $\pm 0 1$ + 12 5	±2	0 to + 11 0 to + 2	± 05 ± 01 ± 01 ± 12.5	±1	0 to + 11 0 to + 2	±0.2 +12.5	±2 ±0.2	mV mV/°C mV/V V V
$ dB OUTPUT (Figure 12) \\ Error, V_{1N} 7mV to 7V rms, 0dB = 1V rms \\ Scale Factor \\ Scale Factor TC (Uncompensated, see Figure 12 for Temperature Compensation) $		± 0.4 - 3	±0.6		± 0.2 - 3	±0.3		±05 -3 -0.033	±0.6	dB mV/dB dB/°C
I _{RFF} for 0dB = 1V rms I _{RFF} Range	5 1	+ 0 33 20	80 100	5 1	+ 0.33	80 100	5 1	+ 0.33 20	80 100	%of Reading/°C μA μA
$\label{eq:constraint} \begin{split} I_{OUT} & \text{LEKMINAL} \\ I_{OUT} & \text{Scale Factor Tolerance} \\ Output Resistance \\ & \text{Voltage Compliance} \end{split}$	20	$ \begin{array}{r} 40 \\ \pm 10 \\ 25 \\ -V_{5} to(+V_{-2.5V}) \end{array} $	± 20 30	20	$ \begin{array}{r} 40 \\ \pm 10 \\ 25 \\ -V_{5} to(+V \\ -2 5) \end{array} $	± 20 30 s	20	$ \begin{array}{r} 40 \\ \pm 10 \\ 25 \\ -V_{S} to(+V_{S} \\ -2 5V) \end{array} $	± 20 30	μA/V rms % kΩ V
BUFFER AMPLIFIER Input and Output Voltage Range	$-V_{S}$ to (+V	's		$-V_{S}$ to (+V	's		$-V_{S}to(+V)$'s		v
Input Offset Voltage, R ₅ = 25k Input Bias Current Input Resistance Output Current	-2 5V)	± 0.5 20 10^8	±4 60	- 2.5V)	± 0.5 20 10 ⁸	±4 60	- 2 5V)	±0.5 20 10 ⁸	±4 60	mV nA Ω
Short Circuit Current Output Resistance Small Signal Bandwidth Slew Rate ⁴	- ΙσομΑ)	20 1 5	0 5	– 130µA)	20 1 5	0 5	- 130μA)	20 1 5	0 5	mA Ω MHz V/μs
POWER SUPPLY Voltage Rated Performance Dual Supply Single Supply Quescent Current Total Vv, 5V to 36V, T _{min} to T _{max}	± 3 0 + 5	± 15	± 18 + 36 2	±30 +5	± 15	± 18 + 36 2	±30 +5	± 15	± 18 + 36 2	V V V mA
TEMPERATURE RANGE	0					. 70			. 125	~
Storage	- 55		+ 150	- 55		+ 150	- 55		+ 125	ĉ
PACKAGE OPTIONS ⁵ Ceramic DIP (D-14) Metal Can TO-100 (H-10A)	AD536 AD536	AJD Ajh		AD536 AD536	AKD AKH		AD536 AD536	ASD ASH		

.

NOTES ¹Accuracy is specified for 0 to 7V rms, dc or 1kHz sinewave input with the AD536A connected as in the figure referenced ²Fror vs: crest factor is specified as an additional error for 1V rms rectangular pulse input, pulse width = $200\mu s$ ¹Input voltages are expressed in volts rms, and error is percent of reading ³Wrb 2k external pulldown resistor ⁵See Section 16 for package outline information

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electri-cal test Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units

Applying the AD536A

STANDARD CONNECTION

The AD536A is simple to connect for the majority of high accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection is shown in Figure 1. In this configuration, the AD536A will measure the rms of the ac and dc level present at the input, but will show an error for low frequency inputs as a function of the filter capacitor, CAV, as shown in Figure 5. Thus, if a 4μ F capacitor is used, the additional average error at 10Hz will be 0.1%, at 3Hz it will be 1%. The accuracy at higher frequencies will be according to specification. If it is desired to reject the dc input, a capacitor is added in series with with the input, as shown in Figure 3; the capacitor must be non-polar. If the AD536A is driven with power supplies with a considerable amount of high frequency ripple, it is advisable to bypass both supplies to ground with 0.1μ F ceramic discs as near the device as possible.

The input and output signal ranges are a function of the supply voltages; these ranges are shown in Figure 16. The AD536A can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the 25k resistor. The buffer amplifier can then be used for other purposes. Further the AD536A can be used in a current output mode by disconnecting the 25k resistor from ground. The output current is available at pin 8 (pin 10 on the "H" package) with a nominal scale of 40μ A per volt rms input, positive out.

OPTIONAL EXTERNAL TRIMS FOR HIGH ACCURACY If it is desired to improve the accuracy of the AD536A, the external trims shown in Figure 2 can be added. R_4 is used to trim the offset. Note that the offset trim circuit adds 365Ω in series with the internal $25k\Omega$ resistor. This will cause a 1.5%increase in scale factor, which is trimmed out by using R_1 as shown. Range of scale factor adjustment is $\pm 1.5\%$.

The trimming procedure is as follows:

1. Ground the input signal, V_{IN} , and adjust R_4 to give zero volts output from pin 6. Alternatively, R_4 can be adjusted to give the correct output with the lowest expected value of V_{IN} . 2. Connect the desired full scale input level to V_{IN} , either dc or a calibrated ac signal (1kHz is the optimum frequency); then trim R_1 to give the correct output from pin 6, i.e., 1.000V dc input should give 1.000V dc output. Of course, a $\pm 1.000V$ peak-to-peak sinewave should give a 0.707V dc output. The remaining errors, as given in the specifications, are due to the nonlinearity. The major advantage of external trimming is to optimize device performance for a reduced signal range; the AD536A is internally trimmed for a 7V rms full scale range.

Figure 2. Optional External Gain and Output Offset Trims

SINGLE SUPPLY CONNECTION

The applications in Figures 1 and 2 require the use of approximately symmetrical dual supplies. The AD536A can also be used with only a single positive supply down to +5 volts, as shown in Figure 3. The major limitation of this connection is that only ac signals can be measured since the differential input stage must be biased off ground for proper operation. This biasing is done at pin 10; thus it is critical that no extraneous signals be coupled into this point. Biasing can be accomplished by using a resistive divider between $+V_S$ and ground. The values of the resistors can be increased in the interest of lowered power consumption, since only 5 microamps of current flows into pin 10 (pin 2 on the "H" package). AC input coupling requires only capacitor C2 as shown; a dc return is not necessary as it is provided internally. C2 is selected for the proper low frequency break point with the input resistance of 16.7k Ω ; for a cut-off at 10Hz, C₂ should be 1 μ F. The signal ranges in this connection are slightly more restricted than in the dual supply connection. The input and output signal ranges are shown in Figure 16. The load resistor, RL, is necessary to provide output sink current.

Figure 3. Single Supply Connection

CHOOSING THE AVERAGING TIME CONSTANT

The AD536A will compute the rms of both ac and dc signals. If the input is a slowly-varying dc, the output of the AD536A will track the input exactly. At higher frequencies, the average output of the AD536A will approach the rms value of the input signal. The actual output of the AD536A will differ from the ideal output by a dc (or average) error and some amount of ripple, as demonstrated in Figure 4.

Figure 4. Typical Output Waveform for Sinusoidal Input

The dc error is dependent on the input signal frequency and the value of C_{AV} . Figure 5 can be used to determine the minimum value of C_{AV} which will yield a given percent dc error above a given frequency using the standard rms connection.

The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C_{AV} . Since the ripple is inversely proportional to C_{AV} , a tenfold increase in this capacitance will effect a tenfold reduction in ripple. When measuring waveforms with high crest factors, (such as low duty cycle pulse trains), the averaging time constant should be at least ten times the signal period. For example, a 100Hz pulse rate requires a 100ms time constant, which corresponds to a $4\mu F$ capacitor (time constant = 25ms per μF).

The primary disadvantage in using a large C_{AV} to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 5 shows that the relationship between C_{AV} and 1% settling time is 115 milliseconds for each microfarad of C_{AV} . The settling time is twice as great for decreasing signals as for increasing signals (the values in Figure 5 are for decreasing signals). Settling time also increases for low signal levels, as shown in Figure 6.

Figure 5. Error/Settling Time Graph for Use with the Standard rms Connection in Figure 1

Figure 6. Settling Time vs Input Level

A better method for reducing output ripple is the use of a "post-filter". Figure 7 shows a suggested circuit. If a singlepole filter is used (C_3 removed, R_X shorted), and C_2 is approximately twice the value of C_{AV} , the ripple is reduced as shown in Figure 8, and settling time is increased. For example, with $C_{AV} = 1\mu$ F and $C_2 = 2.2\mu$ F, the ripple for a 60Hz input is reduced from 10% of reading to approximately 0.3% of reading. The settling time, however, is increased by approximately a factor of 3. The values of C_{AV} and C_2 can therefore be reduced to permit faster settling times while still providing substantial ripple reduction.

The two-pole post-filter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a one-pole filter. The values of C_{AV} , C_2 , and C_3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C_{AV} , since the dc error is dependent upon this value and is independent of the post filter.

For a more detailed explanation of these topics refer to the *RMS to DC Conversion Application Guide 2nd Edition*, available from Analog Devices.

Figure 7. 2 Pole "Post" Filter

Figure 8. Performance Features of Various Filter Types

rms Measurements

AD536A PRINCIPLE OF OPERATION

The AD536A embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straight-forward computation of rms. The actual computation performed by the AD536A follows the equation:

$$V_{\rm rms} = Avg. \qquad \left[\frac{V_{\rm IN}^2}{V_{\rm rms}} \right]$$

Figure 9 is a simplified schematic of the AD536A; it is subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier. The input voltage, V_{IN} , which can be ac or dc, is converted to a unipolar current I_1 , by the active rectifier A_1 , A_2 . I_1 drives one input of the squarer/divider, which has the transfer function:

$$I_4 = I_1^2 / I_3$$

The output current, I_4 , of the squarer/divider drives the current mirror through a low pass filter formed by R_1 and the externally connected capacitor, C_{AV} . If the R_1 , C_{AV} time constant is much greater than the longest period of the input signal, then I_4 is effectively averaged. The current mirror returns a current I_3 , which equals Avg. $[I_4]$, back to the squarer/ divider to complete the implicit rms computation. Thus:

$$I_4 = Avg. [I_1^2/I_4] = I_1 rms$$

The current mirror also produces the output current, I_{OUT} , which equals 2I₄. I_{OUT} can be used directly or converted to a voltage with R_2 and buffered by A_4 to provide a low impedance voltage output. The transfer function of the AD536A thus results:

$$V_{OUT} = 2R_2 I_{rms} = V_{IN rms}$$

۲

The dB output is derived from the emitter of Q_3 , since the voltage at this point is proportional to $-\log V_{IN}$. Emitter follower, Q_5 , buffers and level shifts this voltage, so that the dB output voltage is zero when the externally supplied emitter current (I_{REF}) to Q_5 approximates I_3 .

Figure 9. Simplified Schematic

PAG NOMBERS COMPETING TO THE NOMBERS FOR THE TO THE NETHER CERAMIC OF FACE

NOTE BOTH PADS SHOWN MUST BE CONNECTED TO V_{IN} THE AD536A IS AVAILABLE IN LASER TRIMMED CHIP FORM CONSULT ANALOG DEVICES' CATALOG FOR SPECIFICATIONS AND APPLICATION DETAILS

8

Figure 11. AD536A Pin Connections and Functional Diagram

CONNECTIONS FOR dB OPERATION

A powerful feature added to the AD536A is the logarithmic or decibel output. The internal circuit computing dB works accurately over a 60dB range. The connections for dB measurements are shown in Figure 12. The user selects the OdB level by adjusting R1 for the proper 0dB reference current (which is set to exactly cancel the log output current from the squarerdivider at the desired 0dB point). The external op amp is used to provide a more convenient scale and to allow compensation of the +0.33%/°C scale factor drift of the dB output pin. The special T.C. resistor, R2, is available from Tel Labs in Londenderry, N.H. (model Q-81) or from Precision Resistor Inc., Hillside, N.J. (model PT146). The averaged temperature coefficients of resistors R2 and R3 develop the +3300ppm needed to reverse compensate the dB output. The linear rms output is available at pin 8 on DIP or pin 10 on header device with an output impedance of $25k\Omega$; thus some applications may require an additional buffer amplifier if this output is desired.

dB Calibration:

- 1. Set V_{IN} = 1.00V dc or 1.00V rms
- 2. Adjust R_1 for dB out = 0.00V
- 3. Set V_{IN} = +0.1V dc or 0.10V rms
- 4. Adjust R_5 for dB out = -2.00V

Any other desired 0dB reference level can be used by setting $V_{\rm IN}$ and adjusting R_1 accordingly. Note that adjusting R_5 for the proper gain automatically gives the correct temperature compensation.

Figure 12. Temperature Compensated dB Output Circuit

FREQUENCY RESPONSE

The AD536A utilizes a logarithmic circuit in performing the implicit rms computation. As with any log circuit, bandwidth is proportional to signal level. The solid lines in the graph below represent the frequency response of the AD536A at input levels from 10 millivolts to 1 volt rms. The dashed lines indi-

Figure 13. High Frequency Response

cate the upper frequency limits for 1%, 10%, and 3dB of reading additional error. For example, note that a 1 volt rms signal will produce less than 1% of reading additional error up to 120kHz. A 10 millivolt signal can be measured with 1% of reading additional error ($100\mu V$) up to only 5kHz.

AC MEASUREMENT ACCURACY AND CREST FACTOR

Crest factor is often overlooked in determining the accuracy of an ac measurement. Crest factor is defined as the ratio of the the peak signal amplitude to the rms value of the signal (C.F. = V_p/V_{rms}). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (<2). Waveforms which resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of 10 (C.F. = $1/\sqrt{\eta}$).

Figure 14 is a curve of reading error for the AD536A for a 1 volt rms input signal with crest factors from 1 to 11. A rectangular pulse train (pulse width 100μ s) was used for this test since it is the worst-case waveform for rms measurement (all the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 11 while maintaining a constant 1 volt rms input amplitude.

Figure 14. Error vs. Crest Factor

Figure 16. AD536A Input and Output Voltage Ranges vs. Supply

Low Level True rms-to-dc Converter

AD636

FEATURES

True rms-to-dc Conversion 200mV Full Scale Laser-Trimmed to High Accuracy 0.3% max Error (AD636K) 0.6% max Error (AD636J) Wide Response Capability: Computes rms of ac and dc Signals 1MHz -3dB Bandwidth: V_{rms}>100mV Signal Crest Factor of 6 for 0.5% Error dB Output with 50dB Range Low Power: 800μA Quiescent Current Single or Dual Supply Operation Monolithic Integrated Circuit Low Cost Available in Chip Form

PRODUCT DESCRIPTION

The AD636 is a low power monolithic IC which performs true rms-to-dc conversion on low level signals. It offers performance which is comparable or superior to that of hybrid and modular converters costing much more. The AD636 is specified for a signal range of 0 to 200 millivolts rms. Crest factors up to 6 can be accommodated with less than 0.5% additional error, allowing accurate measurement of complex input waveforms.

The low power supply current requirement of the AD636, typically 800μ A, allows it to be used in battery-powered portable instruments. A wide range of power supplies can be used, from ± 2.5 V to ± 16.5 V or a single ± 5 V to ± 24 V supply. The input and output terminals are fully protected; the input signal can exceed the power supply with no damage to the device (allowing the presence of input signals in the absence of supply voltage) and the output buffer amplifier is short-circuit protected.

The AD636 includes an auxiliary dB output. This signal is derived from an internal circuit point which represents the logarithm of the rms output. The 0dB reference level is set by an externally supplied current and can be selected by the user to correspond to any input level from 0dBm (774.6mV) to -20dBm (77.46mV). Frequency response ranges from 1.2MHz at a 0dBm level to over 10kHz at -50dBm.

The AD636 is designed for ease of use. The device is factorytrimmed at the wafer level for input and output offset, positive and negative waveform symmetry (dc reversal error), and full scale accuracy at 200mV rms. Thus no external trims are required to achieve full rated accuracy.

The AD636 is available in two accuracy grades; the AD636J has a total error of ± 0.5 mV ± 0.6 % of reading, and the AD636K

AD636 FUNCTIONAL BLOCK DIAGRAM

is accurate within ± 0.2 mV to ± 0.3 % of reading. Both versions are specified for the 0 to $+70^{\circ}$ C temperature range, and are offered in either a hermetically sealed 14-pin DIP or a 10-pin TO-100 metal can.

PRODUCT HIGHLIGHTS

- 1. The AD636 computes the true root-mean-square of a complex ac (or ac plus dc) input signal and gives an equivalent dc output level. The true rms value of a waveform is a more useful quantity than the average rectified value since it is a measure of the power in the signal. The rms value of an ac-coupled signal is also its standard deviation.
- 2. The 200 millivolt full scale range of the AD636 is compatible with many popular display-oriented analog-to-digital converters. The low power supply current requirement permits use in battery-powered hand-held instruments.
- 3. The only external component required to perform measurements to the fully specified accuracy is the averaging capacitor. The value of this capacitor can be selected for the desired trade-off of low frequency accuracy, ripple, and settling time.
- 4. The on-chip buffer amplifier can be used to buffer either the input or the output. Used as an input buffer, it provides accurate performance from standard $10M\Omega$ input attenuators. As an output buffer, it can supply up to 5 milliamps of output current.
- 5. The AD636 will operate over a wide range of power supply voltages, including single +5V to +24V or split ±2.5V to ±16.5V sources. A standard 9V battery will provide several hundred hours of continuous operation.

SPECIFICATIONS (@ +25°C, and +V_s = +3V, $-V_s$ = -5V unless otherwise noted)

Model	AD636J Min Typ Max			AD636K Min Typ Max			Units	
TRANSFER FUNCTION	V _{OUT} =	$\sqrt{\text{avg.}(V_{IN})^2}$	2	V _{OUT} =	$\sqrt{\text{avg.}(V_{\text{IN}})^2}$			
CONVERSION ACCURACY Total Error, Internal Trim ^{1,2} vs. Temperature, 0 to + 70°C vs. Supply Voltage dc Reversal Error at 200mV Total Error, External Trim ¹		±0.1 ±0.01 ±0.2 ±0.3 ±0.1	±0.5 ±0.6 ±0.1 ±0 01		$\pm 0.1 \pm 0.01$ ± 0.1 ± 0.1	±0.2±0.3 ±0.1±0.005	mV ± % of Reading mV ± % of Reading °C mV ± % of Reading /V % of Reading W ± % of Reading	
ERROR VS. CREST FACTOR ³ Crest Factor = 3 Crest Factor = 6	Specified	-0.2 -0.5		Specifie	d Accuracy -0.2 -0.5		% of Reading % of Reading	
AVERAGING TIME CONSTANT		25			25		ms/µFCAV	
INPUT CHARACTERISTICS Signal Range, All Supplies Continuous rms Level Peak Transient Inputs + 3V, - 5V Supply ± 2.5V Supply		0 to 200	±2.8 ±2.0		0 to 200	±2.8 ±2.0	mV rms V pk V pk	
± 5V Supply Maximum Continuous Non-Destructive Input Level (All Supply Voltages) Input Resistance Input Offset Voltage	5.33	6.67	± 5.0 ± 12 8 ± 0.5	5.33	6.67	± 5.0 ± 12 8 ± 0.2	Vpk kΩ mV	
$\label{eq:response} \begin{split} & \text{FREQUENCY RESPONSe}^{**}\\ & \text{Bandwidth for 1% additional error (0.09dB)}\\ & V_{IN} = 10mV\\ & V_{IN} = 200mV\\ & \pm 3dB \text{ Bandwidth}\\ & V_{IN} = 10mV\\ & V_{IN} = 100mV \end{split}$		14 90 130 100 900			14 90 130 100 900		kHz kHz kHz kHz MHz	
V _{IN} = 200mV OUTPUT CHARACTERISTICS ² Offset Voltage, V _{IN} = COM vs Temperature vs. Supply Voltage Swing + 3V, - 5V Supply - 5V Supply	0 to + 1.0	1.5 ±10 ±0.1	±0.5	0 to + 1.0	1.5 ±10 ±0.1	±0.2	MHz mV μV/C mV/V V	
dB OUTPUT Error, V _{IN} = 7mV to 300mV rms Scale Factor Scale Factor Temperature Coefficient	8	± 0.3 -3.0 +0.33	12 ±0.5	8	± 0.1 -3.0 +0.33	12 ±0.2	kΩ dB mV/dB % of Reading/°C	
I_{REF} for 0dB = 1V rms I_{REF} Range	2	0.033 4	8 50	2 1	- 0.033 4	8 50	dB/°C μA μA	
Iour TERMINAL Iour Scale Factor Iour Scale Factor Tolerance Output Resistance Voltage Compliance	20 8	$ 100 \pm 10 10 - V_{S} to (+V_{S} -2V) $	+ 20 12 s	20 8	$ 100 \pm 10 10 - V_{S} to (+ V_{S} - 2V) $	+ 20 12	μA/V rms % kΩ V	
BUFFER AMPLIFIER Input and Output Voltage Range Input Offset Voltage, R _S = 10k Input Bias Current Input Resistance Output Current	$- V_{S} to (+ V_{S}$ $- 2V)$ $(+ 5mA,$ $- 130\mu A)$	±0.8 20 10 ⁸	±2 60	$-V_{s} to (+V_{s} - 2V)$ (+5mA, -130 μ A)	s ±0.5 20 10 ⁸	±1 60	V mV nA Ω	
Short Cırcuit Current Small Signal Bandwıdth Slew Rate ⁵		20 1 5			20 1 5		mA MHz V/µs	
POWER SUPPLY Voltage, Rated Performance Dual Suply Single Suply Quescent Current ⁶	+2, -2.5 +5	+ 3, - 5 0.80	± 16.5 + 24 1.00	+2, -2.5 +5	+ 3, - 5	± 16.5 + 24 1.00	V V V mA	
TEMPERATURE RANGE Rated Performance Storage	0 - 55	and a stand of the standard	+ 70 + 150	0 - 55		+ 70 + 150	°C °C	
PACKAGE OPTIONS ⁷ TO-116 (D-14) TL-100 (H-10A)		AD636JD AD636JH			AD636KD AD636KH			

NOTES ¹Accuracy specified for 0 to 200mV rms, dc or 1kHz sinewave input

Accuracy specified for 0 to 200m V rms, dc or 1kHz snewave input Accuracy specified at higher rms signal levels ²Measured at pun 8 of DIP (l_{OUT}), with pin 9 tued to common. ³Error vs. crest factor is specified as additional error for a 200mV rms rectangular pulse trans, pulse width = 200 μ s. ⁴Input voltages are expressed in volts rms.

 $^5With 10k\Omega$ pull down resistor from pin 6 (BUF OUT) to $-V_S.$ $^6With BUF input tied to Common. <math display="inline">^7See$ Section 16 for package outline information.

Specifications subject to change without notice

Specifications shown in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in **boldface** are tested on all production units.

Applying the AD636

STANDARD CONNECTION

The AD636 is simple to connect for the majority of high accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection is shown in Figure 1. In this configuration, the AD636 will measure the rms of the ac and dc level present at the input, but will show an error for low frequency inputs as a function of the filter capacitor, CAV, as shown in Figure 5. Thus, if a 4μ F capacitor is used, the additional average error at 10Hz will be 0.1%, at 3Hz it will be 1%. The accuracy at higher frequencies will be according to specification. If it is desired to reject the dc input, a capacitor is added in series with with the input, as shown in Figure 3; the capacitor must be non-polar. If the AD636 is driven with power supplies with a considerable amount of high frequency ripple, it is advisable to bypass both supplies to ground with 0.1μ F ceramic discs as near the device as possible. CF is an optional output ripple filter, as discussed elsewhere in this data sheet.

The input and output signal ranges are a function of the supply voltages as detailed in the specifications. The AD636 can also be used in an unbuffered voltage output mode by disconnecting the input to the buffer. The output then appears unbuffered across the 10k resistor. The buffer amplifier can then be used for other purposes. Further, the AD636 can be used in a current output mode by disconnecting the 10k resistor from the ground. The output current is available at pin 8 (pin 10 on the "H" package) with a nominal scale of 100 μ A per volt rms input, positive out.

Figure 1. Standard rms Connection

OPTIONAL EXTERNAL TRIMS FOR HIGH ACCURACY

If it is desired to improve the accuracy of the AD636, the external trims shown in Figure 2 can be added. R_4 is used to trim the offset. The scale factor is trimmed by using R_1 as shown. The insertion of R_2 allows R_1 to either increase or decrease the scale factor by $\pm 1.5\%$.

The trimming procedure is as follows:

1. Ground the input signal, V_{IN} , and adjust R_4 to give zero volts output from pin 6. Alternatively, R_4 can be adjusted to give the correct output with the lowest expected value of V_{IN} . 2. Connect the desired full scale input level to V_{IN} , either dc or a calibrated ac signal (1kHz is the optimum frequency); then trim R_1 to give the correct output from pin 6, i.e., 200mV dc output. Of course, a $\pm 200 \text{mV}$ peak-to-peak sinewave should give a 141.4mV dc output. The remaining errors, as given in the specifications, are due to the nonlinearity.

SINGLE SUPPLY CONNECTION

The applications in Figures 1 and 2 assume the use of dual power supplies. The AD636 can also be used with only a single positive supply down to +5 volts, as shown in Figure 3. Figure 3 is optimized for use with a 9 volt battery. The major limitation of this connection is that only ac signals can be measured since the input stage must be biased off ground for proper operation. This biasing is done at pin 10; thus it is critical that no extraneous signals be coupled into this point. Biasing can be accomplished by using a resistive divider between +V_S and ground. The values of the resistors can be increased in the interest of lowered power consumption, since only 1 microamp of current flows into pin 10 (pin 2 on the "H" package). Alternately, the COM pin of some CMOS ADCs provides a suitable artificial ground for the AD636. AC input coupling requires only capacitor C2 as shown; a dc return is not necessary as it is provided internally. C₂ is selected for the proper low frequency break point with the input resistance of $6.7k\Omega$; for a cut-off at 10Hz, C₂ should be 3.3 μ F. The signal ranges in this connection are slightly more restricted than in the dual supply connection. The load resistor, RL, is necessary to provide current sinking capability.

Figure 2. Optional External Gain and Output Offset Trims

Figure 3. Single Supply Connection

CHOOSING THE AVERAGING TIME CONSTANT

The AD636 will compute the rms of both ac and dc signals. If the input is a slowly-varying dc voltage, the output of the AD636 will track the input exactly. At higher frequencies, the average output of the AD636 will approach the rms value of the input signal. The actual output of the AD636 will differ from the ideal output by a dc (or average) error and some amount of ripple, as demonstrated in Figure 4.

Figure 4. Typical Output Waveform for Sinusoidal Input

The dc error is dependent on the input signal frequency and the value of C_{AV} . Figure 5 can be used to determine the minimum value of C_{AV} which will yield a given % dc error above a given frequency using the standard rms connection.

Figure 5. Error/Settling Time Graph for Use with the Standard rms Connection

The ac component of the output signal is the ripple. There are two ways to reduce the ripple. The first method involves using a large value of C_{AV} . Since the ripple is inversely proportional to C_{AV} , a tenfold increase in this capacitance will effect a tenfold reduction in ripple. When measuring waveforms with high crest factors, (such as low duty cycle pulse trains), the averaging time constant should be at least ten times the signal period. For example, a 100Hz pulse rate requires a 100ms time constant, which corresponds to a $4\mu F$ capacitor (time constant = 25ms per μF).

Figure 6. Settling Time vs. Input Level

The primary disadvantage in using a large C_{AV} to remove ripple is that the settling time for a step change in input level is increased proportionately. Figure 5 shows the the relationship between C_{AV} and 1% settling time is 115 milliseconds for each microfarad of C_{AV} . The settling time is twice as great for decreasing signals as for increasing signals (the values in Figure 5 are for decreasing signals). Settling time also increases for low signal levels, as shown in Figure 6.

A better method for reducing output ripple is the use of a "post-filter". Figure 7 shows a suggested circuit. If a singlepole filter is used (C₃ removed, R_X shorted), and C₂ is approximately 5 times the value of C_{AV}, the ripple is reduced as shown in Figure 8, and settling time is increased. For example, with C_{AV} = 1 μ F and C₂ = 4.7 μ F, the ripple for a 60Hz input is reduced from 10% of reading to approximately 0.3% of reading. The settling time, however, is increased by approximately a factor of 3. The values of C_{AV} and C₂ can therefore be reduced to permit faster settling times while still providing substantial ripple reduction.

Figure 7. 2 Pole "Post" Filter

The two-pole post-filter uses an active filter stage to provide even greater ripple reduction without substantially increasing the settling times over a circuit with a one-pole filter. The values of C_{AV} , C_2 , and C_3 can then be reduced to allow extremely fast settling times for a constant amount of ripple. Caution should be exercised in choosing the value of C_{AV} , since the dc error is dependent upon this value and is independent of the post filter.

For a more detailed explaination of these topics refer to the *RMS-to-DC Conversion Application Guide, 2nd Edition,* available from Analog Devices.

Figure 8. Performance Features of Various Filter Types

rms Measurements

AD636 PRINCIPLE OF OPERATION

The AD636 embodies an implicit solution of the rms equation that overcomes the dynamic range as well as other limitations inherent in a straight-forward computation of rms. The actual computation performed by the AD636 follows the equation:

$$V_{\rm rms} = Avg. \qquad \left[\frac{V_{\rm IN}^2}{V_{\rm rms}} \right]$$

Figure 9 is a simplified schematic of the AD636; it is subdivided into four major sections: absolute value circuit (active rectifier), squarer/divider, current mirror, and buffer amplifier. The input voltage, V_{IN} , which can be ac or dc, is converted to a unipolar current I_1 , by the active rectifier A_1 , A_2 . I_1 drives one input of the squarer/divider, which has the transfer function:

$$I_4 = I_1^2 / I_3$$

The output current, I_4 , of the squarer/divider drives the current mirror through a low pass filter formed by R_1 and the externally connected capacitor, C_{AV} . If the R_1 , C_{AV} time constant is much greater than the longest period of the input signal, then I_4 is effectively averaged. The current mirror returns a current I_3 , which equals Avg. [I_4], back to the squarer/ divider to complete the implicit rms computation. Thus:

$$I_4 = Avg. [I_1^2/I_4] = I_1 rms$$

The current mirror also produces the output current, I_{OUT} , which equals $2I_4$. I_{OUT} can be used directly or converted to a voltage with R_2 and buffered by A_4 to provide a low impedance voltage output. The transfer function of the AD636 thus results:

$$V_{OUT} = 2R_2 I_{rms} = V_{IN rms}$$

The dB output is derived from the emitter of Q_3 , since the voltage at this point is proportional to $-\log V_{IN}$. Emitter follower, Q_5 , buffers and level shifts this voltage, so that the dB output voltage is zero when the externally supplied emitter current (I_{REF}) to Q_5 approximates I_3 .

Figure 9. Simplified Schematic

THE AD636 BUFFER AMPLIFIER

The buffer amplifier included in the AD636 offers the user additional application flexibility. It is important to understand some of the characteristics of this amplifier to obtain optimum performance. Figure 10 shows a simplified schematic of the buffer.

Since the output of an rms-to-dc converter is always positive, it is not necessary to use a traditional complementary Class AB output stage. In the AD636 buffer, a Class A emitter follower is used instead. In addition to excellent positive output voltage swing, this configuration allows the output to swing fully down to ground in single-supply applications without the problems associated with most IC operational amplifiers.

Figure 10. AD636 Buffer Amplifier Simplified Schematic

When this amplifier is used in dual-supply applications as an input buffer amplifier driving a load resistance referred to ground, steps must be taken to insure an adequate negative voltage swing. For negative outputs, current will flow from the load resistor through the 40k Ω emitter resistor, setting up a voltage divider between $-V_S$ and ground. This reduced effective $-V_S$ will limit the available negative output swing of the buffer. Addition of an external resistor in parallel with R_E alters this voltage divider such that increased negative swing is possible.

Figure 11 shows the value of $R_{EXTERNAL}$ for a particular ratio of V_{PEAK} to $-V_S$ for several values of R_{LOAD} . Addition of $R_{EXTERNAL}$ increases the quiescent current of the buffer amplifier by an amount equal to $R_{EXT}/-V_S$. Nominal buffer quiescent current with no $R_{EXTERNAL}$ is $30\mu A$ at $-V_S = -5V$.

Figure 11. Ratio of Peak Negative Swing to -V_S vs. REXTERNAL for Several Load Resistances

RMS-TO-DC CONVERTERS 8–15

FREQUENCY RESPONSE

The AD636 utilizes a logarithmic circuit in performing the implicit rms computation. As with any log circuit, bandwidth is proportional to signal level. The solid lines in the graph below represent the frequency response of the AD636 at input levels from 1 millivolt to 1 volt rms. The dashed lines indicate the upper frequency limits for 1%, 10%, and \pm 3dB of reading additional error. For example, note that a 1 volt rms signal will produce less than 1% of reading additional error up to 220kHz. A 10 millivolt signal can be measured with 1% of reading additional error (100 μ V) up to 14kHz.

Figure 12. AD636 Frequency Response

AC MEASUREMENT ACCURACY AND CREST FACTOR Crest factor is often overlooked in determining the accuracy

A COMPLETE AC DIGITAL VOLTMETER

Figure 14 shows a design for a complete low power ac digital voltmeter circuit based on the AD636. The 10M Ω input attenuator allows full scale ranges of 200mV, 2V, 20V and 200V rms. Signals are capacitively coupled to the AD636 buffer amplifier, which is connected in an ac bootstrapped configuration to minimize loading. The buffer then drives the 6.7k Ω input impedance of the AD636. The COM terminal of the ADC chip provides the false ground required by the AD636 for single supply operation. An AD589 1.2 volt reference diode is used to provide a stable 100 millivolt reference for the ADC in the linear rms mode; in the dB mode,

of an ac measurement. Crest factor is defined as the ratio of the the peak signal amplitude to the rms value of the signal (C.F. = V_p/V_{rms}). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (<2). Waveforms which resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of 10 (C.F. = $1/\sqrt{\eta}$).

Figure 13 is a curve of reading error for the AD636 for a 200mV rms input signal with crest factors from 1 to 7. A rectangular pulse train (pulse width 200µs) was used for this test since it is the worst-case waveform for rms measurement (all the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 7 while maintaining a constant 200mV rms input amplitude.

Figure 13. Error vs. Crest Factor

a 1N4148 diode is inserted in series to provide correction for the temperature coefficient of the dB scale factor. Calibration of the meter is done by first adjusting offset pot R17 for a proper zero reading, then adjusting the R13 for an accurate readout at full scale.

Calibration of the dB range is accomplished by adjusting R9 for the desired 0dB reference point, then adjusting R14 for the desired dB scale factor (a scale of 10 counts per dB is convenient).

Total power supply current for this circuit is typically 2.8mA using a 7106-type ADC.

Figure 14. A Portable, High Z Input, rms DPM and dB Meter Circuit

0.02% Max Nonlinearity, 0 to 2V rms Input

0.10% Additional Error to Crest Factor of 3

Chip Select-Power Down Feature Allows: Analog "3-State" Operation

FEATURES

Computes:

True rms Square

Mean Square

Absolute Value dB Output (60dB Range)

High Accuracy

Wide Bandwidth

8MHz at 2V rms Input 600kHz at 100mV rms

High Precision Wideband rms-to-dc Converter

AD637

AD637 FUNCTIONAL BLOCK DIAGRAM

The AD637 is available in two accuracy grades (J, K) for commercial (0 to $+70^{\circ}$ C) temperature range applications and one (S) rated over the -55° C to $+125^{\circ}$ C temperature range. All versions are available in hermetically-sealed, 14-pin side-brazed ceramic DIPs as well as low-cost cerdip packages.

PRODUCT HIGHLIGHTS

- The AD637 computes the true root-mean-square, mean square, or absolute value of any complex ac (or ac plus dc) input waveform and gives an equivalent dc output voltage. The true rms value of a waveform is more useful than an average rectified signal since it relates directly to the power of the signal. The rms value of a statistical signal is also related to the standard deviation of the signal.
- 2. The AD637 is laser wafer trimmed to achieve rated performance without external trimming. The only external component required is a capacitor which sets the averaging time period. The value of this capacitor also determines low frequency accuracy, ripple level and settling time.
- 3. The chip select feature of the AD637 permits the user to power down the device down during periods of nonuse, thereby, decreasing battery drain in remote or hand-held applications.
- 4. The on-chip buffer amplifier can be used as either an input buffer or in an active filter configuration. The filter can be used to reduce the amount of ac ripple, thereby, increasing the accuracy of the measurement.

Side-Brazed DIP or Low-Cost Cerdip

PRODUCT DESCRIPTION

The AD637 is a complete high accuracy monolithic rms to dc converter that computes the true rms value of any complex waveform. It offers performance that is unprecedented in integrated circuit rms to dc converters and comparable to discrete and modular techniques in accuracy, bandwidth and dynamic range. A crest factor compensation scheme in the AD637 permits measurements of signals with crest factors of up to 10 with less than 1% additional error. The circuit's wide bandwidth permits the measurement of signals up to 600kHz with inputs of 200mV rms and up to 8MHz when the input levels are above 2V rms.

Quiescent Current Reduction from 2.2mA to 350µA

As with previous monolithic rms converters from Analog Devices, the AD637 has an auxiliary dB output available to the user. The logarithm of the rms output signal is brought out to a separate pin allowing direct dB measurement with a useful range of 60dB. An externally programmed reference current allows the user to select the 0dB reference voltage to correspond to any level between 0.1V and 2.0V rms.

A chip select connection on the AD637 permits the user to decrease the supply current from 2.2mA to 350μ A during periods when the rms function is not in use. This feature facilitates the addition of precision rms measurement to remote or hand-held applications where minimum power consumption is critical. In addition when the AD637 is powered down the output goes to a high impedance state. This allows several AD637s to be tied together to form a wide-band true rms multiplexer.

The input circuitry of the AD637 is protected from overload voltages that are in excess of the supply levels. The inputs will not be damaged by input signals if the supply voltages are lost.
SPECIFICATIONS (@ $+25^{\circ}$ C, and $\pm 15V$ dc unless otherwise noted)

Model	A Min	D637AJ Typ	Max	Min	AD637AK Typ	Max	Min	AD637AS Typ	Max	Units
TRANSFER FUNCTION	V _{OUT} -	Vavg (VIN)	2	V _{OUT} =	$\sqrt{avg} (V_{IN})$) ²	V _{OUT} -	$\sqrt{\text{avg}(V_{\text{IN}})}$	2	,
CONVERSION ACCURACY Total Error, Internal Trim ¹ (Fig 2) Tmm to Tmax vs Supply + vs Supply - dc Reversal Error at 2V Nonlinearity 2V Full Scale ² Nonlinearity 7V Full Scale Total Error, External Trim		30 100 ±05±01	$\pm 1 \pm 0.5$ $\pm 3.0 \pm 0.6$ 150 300 0.25 0.04 0.05		30 100 ±0 25 ±0 0	$\pm 0.5 \pm 0.2$ $\pm 2.0 \pm 0.3$ 150 300 0.1 0.02 0.05 05		30 100 ± 0 5 ± 0 1	$\pm 1 \pm 0.5$ $\pm 6 \pm 0.7$ 150 300 0.25 0.04 0.05	mV \pm % of Reading mV \pm % of Reading μ V/V % of Reading % of FSR % of FSR mV \pm % of Reading
ERROR VS. CREST FACTOR ³ Crest Factor 1 to 2 Crest Factor = 3 Crest Factor = 10	Specified	Accuracy ±01 ±10		Specifie	ed Accuracy ±01 ±10		Specifie	ed Accuracy ±01 ±10		% of Reading % of Reading
AVERAGING TIME CONSTANT		25			25			25		ms/µFCAV
INPUT CHARACTERISTICS Signal Range, = 15V Supply Continuous rms Level Peak Transient Input Signal Range, = 5V Supply Continuous rms Level Peak Transient Input		0 to 7 0 to 4	± 15 ± 6		0 to 7 0 to 4	±15 ±6		0 to 7 0 to 4	± 15 ± 6	V rms V p-p V rms V p-p
Input Level (All Supply Voltages) Input Resistance	64	8	± 15 9 6 ± 0 5	64	8	± 15 96 ± 0.2	64	8	± 15 9 6 ± 0 5	Vp-p kΩ mV
$\label{eq:constraint} \begin{array}{l} \text{mpartonset voltage} \\ \text{FREQUENCY RESPONSE}^{4} \\ \text{Bandwidth for 1% additional error (0 09dB)} \\ V_{IN} = 20mV \\ V_{IN} = 20mV \\ \pm 3dB \text{Bandwidth} \\ V_{IN} = 20mV \\ V_{IN} = 20mV \\ V_{IN} = 20mV \\ V_{IN} = 20mV \\ V_{IN} = 20W \end{array}$		11 66 200 150 1 8			11 66 200 150 1 8			11 66 200 150 1 8		kHz kHz kHz kHz kHz MHz MHz
OUTPUT CHARACTERISTICS Offset Voltage vs Temperature Voltage Swing, ± 15V Supply, 2kfi Load Voltage Swing, ± 3V Supply, 2kfi Load Output Current Short Circuit Current Resistance, Chip Selett "Hoph" Resistance, Chip Selett "Low"	0 to + 12.0 0 to + 2 6	± 0.05 + 13 5 + 2.2 20 0 5 100	±1 ±0.089	0 to + 12.0 0 to + 2 6	± 0 04 + 13 5 + 2.2 20 0.5 100	±0.5 ±0.056	0 to + 12.0 0 to + 2 6	± 0 04 + 13 5 + 2 2 20 0 5 100	±1 ±0.07	mV mV/°C V wmA mA MΩ kΩ
$\label{eq:constraint} \begin{array}{l} dB \ OUTPUT \\ Error, V_{1N} \ 7mV \ to \ 7V \ rms, 0 dB = 1V \ rms \\ Scale \ Factor \\ Scale \ Factor \ Temperature \ Coefficient \\ \\ I_{RTF} \ for \ 0 dB = 1V \ rms \\ I_{arr} \ Range \end{array}$	5	± 1 - 3 + 0 33 - 0 033 20	80 100	5	± 1 - 3 + 0 33 - 0.033 20	80 100	5 1	± 1 - 3 + 0.33 - 0.033 20	80 100	dB mV/dB % of Reading/°C dB/°C μA μA
BUFFER AMPLIFIER Input and Output Voltage Range Input Offset Voltage Input Current Input Resistance Output Current Short Circuit Current Small Signal Bandwidth Slew Rate'	- V, το (+ V, - 2 5V) (+ 5mA, - 130μA)	± 0.8 $\pm 2.10^{8}$ 20 15	±2 ±10	- V ₅ to (+ V - 2 5V) (+ 5mA, - 130μA)	$\frac{\pm 0.5}{\pm 2}$ 10^{8} 20 1 5	±1 ±5	$-V_{S} to (+V_{-2} 5V)$ (+5mA, -130 μ A)	$ \frac{\pm 0}{10^8} $ $ \frac{\pm 0}{10^8} $ 20 1 5	±2 ±10	V mV nA Ω
DENOMINATOR INPUT Input Range Input Resistance Offset Voltage	20	0 to + 10 25 ± 0 2	30 ±05	20	0 to + 10 25 ± 0 2	30 ±05	20	0 to + 10 25 ±0 2	30 ±05	V kΩ mV
CHIP SELECT PROVISION (CS) rms "ON" Level rms "OF" Level I _{OLT} of Chip Select CS "LOW" CS "HIGH" On Time Constant Off Time Constant	Open or $V_{\xi} < \pm 0$ 10 Zero 10µs + (10µs + (+ 2 4V $<$ V _C \cdot 2V (25k Ω) \times C _{AV} (25k Ω) \times C _{AV}	< + Vs 	Open o V _t < + 10 Zero 10μs + 10μs +	or + 2 4V <v<sub>C 0 2V $((25k\Omega) \times C_A)$ $((25k\Omega) \times C_A)$</v<sub>	< + Vs v) v)	Open o V _c < + 10 Zero 10μs + 10μs +	$r + 2 4V < V_C < 0 2V$ $((25k\Omega) \times C_{AV}) < ((25k\Omega) \times C_{AV})$	< + V _S	μA

Model		AD637AJ		AD637AK			AD637AS				
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	
POWER SUPPLY											
Operating Voltage Range	± 3.0		±18	± 3.0		±18	± 3.0		±18	v	
Quiescent Current		2.2	3		2.2	3		2.2	3	mA	
Standby Current		350	450		350	450		350	450	μΑ	
PACKAGE OPTIONS ⁶ TO-116-(D-14) Cerdip (Q-14)		AD637AJI AD637AJ(2		AD637AK AD637AK	D Q		AD637ASI N/A)		

NOTES ¹Accuracy specified 0-7V rms dc with AD637 connected as shown in Figure 2. ²Nonlinearity is defined as the maximum deviation from the straight line connecting the readings at 100W and 2V. ³Error vs. cress factor is specified as additional error for 1V rms ⁴Input voltages are expressed in volts rms. % are in % of reading. ³With external 2kΩ pull down resistor thed to $-V_S$ ⁵See Section 16 for package outline information ⁶Comparison where the change without notice

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units

Figure 1. Simplified Schematic

FUNCTIONAL DESCRIPTION

The AD637 embodies an implicit solution of the rms equation that overcomes the inherent limitations of straightforward rms computation. The actual computation performed by the AD637 follows the equation

$$V \text{ rms} = Avg \left[\frac{V_{IN}^2}{V \text{ rms}} \right]$$

Figure 1 is a simplified schematic of the AD637, it is subdivided into four major sections; absolute value circuit (active rectifier), square/divider, filter circuit and buffer amplifier. The input voltage $V_{\rm IN}$ which can be ac or dc is converted to a unipolar current I1 by the active rectifier A1, A2. I1 drives one input of the squarer divider which has the transfer function

$$I_4 = \frac{I_1^2}{I_3}$$

The output current of the squarer/divider, 14 drives A4 which forms a low pass filter with the external averaging capacitor. If the RC time constant of the filter is much greater than the longest period of the input signal than A4s output will be proportional to the average of I4. The output of this filter amplifier is used by A3 to provide the denominator current I3 which equals Avg. I4 and is returned to the squarer/divider to complete the implicit rms computation.

$$\mathbf{I}_4 = \mathbf{Avg} \left[\begin{array}{c} \mathbf{I}_1^2 \\ \mathbf{I}_4 \end{array} \right] = \mathbf{I}_1 \text{ rms}$$

and

$$V_{OUT} = V_{IN} rms$$

If the averaging capacitor is omitted the AD637 will compute the absolute value of the input signal. A nominal 5pF capacitor should be used to insure stability. The circuit operates identically to that of the rms configuration except that I3 is now equal to I4 giving

$$I_4 = \frac{I_1^2}{I_4}$$
$$I_4 = |I_1|$$

The denominator current can also be supplied externally by providing a reference voltage, V_{REF} , to pin 6. The circuit operates identically to the rms case except that I3 is now proportional to V_{REF} . Thus:

$$I_4 = Avg \frac{I_1^2}{I_3}$$

and

$$V_{\rm O} = \frac{V_{\rm IN}^2}{V_{\rm DEN}}$$

This is the mean square of the input signal.

Figure 2. Standard rms Connection

STANDARD CONNECTION

The AD637 is simple to connect for a majority of rms measurements. In the standard rms connection shown in Figure 2, only a single external capacitor is required to set the averaging time constant. In this configuration, the AD637 will compute the true rms of any input signal. An averaging error, the magnitude of which will be dependent on the value of the averaging capacitor, will be present at low frequencies. For example, if the filter capacitor C_{AV} , is 4μ F this error will be 0.1% at 10Hz and increases to 1% at 3Hz. If it is desired to measure only ac signals the AD637 can be ac coupled through the addition of a nonpolar capacitor in series with the input as shown in Figure 2.

The performance of the AD637 is tolerant of minor variations in the power supply voltages, however, if the supplies being used exhibit a considerable amount of high frequency ripple it is advisable to bypass both supplies to ground through a 0.1μ F ceramic disc capacitor placed as close to the device as possible.

The output signal range of the AD637 is a function of the supply voltages, as shown in Figure 3. The output signal can be used buffered or nonbuffered depending on the characteristics of the load. The output of the AD637 is capable of driving 5mA into a $2k\Omega$ load without degrading the accuracy of the device.

Figure 3. AD637 max V_{OUT} vs. Supply Voltage

CHIP SELECT

The AD637 includes a chip select feature which allows the user to decrease the quiescent current of the device from 2.2mA to 350μ A. This is done by driving the CS, pin 5, to below 0.2V dc. Under these conditions, the output will go into a high impedance state. In addition to lowering power consumption, this feature permits bussing the outputs of a number of AD637s to form a wide bandwidth rms multiplexer. If the chip select is not being used, pin 5 should be tied high or left floating.

OPTIONAL TRIMS FOR HIGH ACCURACY

The AD637 includes provisions to allow the user to trim out both output offset and scale factor errors. These trims will result in significant reduction in the maximum total error as shown in Figure 4. This remaining error is due to a nontrimmable input offset in the absolute value circuit and the irreducible nonlinearity of the device.

The trimming procedure on the AD637 is as follows:

- 1. Ground the input signal, V_{IN} and adjust R1 to give 0V output from pin 9. Alternatively R1 can be adjusted to give the correct output with the lowest expected value of V_{IN} .
- 2. Connect the desired full scale input to $V_{\rm IN}$, using either a dc or a calibrated ac signal, trim R3 to give the correct output at pin 9, i.e., 1V dc should give 1.000V dc output. Of course, a 2V peak-to-peak sine wave should give 0.707V dc output. Remaining errors are due to the nonlinearity.

Figure 4. Max Total Error vs. Input Level AD637K Internal and External Trims

Figure 5. Optional External Gain and Offset Trims

CHOOSING THE AVERAGING TIME CONSTANT

The AD637 will compute the true rms value of both dc and ac input signals. At dc the output will track the absolute value of the input exactly; with ac signals the AD637's output will approach the true rms value of the input. The deviation from the ideal rms value is due to an averaging error. The averaging error is comprised of an ac and dc component. Both components are functions of input signal frequency f, and the averaging time constant τ (τ : 25ms/ μ F of averaging capacitance). As shown in Figure 6, the averaging error is defined as the peak value of the ac component, ripple, plus the value of the dc error.

Figure 6. Typical Output Waveform for a Sinusoidal Input

The peak value of the ac ripple component of the averaging error is defined approximately by the relationship:

$$\frac{50}{6.3\tau f}$$
 in % of reading where $(\tau > 1/f)$

This ripple can add a significant amount of uncertainty to the accuracy of the measurement being made. The uncertainty can be significantly reduced through the use of a post filtering network or by increasing the value of the averaging capacitor. The dc error appears as a frequency dependent offset at the output of the AD637 and follows the equation:

$$\frac{1}{0.16 + 6.4\tau^2 f^2}$$
 in % of reading

Since the averaging time constant, set by C_{AV} , directly sets the time that the rms converter "holds" the input signal during computation, the magnitude of the dc error is determined only by C_{AV} and will not be affected by post filtering.

Figure 7. Comparison of Percent dc Error to the Percent Peak Ripple over Frequency Using the AD637 in the Standard rms Connection with a $1\mu F C_{AV}$

The ac ripple component of averaging error can be greatly reduced by increasing the value of the averaging capacitor. There are two major disadvantages to this: first, the value of the averaging capacitor will become extremely large and second, the settling time of the AD637 increases in direct proportion to the value of the averaging capacitor (Ts = $115 \text{ms}/\mu\text{F}$ of averaging capacitance). A preferrable method of reducing the ripple is through the use of the post filter network, shown in Figure 8. This network can be used in either a one or two pole configuration. For most applications the single pole filter will give the best overall compromise between ripple and settling time.

RMS-TO-DC CONVERTERS 8-21

Figure 9a shows values of $C_{\rm AV}$ and the corresponding averaging error as a function of sine-wave frequency for the standard rms connection. The 1% settling time is shown on the right side of the graph.

Figure 9b shows the relationship between averaging error, signal frequency settling time and averaging capacitor value. This graph is drawn for filter capacitor values of 3.3 times the averaging capacitor value. This ratio sets the magnitude of the ac and dc errors equal at 50Hz. As an example, by using a 1μ F averaging capacitor and a 3.3μ F filter capacitor the ripple for a 60Hz input signal will be reduced from 5.3% of reading using the averaging capacitor alone to 0.15% using the single pole filter. This gives a factor of thrity reduction in ripple and yet the settling time would only increase by a factor of three. The values of C_{AV} and C_2 , the filter capacitor, can be calculated for the desired value of averaging error and settling time by using Figure 9b.

The symmetry of the input signal also has an effect on the magnitude of the averaging error. Table I gives practical component values for various types of 60Hz input signals. These capacitor values can be directly scaled for frequencies other than 60Hz, i.e., for 30Hz double these values, for 120Hz they are halved.

	Input Waveform	Absolute Value	Minimum	Recommende Values for 1% Error@ 60Hz w	1%	
_	and Period	Circuit Waveform and Period	Time Constant	Recommended Standard Value C _{AV}	Recommended Standard Value C2	Settling Time
A	Symmetrical Sine Wave	1/2T	1/2T	0 47µF	1 5µF	181ms
в	Sine Wave with dc Offset		т	0 82µF	2 7µF	325ms
c	Pulse Train Waveform	₩ 	10(T – T ₂)	68µF	22µF	2 67sec
D	+	₩_T→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	10(T – 2T ₂)	5 6µF	18µF	2 17sec

Table I. Practical Values of C_{AV} and C2 for Various Input Waveforms

For applications that are extremely sensitive to ripple, the two pole configuration is suggested. This configuration will minimize capacitor values and settling time while maximizing performance.

Figure 9c can be used to determine the required value of C_{AV} , C_2 and C_3 for the desired level of ripple and settling time.

FREQUENCY RESPONSE

The frequency response of the AD637 at various signal levels is shown in Figure 10. The dashed lines show the upper frequency limits for 1%, 10% and \pm 3dB of additional error. For example, note that for 1% additional error with a 2V rms input the highest frequency allowable is 200kHz. A 200mV signal can be measured with 1% error at signal frequencies up to 100kHz.

To take full advantage of the wide bandwidth of the AD637 care must be taken in the selection of the input buffer amplifier. To insure that the input signal is accurately presented to the converter, the input buffer must have a -3dB bandwidth that is wider than that of the AD637. A point that should not be overlooked is the importance of slew rate in this application. For example, the minimum slew rate required for a 1V rms 5MHz sine-wave input signal is $44V/\mu s$. The user is cautioned that this is the minimum rising or falling slew rate and that care must be exercised in the selection of the buffer amplifier as some amplifiers exhibit a two-to-one difference between rising and falling slew rates. The AD381 is recommended as a precision input buffer.

AC MEASUREMENT ACCURACY AND CREST FACTOR

Crest factor is often overlooked in determining the accuracy of an ac measurement. Crest factor is defined as the ratio of the peak signal amplitude to the rms value of the signal (C.F. = V_p/V_{rms}). Most common waveforms, such as sine and triangle waves, have relatively low crest factors (≤ 2). Waveforms which resemble low duty cycle pulse trains, such as those occurring in switching power supplies and SCR circuits, have high crest factors. For example, a rectangular pulse train with a 1% duty cycle has a crest factor of 10 (C.F. = $1/\sqrt{\eta}$).

Figure 11. AD637 Error vs. Pulse Width Rectangular Pulse

Figure 12 is a curve of additional reading error for the AD637 for a 1 volt rms input signal with crest factors from 1 to 11. A rectangular pulse train (pulse width 100μ s) was used for this test since it is the worst-case waveform for rms measurement (all the energy is contained in the peaks). The duty cycle and peak amplitude were varied to produce crest factors from 1 to 10 while maintaining a constant 1 volt rms input amplitude.

Figure 12. Additonal Error vs. Crest Factor

Figure 13. Error vs. rms Input Level for Three Common Crest Factors

CONNECTION FOR dB OUTPUT

Another feature of the AD637 is the logarithmic or decibel output. The internal circuit which computes dB works well over a 60dB range. The connection for dB measurement is shown in Figure 14. The user selects the 0dB level by setting R1 for the proper 0dB reference current (which is set to exactly cancel the log output current from the squarer/divider circuit at the desired 0dB point). The external op amp is used to provide a more convenient scale and to allow compensation of the $+0.33\%/^{\circ}$ C temperature drift of the dB circuit. The special T.C. resistor R3 is available from Tel Labs in Londenderry, New Hampshire (model Q-81) and from Precision Resistor Inc., Hillside, N.J. (model PT146).

Figure 14. dB Connection

dB CALIBRATION

- 1. Set $V_{IN} = 1.00V \text{ dc or } 1.00V \text{ rms}$
- 2. Adjust R1 for 0dB out = 0.00V
- 3. Set $V_{IN} = 0.1V \text{ dc} \text{ or } 0.10V \text{ rms}$
- 4. Adjust R2 for dB out = -2.00V

Any other dB reference can be used by setting $V_{\rm IN}$ and R1 accordingly.

8

LOW FREQUENCY MEASUREMENTS

If the frequencies of the signals to be measured are below 10Hz, the value of the averaging capacitor required to deliver even 1% averaging error in the standard rms connection becomes extremely large. The circuit shown in Figure 15 shows an alternative method of obtaining low frequency rms measurements. The averaging time constant is determined by the product of R and C_{AV1} , in this circuit 0.5s/ μ F of C_{AV} . This circuit permits a 20:1 reduction in the value of the averaging capacitor, permitting the use of high quality tantalum capacitors. It is suggested that the two pole Sallen-Key filter shown in the diagram be used to obtain a low ripple level and minimize the value of the averaging capacitor.

Figure 15. AD637 as a Low Frequency rms Converter

If the frequency of interest is below 1Hz, or if the value of the averaging capacitor is still too large, the 20:1 ratio can be increased. This is accomplished by increasing the value of R. If this is done it is suggested that a low input current, low offset voltage amplifier like the AD542 be used instead of the internal buffer amplifier. This is necessary to minimize the offset error introduced by the combination of amplifier input currents and the larger resistance.

VECTOR SUMMATION

Vector summation can be accomplished through the use of two AD637s as shown in Figure 16. Here the averaging capacitors are omitted (nominal 100pF capacitors are used to insure stability of the filter amplifier), and the outputs are summed as shown. The output of the circuit is

Figure 16. AD637 Vector Sum Configuration

This concept can be expanded to include additional terms by feeding the signal from pin 9 of each additional AD637 through a $10k\Omega$ resistor to the summing junction of the AD611, and tying all of the denominator inputs (pin 6) together.

If C_{AV} is added to IC1 in this configuration the output is $\sqrt{V_X^2 + V_Y^2}$ If the averaging capacitor is included on both IC1 and IC2 the output will be $\sqrt{V_X^2 + \overline{V_Y}^2}$

This circuit has a dynamic range of 10V to 10mV and is limited only by the 0.5mV offset voltage of the AD637. The useful bandwidth is 100kHz.

Low-Cost, Low-Power True rms-to-dc Converter

AD736

FEATURES

COMPUTES True rms Value Average Rectified Value Absolute Value

PROVIDES

200mV Full-Scale Input Range High Input Impedance of $10^{12}\Omega$ Low Input Bias Current: 25pA max High Accuracy: $\pm 0.5mV \pm 0.5\%$ of Reading RMS Conversion with Signal Crest Factors Up to 5 Wide Power Supply Range: $\pm 2.8V$, -3.2Vto $\pm 16.5V$ Low Power: 200 μ A max Supply Current Buffered Voltage Output No External Trims Needed for Specified Accuracy AD737 – An Unbuffered Voltage Output Version with Chip Power Down is also Available

PRODUCT DESCRIPTION

The AD736 is a low-power, precision, monolithic true rms-to-dc converter. It is laser trimmed to provide a maximum error of less than ± 0.5 mV ± 0.5 % of reading with sine-wave inputs. Furthermore, it maintains high accuracy while meastring a wide range of input waveforms, including variable duty cycle pulses and triac (phase) controlled sine waves. The low cost and small physical size of this converter make it suitable for upgrading the performance of non-rms "precision rectifiers" in many applications. Compared to these circuits, the AD736 offers higher accuracy at equal or lower cost.

The AD736 can compute the rms value of both ac and dc input voltages. It can also be operated ac coupled by adding one external capacitor. In this mode, the AD736 can resolve input signal levels of 100μ V rms or less, despite variations in temperature or supply voltage. High acccuracy is also maintained for input waveforms with crest factors of 1 to 3. In addition, crest factors as high as 5 can be measured (while introducing only 2.5% additional error) at the 200mV full-scale input level.

The AD736 has its own output buffer amplifier, thereby providing a great deal of design flexibility. Requiring only 200 μ A of power supply current, the AD736 is optimized for use in portable multimeters and other battery powered applications.

AD736 FUNCTIONAL BLOCK DIAGRAM

The AD736 allows the choice of two signal input terminals: a high impédance $(10^{12}\Omega)$ FET input which will directly interface with high 2 input attenuators and a low impedance $(8k\Omega)$ input which allows the measurement of 300mV input levels, while operating from the minimum power supply voltage of +2.8V, -3.2V. The two inputs may be used either singly or differentially.

The AD736 achieves a 1% of reading error bandwidth exceeding 10kHz for input amplitudes from 20mV rms to 200mV rms while consuming only 1mW.

The AD736 is available in four performance grades. The AD736J and AD736K grades are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD736A and AD736B grades are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C.

The AD736 is available in three low-cost 8-pin packages: plastic mini-DIP, plastic SO and hermetic cerdip.

PRODUCT HIGHLIGHTS

- 1. The AD736 is capable of computing the average rectified value, absolute value or true rms value of various input signals.
- 2. Only one external component, an averaging capacitor, is required for the AD736 to perform true rms measurement.
- 3. The low power consumption of 1mW makes the AD736 suitable for many battery powered applications.
- 4. A high input impedance of $10^{12}\Omega$ eliminates the need for an external buffer when interfacing with input attenuators.
- A low impedance input is available for those applications requiring up to 300mV rms input signal operating from low power supply voltages.

SPECIFICATIONS (@ + 25°C ± 5V supplies, ac coupled with 1kHz sine-wave input applied unless otherwide noted.)

Model		AD736J/A		AD736K/B				
	Conditions	Min	Тур	Max	Min	Тур	Max	Units
TRANSFER FUNCTION		V _{OUT}	$=\sqrt{Avg.(V)}$	$\overline{V_{IN}^2}$	V _{OUT} = ¹	$\sqrt{\text{Avg.}(V_{\text{IN}}^2)}$		
CONVERSION ACCURACY Total Error, Internal Trim ¹ All Grades	1kHz Sine Wave ac Coupled 0-200mV rms 200mV-1V rms		0.2/0.2 1.2	0.5/0.5 2.0		0.2/0.2 1.2	0.3/0.3 2.0	± mV/±% of Reading ±% of Reading
T _{min} -T _{max} A&B Grades J&K Grades vs. Supply Voltage	@ 200mV rms @ 200mV rms		0.007	0.7/0.7		0.007	0.5/0.5	$\pm mV/\pm\%$ of Reading $\pm\%$ of Reading/°C
 @ 200mV rms Input @ 200mV rms Input dc Reversal Error, dc Coupled Nonlinearity², 0-200mV Total Error, External Trim 	$ V_S = \pm 5V \text{ to } \pm 16.5V \\ V_S = \pm 5V \text{ to } \pm 3V \\ @ 600mV dc \\ @ 100mV rms \\ 0-200mV rms \\ \label{eq:VS} $	0 0 0	+ 0.06 - 0.18 1.3 + 0.25 0.1/0.5	+0.1 -0.3 2.5 +0.35	0 0 0	+ 0.06 - 0.18 1.3 + 0.25 0.1/0.3	+0.1 -0.3 2.5 +0.35	%/V %/V % of Reading % of Reading ± mV ± % of Reading
ERROR vs. CREST FACTOR ³ Crest Factor 1 to 3 Crest Factor = 5	$C_{AV}, C_F = 100 \mu F$ $C_{AV}, C_F = 100 \mu F$		0.7 2.5			0.7 2.5		% Additional Error % Additional Error
INPUT CHARACTERISTICS High Impedance Input (Pin 2) Signal Range Continuous rms Level Peak Transient Input Peak Transient Input Peak Transient Input Input Resistance Input Bias Current	$V_{S} = +2.8V, -3.2V$ $V_{S} = \pm 5V \text{ to } \pm 16.5V$ $V_{S} = \pm 5V$ $V_{S} = \pm 5V$ $V_{S} = \pm 16.5V$ $V_{S} = \pm 3V \text{ to } 446 \text{ cm}^{2}$	±0.9	±2.7 10 ¹²¹	200 1	±0.9	± 2.7 10 ¹²	200 1 25	mV rms V rms V V V Ω pA
Low Impedance Input (Pin 1) Signal Range Continuous rms Level Peak Transient Input Peak Transient Input Peak Transient Input Input Resistance	$V_{s} = \pm 2.8V, -3.2V \\ V_{s} = \pm 5V \text{ to } \pm 16.5V \\ V_{s} = \pm 2.8V, -3.2V \\ V_{s} = \pm 5V \\ V_{s} = \pm 16.5V$	6.4	±17 ±17 ±11 8	300 9.6	6.4	± 1.7 ± 3.8 ± 11 8	300 1 9.6	mV rms V rms V V V V
Maximum Continuous Non- Destructive Input Input Offset Voltage ⁴ J&K Grades A&B Grades vs. Temperature vs. Supply vs. Supply	All Supply Voltages ac Coupled $V_S=\pm 5V \text{ to } \pm 16.5V \\ V_S=\pm 5V \text{ to } \pm 3V $		8 50 80	± 12 ± 3 ± 3 30 150		8 50 80	± 12 ± 3 ± 3 30 150	V p-p mV mV μV/°C μV/V μV/V
OUTPUT CHARACTERISTICS Output Offset Voltage J&K Grades A&B Grades vs. Temperature vs. Supply	$V_S = \pm 5V \text{ to } \pm 16.5V$ $V_S = \pm 5V \text{ to } \pm 3V$		± 0.1 1 50 50	±0.5 ±0.5 20 130		± 0.1 1 50 50	±0.3 ±0.3 20 130	mV mV μV/°C μV/V μV/V
Output Voltage Swing 2kΩ Load 2kΩ Load 2kΩ Load 2kΩ Load No Load	$V_{S} = +2.8V, -3.2V \\ V_{S} = \pm 5V \\ V_{S} = \pm 16.5V \\ V_{S} = \pm 16.5V \\ V_{S} = \pm 16.5V$	0 to + 1.6 0 to + 3.6 0 to + 4 0 to + 4	+ 1.7 + 3.8 + 5 + 12		0 to + 1.6 0 to + 3.6 0 to + 4 0 to + 4	+1.7 +3.8 +5 +12		V V V V
Output Current Short-Circuit Current Output Resistance	(ý dc	2	3 0.2		2	3 0.2		mA mA Ω

Model		AD736J/A	Al	D736K/B			
	Conditions	Min Typ M	1ax	Min	Тур	Max	Units
FREQUENCY RESPONSE High Impedance Input (Pin 2) For 1% Addituonal Error	Sine-Wave Input						
		1 6 37 33			1 6 37 33		kHz kHz kHz kHz
$\begin{array}{l} \pm 3dB \ Bandwidth \\ V_{IN} = 1mV \ rms \\ V_{IN} = 10mV \ rms \\ V_{IN} = 100mV \ rms \\ V_{IN} = 200mV \ rms \end{array}$	Sine-Wave Input	5 55 170 190			5 55 170 190		kHz kHz kHz kHz
$\label{eq:response} \begin{split} \hline FREQUENCY RESPONSE \\ Low Impedance Input (Pin 1) \\ For 1% Additional Error \\ V_{IN} = 1mV rms \\ V_{IN} = 10mV rms \\ V_{IN} = 100mV rms \\ V_{IN} = 200mV rms \\ \pm 3dB Bandwidth \\ V_{IN} = 1mV rms \\ V_{IN} = 1mV rms \\ V_{IN} = 100mV rms \\ V_{IN} = 100mV rms \\ V_{IN} = 100mV rms \\ V_{IN} = 200mV rms \\ V_{IN} = 200mV rms \end{split}$	Sine-Wave Input Sine-Wave Input	1 6 90 90 5 55 350 460	Antonio Antonio		1 6 90 90 5 55 350 460		kHz kHz kHz kHz kHz kHz kHz kHz kHz
POWER SUPPLY Operating Voltage Range Quiescent Current 200mV rms, No Load	Zero Signal Sine-Wave Input	+ 2.8, -3.2' ± 5 160 230 2	16.5 10 10	±+2.8, −3.2	± 5 160 230	± 16.5 200 270	Volts μ.Α μ.Α
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (-40°C to + 85°C)		AD736J AD736A		and the second sec	AD736K AD736B		
PACKAGE OPTIONS ⁵ 8-Pin Plastic Mini-DIP (N-8) 8-Pin Plastic SO (R-8) 8-Pin Cerdip (Q-8)		AD736JN AD736JR AD736AQ			AD736KN AD736KR AD736BQ		

NOTES

NOTES ¹Accuracy is specified with the AD736 connected as shown in Figure 1. ²Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 and 200mV rms. Output offset voltage is adjusted to zero. ³Error vs. Crest Factor is specified as additional error for a 200mV rms signal. C.F. = V_{PEAK}/V rms. ⁴DC offset does not limit ac resolution.

⁵See Section 16 for package outline information.

Specifications are subject to change without notice.

Specifications shown in **boldface** are tested on all production units at final electrical test.

Results from those tests are used to calculate outgoing quality levels.

ABSOLUTE MAXIMUM RATINGS¹

	$AD736J/K$ 0 to $+70^{\circ}C$
Supply Voltage $\dots \dots \dots$	AD736A/B
Internal Power Dissipation	Lead Temperature Range (Soldering 60sec) + 300°C
Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm V_S$	NOTE
Output Short-Circuit Duration Indefinite	¹ Stresses above those listed under "Absolute Maximum Ratings" may cause per-
Differential Input Voltage $\dots \dots \dots \dots \dots + V_S$ and $-V_S$	manent damage to the device. This is a stress rating only and functional opera-
Storage Temperature Range Q $\dots \dots \dots \dots \dots -65^{\circ}$ C to + 150°C	tion of the device at these or any other conditions above those indicated in the
Storage Temperature Range N, R65°C to +125°C	maximum rating conditions for extended periods may affect device reliability.

Operating Temperature Range

Applications Circuits

Figure 1. True rms Connection

Figure 2. Average Responding Connection

Figure 3. Connection to HI Z Input Attenuator

-

Low-Cost, Low-Power True rms-to-dc Converter

AD737

FEATURES

COMPUTES True rms Value Average Rectified Value Absolute Value

PROVIDES

200mV Full-Scale Input Range Direct Interfacing with 3 1/2 Digit CMOS A/D Converters Power Down Feature which Reduces Supply Current High Input Impedance: 10^{12} ohms Low Input Bias Current: 25pA max High Accuracy: $\pm 0.2mV \pm 0.3\%$ of Reading RMS Conversion with Signal Crest Factors Up to 5 Wide Power Supply Range: $\pm 2.8V$, -3.2V to $\pm 16.5V$ Low Power: 160μ A max Supply Current No External Trims Needed for Specified Accuracy AD736 – A General Purpose, Buffered Voltage

Output Version is also Available

PRODUCT DESCRIPTION

The AD737 is a low-power, precision, monolithic true trms-to-deconverter. It is laser trimmed to provide a maximum error of less than $\pm 0.2\text{mV} \pm 0.3\%$ of reading with sine-wave inputs. Furthermore, it maintains high accuracy while measuring a wide range of input waveforms, including variable duty cycle pulses and triac (phase) controlled sine waves. The low cost and small physical size of this converter make it suitable for upgrading the performance of non-rms "precision rectifiers" in many applications. Compared to these circuits, the AD737 offers higher accuracy at equal or lower cost.

The AD737 can compute the rms value of both ac and dc input voltages. It can also be operated ac coupled by adding one external capacitor. In this mode, the AD737 can resolve input signal levels of 100μ V rms or less, despite variations in temperature or supply voltage. High accuracy is also maintained for input waveforms with crest factors of 1 to 3. In addition, crest factors as high as 5 can be measured (while introducing only 2.5% additional error) at the 200mV full-scale input level.

The AD737 has no output buffer amplifier, thereby significantly reducing dc offset errors occurring at the output. This allows the device to be highly compatible with high input impedance A/D converters.

AD737 FUNCTIONAL BLOCK DIAGRAM

Requiring only 160 μ A of power supply current, the AD737 is optimized for use in portable multimeters and other battery powered applications. This converter also provides a "power down" feature which reduces the power supply standby current to less than 30 μ A.

The AD737 allows the choice of two signal input terminals: a high impedance $(10^{12}\Omega)$ FET input which will directly interface with high Z input attenuators and a low impedance $(8k\Omega)$ input which allows the measurement of 300mV input levels while operating from the minimum power supply voltage of +2.8V, -3.2V. The two inputs may be used either singly or differentially.

The AD737 achieves a 1% of reading error bandwidth exceeding 10kHz for input amplitudes from 20mV rms to 200mV rms while consuming only 0.72mW.

The AD737 is available in four performance grades. The AD737J and AD737K grades are rated over the commercial temperature range of 0 to $+70^{\circ}$ C. The AD737A and AD737B grades are rated over the industrial temperature range of -40° C to $+85^{\circ}$ C.

The AD737 is available in three low-cost, 8-pin packages: plastic mini-DIP, plastic SO and hermetic cerdip.

PRODUCT HIGHLIGHTS

徽

1A 8

- 1. The AD737 is capable of computing the average rectified value, absolute value or true rms value of various input signals.
- 2. Only one external component, an averaging capacitor, is required for the AD737 to perform true rms measurement.
- 3. The low power consumption of 0.72mW makes the AD737 suitable for many battery powered applications.

Model		A	D737J/A		Al	D737K/B		
	Conditions	Min	Тур	Max	Min	Тур	Max	Units
TRANSFER FUNCTION		V _{OUT} = -	$\sqrt{\text{Avg.}(V_{II})}$	$\overline{N^2}$	$V_{OUT} = -1$	$\overline{Avg.(V_{IN}^2)}$		
CONVERSION ACCURACY Total Error, Internal Trim ¹ All Grades	1kHz Sine Wave AC Coupled 0-200mV rms 200mV-1V rms		0.2/0.3 1.2	0.4/0.5 2.0		0.2/0.2 -1.2	0.2/0.3 2.0	$\pm mV/\pm \%$ of Reading $\pm \%$ of Reading
T _{min} -T _{max} A&B Grades J&K Grades	@ 200mV rms @ 200mV rms		0.007	0.5/0.7		0.007	0.3/0.5	$\pm mV/\pm\%$ of Reading $\pm\%$ of Reading/°C
 @ 200mV rms Input @ 200mV rms Input @ 200mV rms Input dc Reversal Error, dc Coupled Nonlinearity², 0-200mV Total Error, External Trim 	$\begin{array}{l} V_{S}=\pm5Vto\pm16.5V\\ V_{S}=\pm5Vto\pm3V\\ @600mVdc\\ @100mVrms\\ 0\text{-}200mVrms \end{array}$	0 0 0	+ 0.06 - 0.18 1.3 + 0.25 0.1/0.2	+0.1 -0.3 2.5 +0.35	0 0 0	+ 0.06 - 0.18 1.3 + 0.25 0.1/0.2	+0.1 -0.3 2.5 +0.35	%/V %/V % of Reading % of Reading ± mV/±% of Reading
ERROR vs. CREST FACTOR ³ Crest Factor 1 to 3 Crest Factor = 5	$C_{AV}, C_F = 100 \mu F$ $C_{AV}, C_F = 100 \mu F$		0.7 2.5			0.7 2.5		% Additional Error % Additional Error
INPUT CHARACTERISTICS High Impedance Input (Pin 2) Signal Range Continuous rms Level Continuous rms Level Peak Transient Input Peak Transient Input Peak Transient Input Input Reisstance Input Bias Current	$V_{S} = \pm 2.8V, -3.2V$ $V_{S} = \pm 5V$ to $\pm 16.5V$ $V_{S} = \pm 2.8V, -3.2V$ $V_{S} = \pm 5V$ $V_{S} = \pm 16.5V$ $V_{c} = \pm 3V$ to $\pm 16.5V$	±0.9 ±4.0	± 2.7	200 1 25	± 0.9 ±4.0	± 2.7	200 1	mV rms V rms V V V Ω Ω
Low Impedance Input (Pin 1) Signal Range Continuous rms Level Continuous rms Level Peak Transient Input Peak Transient Input Input Resistance	$V_{S} = \pm 3V \ (0 \pm 16.5V)$ $V_{S} = \pm 5V \ (0 \pm 16.5V)$ $V_{S} = \pm 5V \ (0 \pm 16.5V)$ $V_{S} = \pm 5V $ $V_{S} = \pm 5V $ $V_{S} = \pm 16.5V$	6. 7	± 1.7 ± 3.8 ≠ 11 8	300 1 9.6	6.4	± 1.7 ± 3.8 ± 11 8	300 1 9.6	mVrms Vrms V V V V
Maximum Continuous Non- Destructive Input Input Offset Voltage ⁴ J&K Grades A&B Grades vs. Temperature vs. Supply vs. Supply	All Supply Voltages ac Coupled $V_S = \pm 5V \text{ to } \pm 16.5V$ $V_S = \pm 5V \text{ to } \pm 3V$		8 50 80	± 12 ± 3 ± 3 30 150		8 50 80	± 12 ± 3 ± 3 30 150	V p-p mV mV μV/°C μV/V μV/V
OUTPUT CHARACTERISTICS Output Voltage Swing No Load No Load No Load Output Resistance	$V_{S} = +2.8V, -3.2V$ $V_{S} = \pm 5V$ $V_{S} = \pm 16.5V$ (<i>a</i> , dc	0 to - 1.6 0 to - 3.3 0 to - 4 6.4	1.7 3.4 5 8	9.6	0 to - 1.6 0 to - 3.3 0 to - 4 6.4	-1.7 -3.4 -5 8	9.6	V V V kΩ
$\label{eq:response} \begin{split} & FREQUENCY RESPONSE\\ & High Impedance Input (Pin 2)\\ & For 1/k Additonal Error\\ & V_{IN} = 1mV rms\\ & V_{IN} = 10mV rms\\ & V_{IN} = 100mV rms\\ & \pm 3dB Bandwidth\\ & V_{IN} = 1mV rms\\ & V_{IN} = 1mV rms\\ & V_{IN} = 10mV rms\\ & V_{IN} = 10mV rms\\ & V_{IN} = 100mV rms\\ & V_{IN} = 200mV rms\\ & V_{IN} = 200mV rms\\ \end{split}$	Sine-Wave Input Sine-Wave Input		1 6 37 33 5 55 170 190			1 6 37 33 5 55 170 190		kHz kHz kHz kHz kHz kHz kHz kHz kHz

Model		A	D737J/A		А	D737K/B		
	Conditions	Min	Тур	Max	Min	Тур	Max	Units
$\label{eq:response} \begin{split} & FREQUENCY RESPONSE \\ & Low Impedance Input (Pin 1) \\ & For 1% Additional Error \\ & V_{IN} = 10W Y rms \\ & V_{IN} = 100W Y rms \\ & V_{IN} = 100W Y rms \\ & \pm 3dB Bandwidth \\ & V_{IN} = 10mV rms \\ & V_{IN} = 10mV rms \\ & V_{IN} = 100mV rms \\ & V_{IN} = 100mV rms \\ & V_{IN} = 200mV rms \\ & V_{IN} = 200mV rms \end{split}$	Sine-Wave Input Sine-Wave Input		1 6 90 90 5 55 350 460			1 6 90 90 5 55 350 460		kHz kHz kHz kHz kHz kHz kHz kHz kHz
POWER SUPPLY Operating Voltage Range Quiescent Current V _{IN} = 200mV rms, No Load Power Down Mode Current	Zero Signal Sine-Wave Input Pin 3 tied to + V ₅	+ 2.8, - 3.2	±5 120 170 25	± 16.5 160 210 40	+ 2.8, - 3.2	± 5 120 170 25	± 16.5 160 210 40	V μΑ μΑ μΑ
TEMPERATURE RANGE Operating, Rated Performance Commercial (0 to + 70°C) Industrial (-40°C to + 85°C)			AD737J AD737A	ĸ.		AD737K AD737B		
PACKAGE OPTIONS ⁵ 8-Pin Plastic Mini-DIP (N-8) 8-Pin Plastic SO (R-8) 8-Pin Cerdip (Q-8)		244	AD737JN AD737JR AD737AQ	te tan ta Harr Ma N	an the second	AD737KN AD737KR AD737BQ		

NOTES

CALL AND in. ait it Accuracy is specified with the AD737 connected as shown in Figure 1. ²Nonlinearity is defined as the maximum deviation (in percenterror) from tarralght line connecting

Hormitaariy o and 200mV rms ³Error vs. Crest Factor is specified as additional error for a 200mV rms signal. Cit. – Array V rms.

State State i ya

⁴DC offset does not limit ac resolution.

⁵See Section 16 for package outline information,

See Section 10 for package outline information Specifications are subject to change without noice. Specifications shown in **boldface** are tested on all production units at final electricality Results from those tests are used to calculate outgoing quality levels.

ABSOLUTE MAXIMUM RATINGS¹

N.

a William

Can Dought

Supply Voltage $\dots \dots \dots$
Internal Power Dissipation
Input Voltage
Output Short-Circuit Duration
Differential Input Voltage + V_S and - V_S
Storage Temperature Range Q $\dots \dots $
Storage Temperature Range N, R -65° C to $+125^{\circ}$ C
Operating Temperature Range
$AD737J/K$ 0 to $+70^{\circ}C$
AD737A/B
Lead Temperature Range (Soldering 60sec) + 300°C
NOTE
¹ Stresses above those listed under "Absolute Maximum Ratings" may cause per- manent damage to the device. This is a stress rating only and functional opera- tion of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Applications Circuits

Figure 4. 3 1/2 Digit DVM Circuit

Special Function Components Contents

Page

Orientation	
AD345 – High Speed Pin Driver with Inhibit Mode	
AD630 – Balanced Modulator/Demodulator	
AD639 – Universal Trigonometric Function Converter	7
AD890 – Precision Wideband Channel Processing Element	9
AD891 - Rigid Disk Data Channel Qualifier	5
AD9500 – Digitally Programmable Delay Generator	1

9-2 SPECIAL FUNCTION COMPONENTS

1

Orientation Special Function Components

This section contains technical data on integrated-circuit chips that could not be classified in any of the major sections of this databook without losing their identities. For example, the AD639 trigonometric function generator is a close relative of analog multiplier/dividers, in both function and circuitry; but if it were listed in that section, its unique trigonometric capabilities would be "buried".

We describe briefly here the function and salient uses of these devices. For further information, consult the individual data sheets.

ANALOG FUNCTIONS

AD630 Balanced Modulator/Demodulator

The AD630 is a fast, flexible, switched dual-input op amp with an on-chip comparator. Intended for wideband, low-level, and wide-dynamic-range instrumentation applications and coherent systems, it is capable of such analog signal-processing functions as balanced modulator, balanced demodulator, absolute-value amplifier, phase detector, square-wave multiplier and two-channel precision multiplexer. It can be used as a lock-in amplifier, synchronous detector, rectifier, dual-mode circuit, and much more. Essentially a complete device with on-chip scaling resistors, it can be used for these functions with little or no additional circuitry.

As a *lock-in amplifier*, it can recover a 0.1-Hz sine wave, transmitted as a modulation on a 400-Hz carrier, from a band-limited, clipped white-noise signal approximately 100,000 times larger – a dynamic range greater than 100dB.

It consists of a frequency-compensated op-amp-output stage, with two identical switched differential front ends (A and B), a differential comparator that controls the switching and a set of jumper-programmable matched precision resistors – trimmed to produce closed-loop gain accuracies to $\pm 0.015\%$ and gain match (between channels) to $\pm 0.03\%$. When the net input to the comparator is positive, front-end A will be selected; when the comparator input is negative, front-end B is selected. A *status* output indicates the state of the comparator.

AD639 Universal Trigonometric Function Generator

The AD639 is an analog "trigonometric microsystem" on a single silicon chip, packaged in a 16-pin DIP. From a differential input voltage, representing an angle (20mV/°), it can be pin programmed to generate a voltage output, accurately determined by any of the standard functions – sine, cosine, tangent, secant,

cosecant and cotangent – as well as some lesser known variants, such as the versine and exsecant, plus a corresponding set of inverse functions. All inputs are differential, and either polarity of input or output can be generated.

Trigonometric functions play an important role in electronics. Inherent to many communications, measurement and display systems, they also find increasing application in control and robotics. Most familiar are the *sine* and the *cosine*, which find wide use as fundamental signal sources – both separately and in orthogonal pairs. In display systems, these functions are basic to graphical manipulations (axis rotation and polar-to-Cartesian conversion), and they also appear in many antenna-related signal transformations. The *tangent* is important in scanning systems, and the *arctangent* is used in Cartesian-to-polar conversion and in determining phase angle from the real and imaginary components of a complex signal.

With its large repertoire of functions, the AD639 makes it possible to include trigonometric transformations in the analog portion of a system with little added cost or board space, and with high accuracy, without the overhead in software, memory or time, which would accompany such computations in an associated digital system. It also makes it easy to generate low-distortion sine-wave signals, with voltage control of amplitude and frequency, up to 10V and 1MHz, respectively.

DIGITAL FUNCTIONS

AD345 Pin Driver for Automatic Test Equipment

The AD345 is a complete high-speed pin driver designed for use in digital functional test equipment and general purpose instrumentation. It accepts digital, analog and timing information from system sources and translates them directly to digital output levels to be applied to the input of a device to be tested (DUT). By teaming up the economy of surface-mount technology and the accuracy of thick-film laser trimming, the AD345 attains superb electrical performance while preserving optimum packaging densities in a convenient 10-pin SIP package.

Its output is switched by digital control inputs, and its amplitude is derived from analog sources; its output *high* level can be set by an analog voltage at any value from -2V to +8V, and its *low* level can be set from -3V to +6V; this flexibility makes it compatible with ECL, TTL and CMOS logic levels and timing. It can drive level changes at up to 100MHz, with slewing rates better than 1V/ns; its dynamic output impedance is laser trimmed for waveform integrity and guaranteed performance with 50-ohm transmission lines. Output impedance is 50 ohms, matching it

to coaxial cable used for interconnecting the pin driver and the device's input terminal, in order to minimize error-causing reflections.

Who should use the AD345? Anyone who manufactures or designs equipment for automatic test of semiconductor devices or boards, or for instrumentation and characterization. It can also function as a high-performance, low-cost general purpose digital driver.

AD890 and AD891 Hard-Disk Bit-Recovery ICs

The AD890 Precision Wideband Channel-Processing Element and the AD891 Rigid-Disk Data-Channel Qualifier are a pair of monolithic integrated circuits that together are the key to a complete signal-processing subsystem capable of error-free high performance in demanding disk-drive applications. They take data directly from the disk-head preamplifier, condition and qualify it and produce recovered precisely timed data bits at rates in excess of 50 megabits per second (guaranteed). Such rates are essential for making efficient use of high-capacity, high-performance disk drives. This chip pair replaces slower, lower-performing discrete-circuit "kludges," and no external trims are needed.

As the diagram below shows, the AD890 amplifies the signal to a normalized level, using stable variable-gain amplification with automatic gain control (AGC); and the AD891 establishes whether a pulse exists, using differentiation to find peaks, then produces data-output pulses of precise width. Since the actual timing requirements – of both the filter time constants and the differentiator characteristics – are a function of the user's system, the filter functions (using only passive elements) remain off-chip under full control of the user. In addition to the functions shown, the AGC can be turned off digitally when necessary; and input clamping can be switched in during *write* so as to avoid input overloads.

Although these circuits were developed for use in disk-drive applications, it should be apparent that their applicability may be considered wherever high-speed pulses have been degraded by attenuation and noise – and must be amplified, qualified and reconstituted. Separately, the AD890 is an excellent AGC amplifier for radio-frequency signals.

AD9500 Digitally Programmable Delay Generator

The AD9500 delays events by an interval selected by an 8-bit digital code, with settable time resolution as small as 10 picoseconds. The delay is initiated at the time a *Trigger* input goes *high*: an integrator generates a downgoing ramp, and when it crosses a preset level (established by an 8-bit DAC), a comparator output changes state to produce the delayed output, Q.

The delay is equal to the programmed delay – which depends on the integrator's selectable RC time constant and the precision threshold set by the DAC – plus a propagation delay of 5.4ns minimum. A pulse of appropriate width applied at the *Reset* input resets the integrator and the Q output to prepare the device for the next *Trigger*. The range of full-scale programmed delays is from 2.5ns to more than 1 ms, depending on the choice of R and C. When RC = 2.5ns, the LSB (or one increment of delay) is 2,500 ps/256 \approx 10 ps, which is also the typical jitter level.

AD9500 Internal Timing Diagram

The differential *Trigger* and *Reset* inputs are designed primarily for single-ended or differential ECL, but they function with analog and TTL input levels. The Q, Q output is a complementary ECL stage, with a parallel Q_R output circuit to facilitate reset timing implementations.

An important application is in equalizing skew in multichannel systems; with one line used as the standard, the programmed delays of the other AD9500s are adjusted to eliminate the timing skews. Other applications include multiple-phase clock generators, measuring unknown delays and time response of high-speed ac waveforms, and digitally programmable oscillators.

High-Speed Pin Driver with Inhibit Mode

AD345

FEATURES

 100MHz Driver Operation

 Driver Inhibit (Tristate) Function

 Guaranteed Industry Specifications

 50Ω Output Impedance

 1V/ns Slew Rate

 Variable Output Voltages for ECL, TTL and CMOS

 High-Speed Differential Inputs for Maximum Flexibility

 Small SIP Package

 Low Cost

APPLICATIONS

Automatic Test Equipment Semiconductor Test Systems Board Test Systems Instrumentation & Characterization Equipment General Purpose Driver

PRODUCT DESCRIPTION

The AD345 is a complete high-speed pin driver designed for use in digital test systems. By combining surface mount technology and thick-film laser trimmed technology, this product attains superb electrical performance while preserving optimum packaging densities in a convenient 10-pin SIP package.

Featuring unity gain programmable output levels of -3 to +8 volts with output amplitude capability of 700mV to 11V, the AD345 is designed to stimulate ECL, TTL and CMOS logic families. The 100MHz (5ns pulse width) data rate capacity, 1V/ ns controlled slew rate, and 50 Ω output impedance allows for real-time stimulation of these digital logic families. To test I/O devices the pin driver can be switched into a high impedance state (inhibit or tristate) by using the inhibit mode. The pin driver leakage in tristate is typically 50nA and output charge transfer going into tristate is guaranteed at 200pC maximum.

The AD345 transition from hi/low or to tristate is effected through the data and inhibit inputs. The input circuitry is implemented utilizing high-speed differential inputs with a common-mode range of 8 volts. This allows for direct interface to the precision of differential ECL timing or the simplicity of stimulating the pin driver from a single ended TTL or CMOS logic source. The analog inputs V high or V low are equally easy to interface. Requiring typically 500μ A of bias current, the AD345 can be directly coupled to the output of a DAC either singularly or in parallel with several other pin drivers.

The AD345 utilizes surface mount technology creating a small single in-line package which can be mounted upright or laying down (leads bent 90°) depending on the specific application. The SIP packaging enables the user to create a tight radial test head design or a custom high-speed dedicated probe card with

the drivers placed in close proximity to the device under test guaranteeing optimum signal integrity. A metal tab is mounted on the back side allowing for heatsinking or mechanical support. The AD345 is available for operation over the 0 to $+70^{\circ}$ C range.

PRODUCT HIGHLIGHTS

- 1. The AD345 is a complete 100MHz pin driver designed to meet the requirements of ATE manufacturers.
- Output high voltage level is adjustable from -2V to +8V and output low levels from -3 to +6V allowing compatibility with ECL, TTL, CMOS logic levels.
- 3. Certified large signal slew rates of better than 1V/ns with dynamic output impedance laser trimmed for waveform integrity and guaranteed performance with 50Ω transmission lines.
- 4. TRISTATE (inhibit) capability for testing I/O devices.
- 5. INHIBIT leakage current of 50nA typical virtually eliminates the requirement for a disconnect relay in a semiconductor test system.
- Repeatability from driver-to-driver is guaranteed to meet published specifications through pretesting and active laser trimming.
- 7. The 10-pin SIP hybrid package with mounting tab provides high functional mechanical densities with maximum versatility.

9

SPECIFICATIONS (All specs @ 25°C in free air, output unloaded, +V = +12V, -V = -8V, unless otherwise specified)

		AD345KV			
Parameter	Min	Тур	Max	Units	Comments
DIFFERENTIAL INPUT					
CHARACTERISTICS					
D to \overline{D} , INH to \overline{INH}					
Voltage Range	$-V_{s} +$	6V	$+V_{s}-6V$	Volts	
Pulse Amplitude	0.37	ECL	3.5	Volts p-p	See Note 1
Bias Current		500	750	μA	
REFERENCE INPUTS					See Note 2
V _{HIGH}	-2		+ 8.3	Volts	
V _{LOW}	-3		+6.2	Volts	
Bias Current		500	750	μA	
OUTPUT CHARACTERISTICS					See Notes 2 & 3
Logic High Range	- 2		+ 8	Volts	
Logic Low Range	- 3		+6	Volts	
Amplitude	0.7		11	Volts	
Initial Offset	- 30		+ 30	mV	See Note 3
Gain Error	-1.2		+1.2	% of Set Level	Normalized to
Outern Vales as Terms Coaff		0.5	1.0	1/00	Figures 1 & 2
Current Drug		0.5	1.0	mv/°C	
Static			60	m 4	
Dynamic			100	mA mA	
Output Capacitance		9	100	nF	
Output Charge Going				P-	
Into Inhibit Mode			200	рC	
Leakage Current in				F -	
Inhibit Mode		50	200	nA	
Protection					
Output @ GND	INDE	FINITELY			
Output (a + V	1 Minu	te w/o Damage			
Output @ - V	1 Minu	te w/o Damage			
DYNAMIC PERFORMANCE					See Notes 4 & 5
Driver Delay Time	1.5	2.0	2.5	ns	
Driver Delay Matching					
Edge to Edge	-0.5		+0.5	ns	
Driver to Driver	-1.0		+1.0	ns	
Slew Rate					
IV Swing 20% - 80%		1.5	2.5	ns	
4 V Swing 10%-90%	1.0	5.5 1.25	4.0	ns V/no	
Toggle Rate	1.0	1.25	100	V/IIS MH2	FCI Output Level
Overshoot and Preshoot			100	MILIZ	LOL Output Level
In Driver Mode					
1V Swing			200	mV	
>2V Swing			120	mV	
In Inhibit Mode		350		mV	
Settling Characteristic			5	% of Steady State	e 50ns
-				after Starting Tir	me of
				Voltage Slew. Ste	eady State 15
				Greater Than 1m	ns after
				Starting Time of	Voltage Slew.
Inhibit Delay Time					
Inhibit to Active	14	15	16	ns	See Notes 6 & 7
Active to Inhibit	5.5	8	10 5	ns	See Notes 6 & 7
Output Impedance	47.5	50	52.5	11	See Note 8
POWER SUPPLIES					
$-V_{S}$ to $+V_{S}$ Range	20		25	Volts	
Positive Supply Range	+11	+ 12	+ 15	Volts	
Negative Supply Range	-5	- 8	- 10	Volts	
	70	100	. 70	mA	137- 12 501
$= PSPR V_{-1} = -2V$	- /0		+ /0	mV	$+ v = \pm 2.5\%$ $- V = \pm 2.5\%$
$-1 \text{ SKR } \mathbf{v}_{0L} = -3 \mathbf{v}$	- 00		+ 00	111 V	$-v = \pm 2.5\%$
PACKAGE OPTIONS ⁹					
SIP(Y-10)		AD345KY			

PIN	SYMBOL	FUNCTION
1	VL	VOLTAGE LOGIC LOW
2	V _H	VOLTAGE LOGIC HIGH
3	D	DRIVER INPUT
4	D	DRIVER INPUT
5	+ V _s	POSITIVE SUPPLY
6	-Vs	NEGATIVE SUPPLY
7	Vout	DRIVER OUTPUT
8	GND	CIRCUIT GROUND
9	INH	INHIBIT INPUT
10	INH	INHIBIT INPUT

NOTES The maximum allowable voltage from D to \overline{D} and from INH to \overline{INH} is 3 5V The maximum allowable voltage range is specified for -3V to +8V for typical power supply values of -8V and +12V but can be offset for different values of V_{0LT} such as 0V to +11V as long as the required headroom of 4V between V_H and $+V_S$ are maintained and the negative headroom of 5V between V_I and $-V_S$ is preserved "Dolay times at a maximum of a MHz, 50% duty cycle "Delay times are measured from the crossing of differential ECL outputs at inputs of the device to a 250mV transition at output with V_H and V_{LS} is to $\pm 1V$ respectively "Delay times, siew rates, overshoot and undershoot performance specified with a 10k, 2pF probe Oscilloscope bandwidth to eveced 200MHZ.

Delay times, siew rates, overshoot and undershoot performance specified with a 10k, 2pf probe Oscilloscope bandwidth to exceed 3000MHz Inhibit mode delay times are measured from the crossing of differential ECL outputs at INH inputs to threshold crossing at the pindriver output V_{OUT} is connected to a 1000fload terminated at +2V dc The V_H and V_L are set to a normalized +3 5V and + 05 V respectively High delay times are measured to a +1 5V threshold Frequency is set to 100HIz with a 50% duty cycle "The wheth delay times respectively delay the set to a promote and the set of the s

⁷The inhibit delay time specification allows for device-to-device variations. The stability and jitter of a given device is better than Ins and 200ps respectively

 8 Dynamically trimmed at the factory for 50 Ω Other impedance values can be obtained on special request ⁹See Section 16 for package outline information

Specifications subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range 0 to +70°C
Storage Temperature Range 65°C to + 125°C
Power Supply Voltage
$+V_{\rm S}$ to GND
$-V_S$ to GND
Difference from $+V_S$ to $-V_S$
Input $-V_S$ to $+V_s$
V_{OUT} + V_{S} + 0.6V or - V_{S} - 0.6V
VOUT to Short Circuit
to GND
to $+V$ or $-V_S$

DETERMINING LOGIC SET LEVELS

Within a system it is possible to minimize gain error and increase the output level accuracy of the AD345 by using the information provided by Figures 1 and 2. Figure 1 is a table of desired output high levels followed by the recommended input reference levels. Figure 2 accomplishes the same for the output low levels. Values of output levels not supplied by the tables can simply be interpolated from the data supplied.

Another potential source of output level error is offset error. The value, once determined for a specific device, should be algebraically subtracted for the appropriate V_{HIGH} or V_{LOW} set value.

V OUTPUT HIGH	V _H INPUT LEVEL
-2.00V	-2.016
– 1.00V	- 1.009
+ 1.00V	+ 1.007
+2.00V	+ 2.018
+ 3.00V	+ 3.028
+4.00V	+ 4.041
+5.00V	+ 5.054
+6.00V	+ 6.070
+7.00V	+ 7.098
+ 8.00V	+ 8.150

Figure 1. Table of Normalized V_{HIGH} Levels

VOUTPUT LOW	V _L INPUT LEVEL
-3.00V	- 3.012
-2.00V	- 2.007
– 1.00V	- 1.008
+ 1.00V	+ 1.015
+2.00V	+ 2.023
+3.00V	+ 3.031
+ 4.00V	+ 4.040
+5.00V	+ 5.050
+6.00V	+ 6.060

Figure 2. Table of Normalized VLOW Levels

FUNCTIONAL DESCRIPTION

The AD345 is a complete high-speed pin driver designed for use in general purpose instrumentation and digital functional test equipment. The purpose of a pin driver is to accept digital, analog and timing information from a system source and interface those elements to the input of a digital device to be tested.

The circuit configuration for the AD345 has been summarized in Figure 3. Simply stated a pin driver performs the function of a precise, controlled, high-speed level translator with an output which can be disabled. The AD345 accepts digital information utilizing high-speed comparators on the D, D and INH, INH from ECL differential outputs for precise timing at logic cross-over and high-noise immunity. The wide input voltage range allows for ECL operation between 0 to -5.2V, or +2V to -3.2V and +5V to 0V. Where timing is less critical TTL or CMOS logic levels may be used to toggle the AD345. By biasing the \overline{D} and **INH** inputs to approximately +1.3V for TTL and $1/2V_{CC}$ for CMOS, the D and INH inputs can be directly stimulated from these single-ended output sources. The output of the pin driver will follow the logic state of the D input providing the inhibit input is low. When the inhibit level is asserted the output will be disconnected and any activity on the input will not be transferred to the output.

Analog information is input to the pin driver through the V_H and V_L terminals as a reference voltage. These analog voltages are then buffered using unity gain followers. The resulting gain error has been characterized in Figures 1 and 2. System timing requirements are achieved through a specified 2.0ns, \pm 500ps driver propagation delay, 1.25V/ns slew rate, defined preshoot and overshoot, and a dynamically trimmed 50 Ω output impedance.

Figure 3. AD345 Block Diagram

LAYOUT CONSIDERATIONS

While it is generally considered good engineering practice to capacitively decouple an active device from the power supplies, it is absolutely essential for a high-power, high-speed device such as the AD345. The engineer merely has to consider the current pulse demanded from the power supply when a dynamic current change of -90mA to +90mA is required in only a few nanoseconds. Therefore, a 0.01µF high frequency decoupling capacitor must be located within 0.25 inches of the $+V_S$ and -V_S terminals to a low impedance ground. A 10µF capacitor should also be situated between the power supplies and ground, however, the proximity to the device is less critical assuming low impedance power supply distribution techniques are employed. Circuit performance will be similarly enhanced and noise minimized by locating a 0.01µF capacitor as close as possible to V_H, V_L and connected to ground. Bypass considerations have been summarized in Figure 4.

An equally important consideration is the use of microwave stripline techniques on the output of the AD345. Failure to preserve the 50Ω output impedance of the pin driver will result in unwanted reflections, ringing and general corruption of the output waveshape. Care should therefore be exercised when selecting etch widths and routing, wire and cable to the device to be tested, and in choosing relays if they are required.

Figure 4. Basic Circuit Decoupling

The quality of the ECL differential driving source to the data inputs of the AD345 is another important consideration. The ECL driving outputs should be located close to the D and \overline{D} inputs of the pin driver. Due to the low propagation delay of the AD345 excessive overshoot at the D input can be coupled to the pin driver output at low pulse amplitudes. In this case, an isolation resistor of approximately 62Ω can be inserted between the ECL output and the D input to the pin driver without any degradation in performance.

APPLICATIONS

The AD345 has been optimized to function as a pin driver in an ATE test system. Shown in Figure 5 is a block diagram illustrating the electronics behind a single pin of a high-speed digital functional test system with the ability to test I/O pins on logic devices. The AD345 pin driver, AD96687 high-speed dual comparator, and the AD394 quad 12-bit voltage DAC would comprise the pin electronics portion of the test system. Such a system could operate at 100MHz in the data mode or 50MHz in the I/O mode, yet fit into a neat trim package.

Figure 5. High-Speed Digital Test System Block Diagram

Figure 6. Definition of Terms

Figure 7. \pm 1 Volt Waveform with Inhibit (Output Terminated into 50 Ω)

Figure 8. Large Signal 50ns Pulse

Figure 9. 5 Volt 50ns Pulse

Figure 10. AD345 Test Setup

Balanced Modulator/Demodulator

AD630

FEATURES

Recovers Signal from \pm 100dB Noise 2MHz Channel Bandwidth 45V/µs Slew Rate - 120dB Crosstalk @ 1kHz Pin Programmable Closed Loop Gains of \pm 1 and \pm 2 0.05% Closed Loop Gain Accuracy and Match 100µV Channel Offset Voltage (AD630BD) 350kHz Full Power Bandwidth Chips Available

PRODUCT DESCRIPTION

The AD630 is a high precision balanced modulator which combines a flexible commutating architecture with the accuracy and temperature stability afforded by laser wafer trimmed thin film resistors. Its signal processing applications include balanced modulation and demodulation, synchronous detection, phase detection, quadrature detection, phase sensitive detection, lock-in amplification and square wave multiplication. A network of onboard applications resistors provides precision closed loop gains of ± 1 and ± 2 with 0.05% accuracy (AD630B). These resistors may also be used to accurately configure multiplexer gains of +1, +2, +3 or +4. Alternatively, external feedback may be employed allowing the designer to implement his own high gain or complex switched feedback topologies.

The AD630 may be thought of as a precision op amp with two independent differential input stages and a precision comparator which is used to select the active front end. The rapid response time of this comparator coupled with the high slew rate and fast settling of the linear amplifiers minimize switching distortion. In addition, the AD630 has extremely low crosstalk between channels of -100dB @ 10kHz.

The AD630 is intended for use in precision signal processing and instrumentation applications requiring wide dynamic range. When used as a synchronous demodulator in a lock-in amplifier configuration, it can recover a small signal from 100dB of interfering noise (see lock-in amplifier application). Although optimized for operation up to 1kHz, the circuit is useful at frequencies up to several hundred kilohertz.

Other features of the AD630 include pin programmable frequency compensation, optional input bias current compensation resistors, common mode and differential offset voltage adjustment, and a channel status output which indicates which of the two differential inputs is active.

PRODUCT HIGHLIGHTS

- 1. The configuration of the AD630 makes it ideal for signal processing applications such as: balanced modulation and demodulation, lock-in amplification, phase detection, and square wave multiplication.
- 2. The application flexibility of the AD630 makes it the best choice for many applications requiring precisely fixed gain, switched gain, multiplexing, integrating-switching functions, and high-speed precision amplification.
- The 100dB dynamic range of the AD630 exceeds that of any hybrid or IC balanced modulator/demodulator and is comparable to that of costly signal processing instruments.
- 4. The op-amp format of the AD630 ensures easy implementation of high gain or complex switched feedback functions. The application resistors facilitate the implementation of most common applications with no additional parts.
- 5. The AD630 can be used as a two channel multiplexer with gains of +1, +2, +3 or +4. The channel separation of 100dB @ 10kHz approaches the limit which is achievable with an empty IC package.
- 6. The AD630 has pin-strappable frequency compensation (no external capacitor required) for stable operation at unity gain without sacrificing dynamic performance at higher gains.
- 7. Laser trimming of comparator and amplifying channel offsets eliminates the need for external nulling in most cases.

SPECIFICATIONS (@ $+25^{\circ}C$ and $\pm V_s = \pm 15V$ unless otherwise specified)

Model		AD630J/	A		AD630K/	В	AE	0630S		
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
GAIN Open Loop Gain ± 1, ± 2 Closed Loop Gain Error Closed Loop Gain Match Closed Loop Gain Drift	90	110 0.1 0.1 2		100	120 2	0.05 0.05	90	110 0.1 0.1 2		dB % % ppm°C
$\label{eq:channel_input} \begin{split} & \text{CHANNEL INPUTS} \\ & V_{IN} \text{ Operational Limit}^1 \\ & \text{Input Offset Voltage} \\ & \text{Input Offset Voltage} \\ & T_{min} \text{ to } T_{max} \\ & \text{Input Bias Current} \\ & \text{Input Offset Current} \\ & \text{Channel Separation $(m$ 10kHz]$} \end{split}$	(– V _S -	+ 4V) to (+ 100 10 100	V _S - 1V) 500 800 300 50	(-V ₈ +	+ 4V) to (+ 1 100 10 100	V _S - 1V) 100 160 300 50	(-V _s +	4V) to (+ 100 10 100	$V_{S} - 1V)$ 500 1000 300 50	Volts μV nA nA dB
$\label{eq:comparameters} \begin{split} \hline & COMPARATOR \\ & V_{IN} Operational Limit^1 \\ & Switching Window \\ & Switching Window \\ & T_{mun} to T_{max}^2 \\ & Input Bias Current \\ & Response Time (- 5mV to + 5mV step) \\ & Channel Status \\ & I_{SINK} (@ V_{OL} = -V_S + 0.4V^3 \\ & Pull-Up Voltage \end{split}$	(-V _S -	+ 3V) to (+ 100 200	$V_{s} = 1.5V)$ ± 1.5 ± 2.0 300 $(-V_{s} + 33V)$	(-V _S +	+ 3V) to (+ 1 100 200	$V_{S} = -1.5V)$ ± 1.5 ± 2.0 300 $(-V_{S} + 33V)$	(-V _s +	3V) to (+ 100 200	$V_{\rm S} = -1.3V)$ ± 1.5 ± 2.5 300 $(-V_{\rm S} + 33V)$	Volts mV mV nA ns mA Volts
DYNAMIC PERFORMANCE Unity Gain Bandwidth Slew Rate ⁴ Settling Time to 0.1% (20V step)		2 45 3			2 45 3			2 45 3		MHz V/µs µs
OPERATING CHARACTERISTICS Common-Mode Rejection Power Supply Rejection Supply Voltage Range Supply Current	85 90 ±5	105 110 4	± 16.5 5	90 90 ±5	110 110 4	± 16.5 5	90 90 ±5	110 110 4	± 16.5 5	dB dB Volts mA
OUTPUT VOLTAGE, @ $R_L = 2k\Omega$ T_{mun} to T_{max} Output Short Circuit Current	±10	25		±10	25		±10	25		Volts mA
TEMPERATURE RANGES Rated Performance – N Package D Package	0 - 25		+ 70 + 85	0 - 25		+ 70 + 85	- 55	N/A	+ 125	ະ ເ

NOTES

If one terminal of each differential channel or comparator input is kept within these limits the other terminal may be taken to the positive supply.

² This parameter guaranteed but not tested. ³ I_{SINK} @ V_{OL} = $(-V_S + 1)$ volt is typically 4mA.

 4 Pin 12 Open. Slew rate with Pins 12 & 13 shorted is typically 35V/µs.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \pm 18V$
Internal Power Dissipation
Output Short Circuit to Ground Indefinite
Storage Temperature, Ceramic Package65°C to +150°C
Storage Temperature, Plastic Package 55°C to + 125°C
Lead Temperature, 10 sec. Soldering + 300°C
Max Junction Temperature

ORDERING GUIDE

Model	Package Options*
AD630JN	Plastic (N-20)
AD630KN	Plastic (N-20)
AD630AD	Ceramic (D-20)
AD630BD	Ceramic (D-20)
AD630SD	Ceramic (D-20)

*See Section 16 for package outline information.

Typical Performance Characteristics

SPECIAL FUNCTION COMPONENTS 9-11

9

CHIP METALLIZATION AND PIN OUT

Dimensions shown in inches and (mm).

CHIP AVAILABILITY

The AD630 is available in laser trimmed, passivated chip form. The figure shows the AD630 metalization pattern, bonding pads and dimensions. AD630 chips are available; consult factory for details.

TWO WAYS TO LOOK AT THE AD630

Figure 10 is a functional block diagram of the AD630 which also shows the pin connections of the internal functions. An alternative architectural diagram is shown in Figure 11. In this diagram, the individual A and B channel pre-amps, the switch, and the integrator-output amplifier are combined in a single op amp. This amplifier has two differential input channels, only one of which is active at a time.

Figure 10. Functional Block Diagram

Figure 11. Architectural Block Diagram

HOW THE AD630 WORKS

The basic mode of operation of the AD630 may be more easy to recognize as two fixed gain stages which may be inserted into the signal path under the control of a sensitive voltage comparator. When the circuit is switched between inverting and noninverting gain, it provides the basic modulation/demodulation function. The AD630 is unique in that it includes laser wafer trimmed thin film feedback resistors on the monolithic chip. The configuration shown below yields a gain of ± 2 and can be easily changed to ± 1 by shifting R_B from its ground connection to the output.

Figure 12. AD630 Symmetric Gain (±2)

The comparator selects one of the two input stages to complete an operational feedback connection around the AD630. The deselected input is off and has negligible effect on the operation.

When channel B is selected, the resistors R_A and R_F are connected for inverting feedback as shown in the inverting gain configuration diagram in Figure 13. The amplifier has sufficient loop gain to minimize the loading effect of R_B at the virtual ground produced by the feedback connection. When the sign of the comparator input is reversed, input B will be de-selected and A will be selected. The new equivalent circuit will be the noninverting gain configuration shown below. In this case R_A will appear across the op-amp input terminals, but since the amplifier drives this difference voltage to zero the closed loop gain is unaffected.

The two closed loop gain magnitudes will be equal when $R_F/R_A = 1 + R_F/R_B$, which will result from making R_A equal to $R_F R_B/(R_F + R_B)$ the parallel equivalent resistance of R_F and R_B .

The 5k and the two 10k resistors on the AD630 chip can be used to make a gain of two as shown here. By paralleling the 10k resistors to make R_F equal 5k and omitting R_B the circuit can be programmed for a gain of ± 1 (as shown in Figure 19a). These and other configurations using the on chip resistors present the inverting inputs with a 2.5k source impedance. The more complete AD630 diagrams show 2.5k resistors available at the noninverting inputs which can be conveniently used to minimize errors resulting from input bias currents.

Figure 13. Inverting Gain Configuration

Figure 14. Noninverting Gain Configuration

CIRCUIT DESCRIPTION

The simplified schematic of the AD630 is shown in Figure 15. It has been subdivided into three major sections, the comparator, the two input stages and the output integrator. The comparator consists of a front end made up of Q52 and Q53, a flip-flop load formed by Q3 and Q4, and two current steering switching cells Q28, Q29 and Q30, Q31. This structure is designed so that a differential input voltage greater than 1.5mV in magnitude

Figure 15. AD630 Simplified Schematic

applied to the comparator inputs will completely select one of the switching cells. The sign of this input voltage determines which of the two switching cells is selected.

The collectors of each switching cell connect to an input transconductance stage. The selected cell conveys bias currents i_{22} and i_{23} to the input stage it controls causing it to become active. The deselected cell blocks the bias to its input stage which, as a consequence, remains off.

The structure of the transconductance stages is such that they present a high impedance at their input terminals and draw no bias current when deselected. The deselected input does not interfere with the operation of the selected input insuring maximum channel separation.

Another feature of the input structure is that it enhances the slew rate of the circuit. The current output of the active stage follows a quasi-hyperbolic-sine relationship to the differential input voltage. This means that the greater the input voltage, the harder this stage will drive the output integrator, and hence, the faster the output signal will move. This feature helps insure rapid, symmetric settling when switching between inverting and noninverting closed loop configurations.

The output section of the AD630 includes a current mirror-load (Q24 and Q25), an integrator-voltage gain stage (Q32), and a complementary output buffer (Q44 and Q74). The outputs of both transconductance stages are connected in parallel to the current mirror. Since the deselected input stage produces no output current and presents a high impedance at its outputs, there is no conflict. The current mirror translates the differential output current from the active input transconductance amplifier into single ended form for the output integrator. The complementary output driver then buffers the integrator output to produce a low impedance output.

OTHER GAIN CONFIGURATIONS

Many applications require switched gains other than the ± 1 and ± 2 which the self-contained applications resistors provide. The AD630 can be readily programmed with 3 external resistors over a wide range of positive and negative gain by selecting R_B and R_F to give the noninverting gain $1 + R_F/R_B$ and subsequently R_A to give the desired inverting gain. Note that when the inverting magnitude equals the noninverting magnitude, the value of R_A is found to be $R_B R_F/(R_B + R_F)$. That is, R_A should equal the parallel combination of R_B and R_F to match positive and negative gain.

The feedback synthesis of the AD630 may also include reactive impedance. The gain magnitudes will match at all frequencies if the A impedance is made to equal the parallel combination of the B and F impedances. Essentially the same considerations apply to the AD630 as to conventional op-amp feedback circuits. Virtually any function which can be realized with simple non-inverting "L network" feedback can be used with the AD630. A common arrangement is shown in Figure 16. The low frequency gain of this circuit is 10. The response will have a pole (-3dB) at a frequency $f \approx 1/(2\pi 100 \text{k}\Omega\text{C})$ and a zero (3dB from the high frequency asymptote) at about 10 times this frequency. The 2k resistor in series with each capacitor mitigates the loading effect on circuitry driving this circuit, eliminates stability problems, and has a minor effect on the pole-zero locations.

As a result of the reactive feedback, the high frequency components of the switched input signal will be transmitted at unity gain

Figure 16. AD630 with External Feedback

while the low frequency components will be amplified. This arrangement is useful in demodulators and lock-in amplifiers. It increases the circuit dynamic range when the modulation or interference is substantially larger than the desired signal amplitude. The output signal will contain the desired signal multiplied by the low frequency gain (which may be several hundred for large feedback ratios) with the switching signal and interference superimposed at unity gain.

SWITCHED INPUT IMPEDANCE

The noninverting mode of operation is a high input impedance configuration while the inverting mode is a low input impedance configuration. This means that the input impedance of the circuit undergoes an abrupt change as the gain is switched under control of the comparator. If gain is switched when the input signal is not zero, as it is in many practical cases, a transient will be delivered to the circuitry driving the AD630. In most applications, this will require the AD630 circuit to be driven by a low impedance source which remains "stiff " at high frequencies. Generally this will be a wideband buffer amplifier.

FREQUENCY COMPENSATION

The AD630 combines the convenience of internal frequency compensation with the flexibility of external compensation by means of an optional self-contained compensation capacitor.

In gain of ± 2 applications the noise gain which must be addressed for stability purposes is actually 4. In this circumstance, the phase margin of the loop will be on the order of 60° without the optional compensation. This condition provides the maximum bandwidth and slew-rate for closed-loop gains of |2| and above.

When the AD630 is used as a multiplexer, or in other configurations where one or both inputs are connected for unity gain feedback, the phase margin will be reduced to less than 20° . This may be acceptable in applications where fast slewing is a first priority, but the transient response will not be optimum. For these applications, the self-contained compensation capacitor may be added by connecting pin 12 to pin 13. This connection reduces the closed loop bandwidth somewhat, and improves the phase margin.

For intermediate conditions, such as gain of ± 1 where loop attenuation is 2, use of the compensation should be determined by whether bandwidth or settling response must be optimized. The optional compensation should also be used when the AD630 is driving capacitive loads or whenever conservative frequency compensation is desired.

OFFSET VOLTAGE NULLING

The offset voltages of both input stages and the comparator have been pre-trimmed so that external trimming will only be required in the most demanding applications. The offset adjustment of the two input channels is accomplished by means of a differential and common mode scheme. This facilitates fine

CHANNEL STATUS OUTPUT

The channel status output, pin 7, is an open collector output referenced to $-V_S$ which can be used to indicate which of the two input channels is active. The output will be active (pulled low) when channel A is selected. This output can also be used to supply positive feedback around the comparator. This produces hysteresis which serves to increase noise immunity. Figure 17 shows an example of how hysteresis may be implemented. Note that the feedback signal is applied to the inverting (-) terminal of the comparator to achieve positive feedback. This is because the open collector channel status output inverts the output sense of the internal comparator.

Figure 17. Comparator Hysteresis

The channel status output may be interfaced with TTL inputs as shown in Figure 18. This circuit provides appropriate level shifting from the open-collector AD630 channel status output to TTL inputs.

Figure 18. Channel Status - TTL Interface

APPLICATIONS: BALANCED MODULATOR

Perhaps the most commonly used configuration of the AD630 is the balanced modulator. The application resistors provide precise symmetric gains of ± 1 and ± 2 . The ± 1 arrangement is shown in Figure 19a and the ± 2 arrangement is shown in Figure 19b. These cases differ only in the connection of the 10k feedback resistor (pin 14) and the compensation capacitor (pin 12). Note the use of the 2.5k Ω bias current compensation resistors in these examples. These resistors perform the identical function in the ± 1 gain case. Figure 20 demonstrates the performance of the AD630 when used to modulate a 100kHz square wave carrier with a 10kHz sinusoid. The result is the double sideband suppressed carrier waveform.

These balanced modulator topologies accept two inputs, a signal (or modulation) input applied to the amplifying channels, and a reference (or carrier) input applied to the comparator.

Applications

Figure 19b. AD630 Configured as a Gain-of-Two Balanced Modulator

Figure 20. Gain-of-Two Balanced Modulator Sample Waveforms

BALANCED DEMODULATOR

The balanced modulator topology described above will also act as a balanced demodulator if a double sideband suppressed carrier waveform is applied to the signal input and the carrier signal is applied to the reference input. The output under these circumstances will be the baseband modulation signal. Higher order carrier components will also be present which can be removed with a low-pass filter. Other names for this function are synchronous demodulation and phase-sensitive detection.

PRECISION PHASE COMPARATOR

The balanced modulator topologies of Figures 19a and 19b can also be used as precision phase comparators. In this case, an ac waveform of a particular frequency is applied to the signal input and a waveform of the same frequency is applied to the reference input. The dc level of the output (obtained by low pass filtering) will be proportional to the signal amplitude and phase difference between the input signals. If the signal amplitude is held constant, then the output can be used as a direct indication of the phase. When these input signals are 90° out of phase, they are said to be in quadrature and the AD630 dc output will be zero.

PRECISION RECTIFIER-ABSOLUTE VALUE

If the input signal is used as its own reference in the balanced modulator topologies, the AD630 will act as a precision rectifier. The high frequency performance will be superior to that which can be achieved with diode feedback and op amps. There are no diode drops which the op amp must "leap over" with the commutating amplifier.

LVDT SIGNAL CONDITIONER

Many transducers function by modulating an ac carrier. A Linear Variable Differential Transformer (LVDT) is a transducer of this type. The amplitude of the output signal corresponds to core displacement. Figure 21 shows an accurate synchronous demodulation system which can be used to produce a dc voltage which corresponds to the LVDT core position. The inherent precision and temperature stability of the AD630 reduce demodulator drift to a second order effect.

Figure 21. LVDT Signal Conditioner

AC BRIDGE

Bridge circuits which use dc excitation are often plagued by errors caused by thermocouple effects, 1/f noise, dc drifts in the electronics, and line noise pick-up. One way to get around these problems is to excite the bridge with an ac waveform, amplify the bridge output with an ac amplifier, and synchronously demodulate the resulting signal. The ac phase and amplitude information from the bridge is recovered as a dc signal at the output of the synchronous demodulator. The low frequency system noise, dc drifts, and demodulator noise all get mixed to the carrier frequency and can be removed by means of a low pass filter. Dynamic response of the bridge must be traded off against the amount of attenuation required to adequately suppress these residual carrier components in the selection of the filter. Figure 22 is an example of an ac bridge system with the AD630 used as a synchronous demodulator. The oscilloscope photograph shows the results of a 0.05% bridge imbalance caused by the 1Meg resistor in parallel with one leg of the bridge. The top trace represents the bridge excitation, the upper-middle trace is the amplified bridge output, the lower-middle trace is the output of the synchronous demodulator and the bottom trace is the filtered dc system output.

This system can easily resolve a 0.5ppm change in bridge impedance. Such a change will produce a 3.2mV change in the low pass filtered dc output, well above the RTO drifts and noise.

Figure 22. AC Bridge System

Figure 23. AC Bridge Waveforms

LOCK-IN AMPLIFIER APPLICATIONS

Lock-in amplification is a technique which is used to separate a small, narrow band signal from interfering noise. The lock-in amplifier acts as a detector and narrow band filter combined. Very small signals can be detected in the presence of large amounts of uncorrelated noise when the frequency and phase of the desired signal are known.

The lock-in amplifier is basically a synchronous demodulator followed by a low pass filter. An important measure of performance in a lock-in amplifier is the dynamic range of its demodulator. The schematic diagram of a demonstration circuit which exhibits the dynamic range of an AD630 as it might be used in a lock-in amplifier is shown in Figure 24. Figure 25 is an oscilloscope photo showing the recovery of a signal modulated at 400Hz from a noise signal approximately 100,000 times larger; a dynamic range of 100dB.

Figure 25. Lock-In Amplifier Wave Forms

The test signal is produced by modulating a 400Hz carrier with a 0.1Hz sine wave. The signals produced, for example, by chopped radiation (IR, optical, etc.) detectors may have similar low frequency components. A sinusoidal modulation is used for clarity of illustration. This signal is produced by a circuit similar to Figure 19b and is shown in the upper trace of Figure 25. It is attenuated 100,000 times normalized to the output, B, of the summing amplifier. A noise signal which might represent, for example, background and detector noise in the chopped radiation case, is added to the modulated signal by the summing amplifier. This signal is simply band limited clipped white noise. Figure 25 shows the sum of attenuated signal plus noise in the center trace. This combined signal is demodulated synchronously using phase information derived from the modulator, and the result is low pass filtered using a 2-pole simple filter which also provides a gain of 100 to the output. This recovered signal is the lower trace of Figure 25.

The combined modulated signal and interfering noise used for this illustration is similar to the signals often requiring a lock-in amplifier for detection. The precision input performance of the AD630 provides more than 100dB of signal range and its dynamic response permits it to be used with carrier frequencies more than two orders of magnitude higher than in this example. A more sophisticated low pass output filter will aid in rejecting wider bandwidth interference.

Universal Trigonometric Function Converter

AD639*

FEATURES

Complete, Fully-Calibrated Synthesis System All Standard Functions: Sin, Cos, Tan, Cosec, Sec, Cot, Arcsin, Arccos, Arctan, etc. Accurate Law Conformance (Sine to 0.02%) Angular Range of ±500° (Sine Mode) Function Programmable by Pin Strapping 1.5MHz Bandwidth (Sine Mode) Multiplication via External Amplitude Input

APPLICATIONS

Continuous Wave Sine Generators Synchro Sine/Cosine Multiplication Coordinate Conversion and Vector Resolution Imaging and Scanning Linearization Circuits Quadrature and Variable Phase Oscillators

PRODUCT DESCRIPTION

The AD639 is a high accuracy monolithic function converter which provides all the standard trigonometric functions and their inverses via pin-strapping. Law conformance and total harmonic distortion surpass that previously attained using analog shaping techniques. Speed also exceeds that possible using ROM look-up tables and a DAC; in the sine mode, bandwidth is typically 1.5MHz. Unlike other function synthesis circuits, the AD639 provides a smooth and continuous sine conformance over a range of -500° to $+500^{\circ}$. A unique sine generation technique results in 0.02% law conformance errors and distortion levels of -74dB in triwave to sinewave conversion.

The AD639 is available in three performance grades. The A and B are specified from -25° C to $+85^{\circ}$ C and the S is guaranteed over the extended temperature range of -55° C to $+125^{\circ}$ C. All versions are packaged in a hermetic TO-116, 16-pin ceramic DIP.

PRODUCT HIGHLIGHTS

The AD639 generates a basic function which is the ratio of a pair of independent sines:

$$W = U \frac{\sin (x_1 - x_2)}{\sin (y_1 - y_2)}$$

*Protected by U.S. Patent Numbers 3,887,863; 4,475,169; 4,476,538.

AD639 FUNCTIONAL BLOCK DIAGRAM

The differential angle arguments are proportional to the input voltages X and Y scaled by 50°/V. Using the 1.8V on-board reference any of the angular inputs can be preset to 90°. This provides the means to set up a fixed numerator or denominator $(\sin 90^\circ = 1)$ or to convert either sine function to a cosine $(\cos\theta = \sin (90^\circ - \theta))$. Using the ratio of sines, all trigonometric functions can be generated (see Table I).

The amplitude of the function is proportional to a voltage U, which is the sum of an external differential voltage $(U_1 - U_2)$ and an optional internal preset voltage (U_p) . The control pin UP selects a 0V, 1V or 10V laser-trimmed preset amplitude which may be used alone $(U_1 - U_2 = 0)$ or internally added to the $U_1 - U_2$ analog input. At the output, a further differential voltage Z can be added to the ratio of sines to obtain the offset trigonometric functions versine $(1 - \cos \theta)$, coversine $(1 - \sin \theta)$ and exsecant $(1 - \sec \theta)$. A gating input is available which may be used to enable or disable the analog output. This pin also acts as an error flag output in situations where a combination of inputs will cause the output to saturate or to be undefined.

In the inverse modes, the argument can be the ratio of two input signals. This allows the user to compute the phase angle between the real and imaginary components of a signal using the arctangent mode.

$\label{eq:specific-specific-specified} Specific Ations \mbox{ (typical $@T_A=25^{\circ}C$, $V_S=\pm15V$, U or $U_p=10V$ unless otherwise specified)}$

			AD639A			AD639B			AD639S		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
SYSTEM PERFORM	IANCE										
SINE AND COSINE	[
MODE ACCURACY											
Law Conformance ¹	-90° to $+90^{\circ}$, U = 10V		0.02			0.02			0.02		%
Total Harmonic											
Distortion ²	$(a \ 10 \text{kHz}, \text{U} = 10 \text{V})$		- 74			- 74			- 74		dB
Mismatch of Six Peaks	- 540° to + 540°		0.05			0.05			0.05		%
Output Noise	$(a \ 10 \text{kHz}, \text{U} = 10 \text{V})$		2.8			2.8			2.8		$\mu V/\sqrt{Hz}$
	$(a \cdot 10 \text{kHz}, U = 1 \text{V})$		0.5			0.5			0.5		$\mu V/V Hz$
PEAK ABSOLUTE ERROR											
Sine Mode	-90° to $+90^{\circ}$, U _p = 10V		0.4	0.8		0.2	0.4		0.2	0.8	%FS
	T _{min} to T _{max}		1.0			0.8	1.8		1.2	2.5	%FS
Cosine Mode	-90° to $+90^{\circ}$, U _p = 10V	1	0.6	1.2		0.4	0.7		0.5	1.2	%FS
	T _{min} to T _{max}		1.5			1.2	2.0		1.7	2.7	%FS
Sine or Cosine	-180° to $+180^{\circ}$, U _p = 10V		0.8	1.5		0.5	0.8		0.6	1.5	%FS
	T _{min} to T _{max}		1.7			1.3	2.5		2.1	3.0	%FS
	-360° to $+360^{\circ}$ U = 10V		12			10			0.9		%FS
	500 10 + 500 , Cp = 10 V		1.2			1.0			0.7		/01 0
	-90° to $+90^{\circ}$, $U_{p} = 1V$		1.5	2.5		1.0	1.7		0.9	2.5	%FS
	I min to I max		1.5			1.0	2.5		2.0	3.5	% F 5
	-180° to $+180^{\circ}$, U _p = 1V		1.5	3.0		1.2	2.0		1.1	3.0	%FS
	T _{min} to T _{max}		1.7			13	2.5		2.3	4.0	%FS
	-360° to $+360^{\circ}$, U _p = 1V		2.0			1.8			1.5		%FS
vs Supply	-360° to $+360^{\circ}$. U ₋ = 10V		0.02			0.02			0.02		%FS/V
	$V_{c} = \pm 15V \pm 1V$		0.02			0.02			0.02		
	2008 to 12008 II IV		0.07			0.07			0.07		0/ DO AL
	-300° to $+300^{\circ}$, $U_p = 1^{\circ}$		0.07			0.07			0.07		%P5/V
	$v_s = \pm 15v \pm 1v$										
TANGENT MODE ACCURACY											
Peak Error ³	-45° to $+45^{\circ}$, $U_{p} = 10V$		0.5	3.5		0.5	2.0		0.5	3.5	%FS
	I min to I max		2.5	5.0		1.5	2.8		3.0	25	%FS
	-45° to $+45^{\circ}$, $U_{p} = 1V$		0.9	5.0		0.9	5.0		0.9	2.5	%F5 %F5
	I min to I max		4.0			2.0	5.0		1.5	5.0	7013
ARCTANGENT MODE ACCURACY											
Peak Angular Error											
Fixed Scale	$U_p = 1V$		0.5			0.5			05		Degrees
Variable Scale	$U = 0.1V, -11V \le Z \le +11V$		1.5			1.5			1.5		Degrees
	$U = 10V, -11V \le Z \le \pm 11V$		0.2			0.2			0.2		Degrees
SECTIONAL SPECIFICA	TIONS										
ANGLE INPUTS (X1 & X2, Y1 & Y2)4											
Input Resistance to COM			3.6			3.6			3.6		kΩ
Nominal Scaling Factor			50			50			50		°/V
X1 & X2 Inputs											
Angular Range For											
Specified Error $(X1 - X2)$		- 360		+ 360	- 360		+ 360	- 360		+ 360	Degrees
Scaling Error X1 or X2			0.2	0.65		0.2	0.65		02	0.65	% D
Angular Offset $XI = XZ = 0$			0.1	0.3		0.1	0.3		0.1	0.3	Degrees
A reulan Dance For											
Angular Kange For Specified Error (V1 – V2)				1 190			+ 180	0		+ 180	Degrees
Scaling Error V1 or V2		, v	0.2	2.0	0	0.2	20	v	0.2	10	%
Angular Offset $Y1 = Y2 = 0$			0.1	1.0		0.1	1.0		0.1	0.5	Degrees
A MDLITUDE INDUTS (UL & U2)											8
Input Peristance to COM			50			50			50		۴O
Nominal Gain	X - V = VR W to 71		1			1			1		V/V
Gain Error	I = 0.1 to 10V		0.01	0.5		0.01	0.5		0.01	0.5	%
Guin Error	T to T		0.08	0.5		0.08	0.5		0.25	0.5	%
Voltage Offset	$U_1 = U_2 = 0V$.3.0	10		3.0	10		3.0	10	mV
	T _{min} to T _{max}		3.0			3.0			4.0		mV
Linearity Error	$0 \le U_1 - U_2 \le 10V$		0.1			0.1			0.1		%
AMPLITUDE PRESET (UP)											
1V Preset Enabled	UP tied to $-V_{c}$										
Amplitude Accuracy			0.4	2.0	l	0.4	2.0		0.4	2.0	%
• • • • •	T _{mun} to T _{max}	1	1.5			1.5			2.0		%
10V Preset Enabled	UP tied to $+V_S$										
Amplitude Accuracy	ŭ	1	0.1	0.55		0.1	0.55		0.1	0.55	%
	T _{min} to T _{max}	ł	1.0			1.0			1.5		%
INVERSE INPUTS (Z1 & Z2)							1				
Input Resistance to COM			50			50			50		kΩ
-		I				1					

D	Continion		AD639A			AD639B			AD639S		
Parameter	Conditions	Min	1 yp	Max	Min	1 yp	Max	Min	I yp	Max	Units
SIGNAL OUTPUT (W) ⁵ Small Signal Bandwidth W to Z1 Slew Rate Output Voltage Swing Short Circuit Current Output Offset	$\begin{split} R_{L} \geq 2k\Omega, \ C_{L} \leq 100 pF \\ Cc = 0 \\ Cc = 200 pF \\ Cc = 0 \\ Z_{1} = Z_{2} = 0, \ U_{p} = 10 \\ T_{min} \ to \ T_{max} \end{split}$	±11 20	1.5 30 30 ±13 30 5 10	45 30	±11 20	$ \begin{array}{r} 1.5 \\ 30 \\ \pm 13 \\ 30 \\ 5 \\ 10 \\ \end{array} $	45 30	±11 20	1.5 30 30 ±13 30 5	45 30	MHz kHz V/µS V mA mV mV
	$Z_1 = Z_2 = 0, U_p = 1V$ T _{min} to T _{max}		7	20		7	20			20	mV mV
$\label{eq:VOLTAGE REFERENCE (VR)} \begin{split} & VOLTAGE REFERENCE (VR) \\ & R_L \geq = 1.8 k\Omega \\ & Nominal Output \\ & Output Voltage Tolerance \\ & Supply Regulation \\ & Maximum Output Current \end{split}$	$T_{man} to T_{max} + V_{S} = 5V to 18V$		+ 1.8 0.05 0.08 150 4	0.45		+ 1.8 0.05 0.08 150 4	0.45 0.5		+ 1.8 0.05 0.2 150 4	0.45 0.6	V % % µV/V mA
GATE I/O (GT) Switching Threshold as an Input Voltage Output	Output Valid Output Invalid Error, $R_L = 5k\Omega$ No Error, $R_L = 5k\Omega$		+ 1.5 0.1 + 2.25 - 0.25			+ 1.5 0.1 + 2.25 - 0.25			+ 1.5 0.1 + 2.25 - 0.25		v v v v
POWER SUPPLIES Operating Range + V _S Quiescent Current - V _S , Quiescent Current	U = X = 0V, Y = Vr $U = X = 0V, Y = Vr$	±5.5	8.0 5.5	±18 11 7.5	±5.5	8.0 5 5	±18 11 7.5	±5.5	8.0 5.5	±18 11 7.5	V mA mA
TEMPERATURE RANGE Operating, Rated Performance Storage		- 25 - 65		+ 85 + 150	- 25 - 65		+ 85 + 150	- 55 - 65		+ 125 + 150	°C °C
PACKAGE OPTION ⁶ D-16											

NOTES Intrinsic accuracy measured at an amplitude of 10V using external adjustments to absorb residual errors in angular scaling, angular offset, amplitude scaling and output offset ²Using a time and amplitude symmetric triangular wave of +3 6V peak-to-peak and external adjustments to absorb residual errors in angular scaling and offset ³Full-scale is defined as the ideal output when the angle input is at either end of the limit specified ⁴Specifications for the X inputs apply for range U = 1 V to 10V, while the Y input errors are specifically given for U = 1V ⁴When driving loads of less than 4kΩ, a 25pF capacitor from pin 15 to pin 9 avoids possible instability, although this is unnecessary when C₁ is greater than 150pF 6See Section 16 for package outline information.

Specifications subject to change without notice

Specifications stopper to tange into the data in the second state of the second state

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	AD639A,B	AD639S
Supply Voltage	±18V	*
Internal Power Dissipation	300mW	*
Output Short-Circuit to Ground	Indefinite	*
Input Voltages X_1, X_2, Y_1, Y_2^1	±12V	*
Input Voltages U_p , U_1 , U_2 , Z_1 , Z_2^1	±25V	*
Operating Temperature Range	- 25°C to + 85°C	- 55°C to + 125°C
Storage Temperature Range	-65°C to +150°C	*
Lead Temperature, Soldering	60sec, + 300°C	*

NOTES

*Same as AD639A, B Specifications

¹These inputs are purely resistive and the maximum inputs are determined by resistor dissipation limits, not the supply voltages.

sin (θ)	$= \frac{\sin(\theta)}{1} = \frac{\sin(\theta-0)}{\sin(90^\circ-0)}$	$\operatorname{cosec}(\theta) = \frac{1}{\sin(\theta)} = \frac{\sin(90^\circ - 0)}{\sin(\theta - 0)}$
cos (θ)	$= \frac{\cos(\theta)}{1} = \frac{\sin(90^\circ - \theta)}{\sin(90^\circ - 0)}$	$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{\sin(90^\circ - 0)}{\sin(90^\circ - \theta)}$
tan (θ)	$= \frac{\sin(\theta)}{\cos(\theta)} = \frac{\sin(\theta-0)}{\sin(90^\circ-\theta)}$	$\cot an(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\sin(90^\circ - \theta)}{\sin(\theta - 0)}$

_			
10	n	0	
ıa	ω	С.	

Principles Of Operation

Figure 1 is a functional equivalent of the AD639, intended to assist in understanding and utilizing the device: it is not a literal representation of the internal circuitry¹. Two similar sine-shaping networks accept input voltages X_1 , X_2 , Y_1 and Y_2 , proportional to the corresponding angles x_1 , x_2 , y_1 and y_2 , with a scaling factor of 50°/V (20mV/°).

Figure 1. Equivalent Block Schematic of the AD639

The first of these networks generates an output proportional to the sine of $\mathbf{x} = (\mathbf{x}_1 - \mathbf{x}_2)$ over a useful operating range in excess of -500° to $+500^\circ$ (see Figure 3). The accuracy of the function over the central $\pm 180^\circ$ is excellent, a consequence of the optimized network design, further enhanced by precision laser wafer trimming during manufacture. The output of the X-network is multiplied by the amplitude-control voltage, U. This may be

¹For details of the sine-network theory and design, see "A Monolithic Microsystem for Analog Synthesis of Trigonometric Functions and their Inverses," Barrie Gilbert, *IEEE Journal of Solid-State Circuits*, Vol. SC-17, No. 6, Dec. 1982, pp 1179-1191. Reprints available. provided by applying inputs to U1 or U2, or pre-selected to be 1V or 10V by a control input to UP, or in combination; that is, the function amplitude is $U = (U_1 - U_2) + U_p$.

The second network generates an output proportional to the sine of $y = (y_1 - y_2)$. Although the X and Y networks are similar, other design considerations result in a smaller angular range for the Y-input. The principal range is from 0° to +180°; in the adjacent ranges (+180° to +360° and 0° to -180°) the error trap is activated.

The ratio of the two sines is generated by *implicit* division, rather than by use of a separate analog divider as indicated in Figure 1, and is summed with the voltage $Z = (Z_1 - Z_2)$. The difference is applied to the high-gain output op-amp. In the *normal* modes (see below) Z1 is connected to the output W, and Z2 is grounded. Under these conditions, the function is

$$W = U \frac{\sin(x_1 - x_2)}{\sin(y_1 - y_2)}$$

Either sine function can be converted to the cosine by applying the input to X2 or Y2 and introducing a $+90^{\circ}$ offset, since

Figure 2. Connections for the Sine Mode with Amplitude Preset to 10V

Interface Details

 $\cos(\theta) = \sin(90^\circ - \theta)$. For example, by connecting the +1.8V reference output at pin 6 (VR) to X1 and the angle voltage, V_{θ} , to X2 the numerator becomes the cosine of angle θ . Alternatively, by connecting VR to either X1 or Y1 and grounding X2 or Y2, the numerator or denominator, respectively, becomes unity, since $\sin(90^\circ - 0) = 1$. By these means, the full set of normal functions shown in Table I can be generated. All functions can be sign-inverted by interchanging the X-inputs. The Z2 input can be used to sum another function to the output, W, with unity gain.

In addition to the *normal* modes providing sine, cosine, tangent, cosecant, secant and cotangent functions, the AD639 can generate the *offset* functions such as the versine, $1 - \cos(\theta)$, discussed below. The *inverse* functions such as arc-sine, arc-cosine and arc-tangent, are also supported by the AD639, by closing the feedback loop through the corresponding *normal* function. The output angle is limited to the principal range (for example, -90° to $+90^{\circ}$ for the arc-sine and arc-tangent, 0° to $+180^{\circ}$ or -180° to 0° for the arc-cosine).

TERMINOLOGY

When discussing a device having as many inputs and operating modes as the AD639, it is important to clarify the nomenclature and scaling conventions. In all cases *angles* are denoted by lowercase letters (x, y, θ) and have the dimension of angular degrees. Upper-case letters (A, V, U, W, X, Y and Z) refer to *voltages*; subscripts are used to refer to one or the other of a differential pair such as $X_1 - X_2$, or the preset value U_p . Numbered upper-case letters to the variable name or the package pin.

THE ANGLE INPUTS: X1, X2, Y1, Y2

The angles $x = (x_1 - x_2)$ and $y = (y_1 - y_2)$ are directly proportional to the differential voltages $X = (X_1 - X_2)$ and $Y = (Y_1 - Y_2)$ respectively, with a scaling factor of 50°/V. The X-inputs can be driven to $\pm 12V$ pk, that is $\pm 600^\circ$. The Y-input should be limited to 0 to +3.6V (0° to $+180^\circ$) to satisfy certain internal requirements. The resistance at these inputs is nominally $3.6k\Omega$ to COM.

The sine function exhibits odd-order symmetry: $\sin(-\theta) = -\sin(\theta)$. By simply interchanging the X-inputs, the overall sign of any function can be inverted. The Y-inputs can also be interchanged to allow operation with a negative input voltage (0 to -3.6V) while maintaining the correct angular range.

It may occasionally be desirable to reduce the angular scaling factor. For example, to convert a triwave of $\pm 10V$ amplitude into a continuous sinewave requires a scaling factor of $9^\circ/V$ (since $\pm 10V$ corresponds to $\pm 90^\circ$). This can be achieved by using a resistor (in this case, about $16.4k\Omega$) in series with the X1 input; a resistor of equal value must be inserted in series with the X2 input to minimize angular offset error. Note that the on-chip thin-film resistors are not trimmed to absolute value, so a scaling adjustment is needed; however, once set, scaling will be stable.

THE AMPLITUDE-CONTROL INPUTS: U1, U2, UP

The amplitude of the function can be determined either by the application of an external voltage to the U1 and U2 inputs, or by enabling the internal preset voltage U_p by taking the control pin UP low or high, or via a combination of these modes. The net amplitude is $U = (U_1 - U_2) + U_p$. This sum must be greater

than zero and less than $|-V_s|$; voltages beyond these limits activate the error trap.

In the external mode, the differential voltage $(U_1 - U_2)$ will generally be in the range 10mV to 10V. Positive inputs are applied to U1 while U2 is grounded; for negative inputs, interchange U1 and U2. The input resistance at U1 and U2 is nominally 50k Ω to analog common. A nominal bias current of -50μ A is needed at the U-inputs; zero-valued inputs must therefore be connected to common to prevent offset error. The gain from the U-interface to the output is trimmed to be unity for sin(x)/sin(y)=1. The effective gain can be lowered using a series resistor; to avoid offset an equal resistor must be used in the zero-valued input.

The UP control pin may be left unconnected (or grounded) to disable the internal amplitude preset, connected to $+V_s$ to set $U_p = 10V$, or to $-V_s$ to set $U_p = 1V$. An external resistor of $75k\Omega (\pm V_s = 5V)$ to $360k\Omega (\pm V_s = 15V)$ can be inserted in series with UP (which also has an input resistance of typically $50k\Omega$) to minimize power dissipation. Alternatively, V_r can be used to enable $U_p = 10V$ for ambient temperatures below $+60^{\circ}$ C. The UP input can be used to switch the output on or off under logic control, but requires a relatively long response time. The GT interface is more suitable for this purpose and it allows gating to any amplitude, U not just to the preset values of 1V or 10V.

THE REFERENCE OUTPUT: VR

The voltage V_r is laser-trimmed to +1.8V with respect to analog common. It can be used to fix the angle x or y to 90° and thus set sin(x) or sin(y) to unity. It can also provide a 90° offset to convert the numerator or denominator to a cosine function. Stable offsets less than 90° may be introduced using a voltage-dividing series-resistor (nominally $3.6k\Omega$ for 45°). V_r can also be used as the amplitude input voltage $U_1 - U_2$, or as a convenient control input to set $U_p = 10V$ for ambient temperatures below $+60^{\circ}C$. This output is short-circuit protected and can provide up to 4mA total load current.

THE ERROR-TRAP AND GATE: GT

In some applications it may be useful to know that the output is severely in error due to a dynamic combination of inputs. For example, the tangent, cotangent, secant and cosecant all exhibit regions where the function increases sharply for small angular changes, and the output may easily saturate. Consider the case where (10V) tan (θ) is being generated. W is 10V for $\theta = 45^{\circ}$, and the theoretical output of 17.3V at $\theta = 60^{\circ}$ cannot be achieved using \pm 15V supplies. Likewise, the output is invalid whenever the angle y is outside of a valid range (principally 0 to + 180^o), or when U<0 or U>|-V_s|. Under such conditions the AD639 generates a HIGH output at pin 11 and simultaneously clamps the analog output to zero (in fact, to the voltage Z₂). Grounding GT disables the error trap.

The GT pin may also be used as an *input* to gate the function output. This is achieved by raising pin 11 to a voltage above +1.5V. Response time is typically 500ns for a logic drive of 0 to +2V, and the ON/OFF ratio is greater than 83dB when used as a continuous-wave sine converter with a single-sided $\pm 1.8V$ triwave drive at frequencies up to 10kHz, or 63dB at 100kHz; the feedthrough is entirely capacitive, and is equivalent to 5pF between X1 or X2 and the op-amp summing node. Feedthrough can be minimized by using a balanced drive to X1 and X2.
Operation In Normal Modes

In normal modes, the Z-input establishes a feedback path around the output op-amp, by connecting Z1 to the output, W, and Z2 to the ground associated with the load circuit. For the highest accuracy Z1 can be used to sense the output at the load terminals. Similarly, zero-valued angle inputs and the angle common (pin 5) should be connected to the ground associated with the source circuitry.

SINE MODE

The AD639 can generate either (1) a low-distortion continuous sinewave from a repetitive triwave input or (2) a high-accuracy sine function for use in computational applications. In most cases, the choice of preset or externally-controlled amplitude will make little difference to distortion or accuracy, and both methods are used in this section. In all of the *normal* modes, the Z2 input can be used either to sum a further signal to the output (or introduce an optional output offset trim). The denominator is set to unity by making $y = 90^\circ$, using the +1.8V output. Figure 2 shows typical connections. The 10V preset is selected, using V_r as a control input to UP, and the ideal output is (10V)sin(x). In practice, five basic types of error arise:

- X-angle scaling error: The amount by which the angle generated for each volt of X-input differs from 50°. In triwave-to-sinewave (CW) applications this introduces odd-order harmonic distortion, and is indistinguishable from an incorrect triwave amplitude.
- 2. X-angle offset error: The actual angle generated when $X = (X_1 X_2) = 0$. In CW applications this introduces evenorder harmonic distortion, as a non-zero mean in the triwave would.
- 3. Amplitude scaling error: The amount by which the peak-to-peak amplitude of the sinewave differs from the ideal value, U/sin(y). This error is usually critical only in computational applications. Errors associated with the Y-network also affect the amplitude in the sine mode.
- 4. Output offset error: The amount by which the mean value of the sinewave differs from zero (strictly, the voltage on Z2). This error is only important in computational applications. Note that the output may also be non-zero due to angular offset on the X-input. For example, the typical specified Xangle offset of 0.1° introduces an output error of 17.45mV when U/sin(y) = 10V, more than three times the specified mean offset component of 5mV.
- 5. Law-conformance error: The residual deviation between the output function and the ideal function when all of the above errors have been removed by trimming during manufacture or further external trimming, limiting the ultimate accuracy of the function.

Figure 3 shows the function when driven well beyond the specified angular range, using a differential X-input of $\pm 18V$ peak. This also shows the AD639's ability to drive $\pm 15V$ into a 600 Ω load, with supplies of $\pm 18V$. Using an accurate data-acquisition system the output can be compared to a computer-generated sine function. When the first four types of errors are trimmed out, the peak error over the full input range is typically less than 0.5%. Over the central -90° to $+90^{\circ}$, the peak law-conformance error is typically only 0.02%. Figure 4 shows the law conformance for four typical samples of AD639. The differential signal interfaces simplify the inclusion of optional offset correction to any of the variables.

Figure 3. Output Function for Peak X-Input of \pm 18V, with U = 15V, $R_L = 600\Omega$ ($\pm V_S = 18V$)

Figure 4. Residual Error Over Central 180° Using External Trimming

HARMONIC DISTORTION

The AD639 can generate continuous sinewaves of very low distortion using a linear, highly-symmetric triangle-wave of $\pm 1.8V$ amplitude. Imperfections in the triwave will cause the following errors:

- 1. *Incorrect amplitude*: This causes odd-order distortion. Each 1% error (either too large or too small) generates 0.25% of HD3, 0.0833% of HD5 and a total harmonic distortion (THD) of 0.27% (-51.42dBs).
- 2. Baseline offset: This causes even-order distortion. Each millivolt of offset in a 1.8V triwave generates 0.037% of HD2, 0.0074% of HD4 and a THD of 0.038%, as well as a DC offset of 0.055% of the output amplitude.
- 3. Time-asymmetry: The run-up time, t_1 , and run-down time, t_2 , of the triwave may be unequal. This causes both odd- and even-order harmonics. Let the asymmetry in percent be $p = 100(t_1 t_2)/(t_1 + t_2)$. The even-order terms are proportional to p; the odd-order terms increase as p^2 . A 1% time-asymmetry generates 0.57% of HD2, 0.00625% of HD3, 0.043% of HD4 and 0.00167% of HD5, and a THD of -44dBs. There is no DC term.
- 4. Amplitude-nonlinearity: This can take on many forms, such as an exponential nonlinearity in the triwave, amplitude compression, and so on. Distortion can be calculated for various special cases. Fortunately, it is fairly easy to avoid these types of imperfections in the triwave generator using appropriate design methods.

Normal Modes

When triwave errors are minimized, harmonic distortion can be as low as 0.01%. Figure 5 shows the output spectrum at 10kHz, with an output amplitude of 20V pk-pk and a load resistance of 10k Ω . An HP3325A synthesizer/function generator was used to produce the triwave. Distortion rises only slightly when using the minimum specified load of 2k Ω ; in fact, the AD639 can drive loads down to 600 Ω . At \pm V_s = \pm 18V, sine amplitudes of \pm 15V (10.6V rms, or 225mW of load power) can be generated, with typically 0.03% HD2 and HD3.

Figure 5. Spectrum of 10V Sine Output at 10kHz; HD2 = -88dBs, HD3 = -85.5dBs

COSINE MODE

The cosine function is generated by offsetting the sine by 90° using V_r. The X-input is connected to X2 and VR to X1; then

$$W = U \frac{\sin (90^{\circ} - x)}{\sin (90^{\circ} - 0)} = U \cos (x)$$

Connections for the cosine are shown in Figure 6; the amplitude in this case is determined externally, by way of illustration. The angular range now extends from -400° to $+600^{\circ}$, with highest accuracy between 0° and $+180^{\circ}$.

TANGENT AND COTANGENT MODES

The tangent function is provided by the connections shown in Figure 7. The angle voltage, corresponding to θ , is applied both to the numerator, set to the sine mode, and the denominator, set to the cosine of the same angle:

$$W = U \frac{\sin (\theta - 0)}{\sin (\theta 0^{\circ} - \theta)} = U \frac{\sin (\theta)}{\cos (\theta)} = U \tan (\theta)$$

Most applications require accurate operation for angles up to nearly $\pm 90^{\circ}$ and accordingly U is preset to 1V (rather than 10V). Under these conditions, W = 1V when $\theta = 45^{\circ}$ and 11.43V when $\theta = 85^{\circ}$. Using 15V supplies, the output op-amp will be unable to generate the tangent much beyond this point: at only 86° it would theoretically need to reach 14.3V. For an input exceeding 90° in either direction the denominator becomes negative, and the error trap is enabled. Figure 8 shows the function for inputs up to $\pm 2.5V (\pm 125^{\circ})$.

The errors associated with the sine mode, (see above) apply to the tangent mode also, but the total error in the tangent, cosecant, secant and cotangent modes (when the Y-input is also varied) are higher, since the Y network is not trimmed and the angular

Figure 6. Connections for the Cosine Mode with External Amplitude Control

Figure 7. Connections for Tangent Mode with Amplitude Preset to 1V

Figure 8. The Tangent Output for Angle Inputs Up to \pm 125° (Error Trap Activated Above 85°)

scaling and offset errors of this network are absorbed during trimming of the output in the sine mode.

The cotangent is generated by interchanging numerator and denominator. The principal range is now from 0 to +180°, and the output (1V)cot (θ) ranges from +11.43V at θ =5°, through zero at θ =90°, to -11.43V at θ =175°.

SECANT AND COSECANT MODES

In secant and cosecant modes, the numerator is fixed to unity by connecting X1 to VR and X2 to analog common. For the secant, angle voltage A is connected to Y2 and Y1 is tied to VR; then

$$W = U \frac{\sin(90^\circ - 0)}{\sin(90^\circ - \theta)} = U \frac{1}{\cos(\theta)} = U \sec(\theta)$$

The principal range is -90° to $+90^{\circ}$. The most practical amplitude scaling is provided using the U-preset of 1V, when the output ranges from +11.47V at $\theta = -85^{\circ}$ and $+85^{\circ}$, to +1V at $\theta = 0$. The cosecant differs only slightly: the angle input is connected to Y1 and Y2 is connected to analog common, making the denominator sin (θ). The principal range is now 0 to $+180^{\circ}$. When U = 1V the output is +11.47V at $\theta = +5^{\circ}$ and $+175^{\circ}$, and +1V at $\theta = 90^{\circ}$.

OFFSET MODES

The versine, vers $(\theta) = 1 - \cos(\theta)$, coversine, covers $(\theta) = 1 - \sin(\theta)$, and exsecant, exsec $(\theta) = 1 - \sec(\theta)$ involve the addition of a constant term to one of the normal trigonometric functions. These can be generated with the AD639 using the Z2 input to add a voltage to the output proportional to the amplitude of the basic function. In the versine and coversine modes this is simply the same voltage as applied to U1 (U2 grounded) to set up the amplitude of the sign-inverted cosine or sine function, respectively:

 $\mathbf{W} = \mathbf{U} - \mathbf{U}\mathbf{f}(\theta) = \mathbf{U}(1 - \mathbf{f}(\theta))$

In these two modes the output starts at zero and has a peak value of twice the amplitude voltage, U.

For the exsecant a *negative* voltage is added at Z2 and this same voltage is applied to U2 with U1 grounded; this satisfies the requirement that the sign of $U_1 - U_2$ be positive. (See comments on the Amplitude Control Inputs). The angle inputs are set up for the secant; the principal range is still -90° to $+90^\circ$, but the output is now zero when the input angle is zero.

OPERATION AT LOW SUPPLY VOLTAGES

The signal ranges at the angle interfaces are essentially independent of the supply voltages. In almost all cases, the primary limitation to the function's range will arise at the output, W, which can swing to within approximately 2V of either supply. For example, the X-input may have a peak value of $\pm 12V (\pm 600^\circ)$ even when using $\pm 5V$ supplies.

Inverse Function Modes

The AD639 generates the inverse trigonometric functions by closing the feedback loop around the output op-amp through the *angle* inputs, rather than through the Z-interface, resulting in a nonlinear feedback system. To understand this, note first that the *general* transfer function (with UP disabled) is

$$\mathbf{W} = \mathbf{A}_{OL} \left[(\mathbf{U}_1 - \mathbf{U}_2) \frac{\sin(\mathbf{x}_1 - \mathbf{x}_2)}{\sin(\mathbf{y}_1 - \mathbf{y}_2)} - (\mathbf{Z}_1 - \mathbf{Z}_2) \right]$$

where A_{OL} is the open-loop gain of the output op-amp (typically 85dB). Provided that the overall feedback remains negative, the loop can be closed in many ways, so as to force the quantity inside the brackets to a null, when

$$\frac{\sin(x_1 - x_2)}{\sin(y_1 - y_2)} = \frac{(Z_1 - Z_2)}{(U_1 - U_2)}$$

whatever combinations of variables are used to set up the feedback path. In particular, when the *angle* inputs are used the system will have one of the *normal* functions in the feedback path. The input to this system is now the *ratio* (Z/U), and the output is a voltage corresponding to the angle generated by the *inverse* of the function in the feedback path.

Since all of the normal functions are periodic, and the maximum value of the op-amp output can be equivalent to angles as large as $\pm 650^{\circ}$, the closed-loop system could arrive at false "solutions" to the above equation, that is, at angles outside of the principal range. Also, the feedback can become positive in the wrong angular range, causing latch-up. Hence, it is essential to limit the magnitude of the feedback voltage. Ideally, this is done using precise active clamps, but the saturated value of the output at given supply voltages, in combination with a simple resistive divider to the angle inputs, is usually sufficient to limit operation to the principal range. The voltage at the angle inputs will be accurate, but the op-amp output will in general have inaccurate scaling and may show large offsets, due to the bias currents at the angle inputs. The error-trap should be disabled in the inverse modes by grounding GT.

ARCTANGENT MODE

The arctangent is the most useful of the inverse modes. With the connections shown in Figure 9 the loop solves the equation

$$\frac{\sin (0-\theta)}{\sin (90^\circ - \theta)} = -\tan (\theta) = \frac{(Z_1 - Z_2)}{(U_1 - U_2)}$$

where θ is the angle corresponding to voltage A, scaled by 50°/V. It follows that

$$\theta = \tan^{-1} \frac{(Z_2 - Z_1)}{(U_1 - U_2)}$$

The reversal of Z_1 and Z_2 in the numerator is due to the negative sign in the tangent function. The numerator may be either positive or negative, and the connections can be interchanged to alter the overall sign of the function. The denominator must be positive, but U1 and U2 may be interchanged to accept a negative input voltage. The ability of the AD639 to form the ratio of two

Figure 9. Connections for the General Arctangent Mode

Inverse Modes

variables prior to the arctangent operation is very useful in many applications, for example, in real-time Cartesian-to-polar conversion (see Applications section). The denominator can also be preset to 1V or 10V using the UP input; when U = 1V, the angle a is simply the arctangent of the voltage value of $Z_2 - Z_1$. Figure 10 shows an X-Y plot of the output for Z = -10V to +10V (horizontal axis of photograph) with four values of U (0.3V, 1V, 3V, 10V).

Figure 10. The Arctangent Output for $Z = \pm 10V$ and U = 0.3V, 1V, 3V and 10V

Range-Limiting and Loading

Resistor R_f in Figure 9 forms a divider with the parallel sum of the input resistance at X2 and Y2 and the load resistance, shown here as $2k\Omega$, which prevents the output angle voltage A from exceeding $\pm 1.7V$ ($\theta = \pm 85^{\circ}$), using $\pm 15V$ supplies. This voltage is not *directly* affected by the load resistance (that is, the output behaves as a low-impedance node) but the angular range limits are. Consequently, the nominal value of R_f should be calculated for specific values of load resistance, angular range and supply voltages, and a trim range of about $\pm 10\%$ included to set up the angle limits correctly. Ros is needed to compensate the input bias currents and thus equalize the clipping limits; it does not cause an offset in θ . The direct output at pin 14 is also the arctangent but with imprecise scaling. Although this can be trimmed by R_f there will also be a supply-dependent offset due to Ros. For these reasons, the direct output should not be used in this mode.

HF Compensation

The output op-amp is internally compensated to be stable in all the normal modes when feedback is via the unity-gain difference amplifier associated with the Z-interface. The dominant pole is determined by the $30k\Omega$ resistor and on-chip 3.5pF capacitor (see Figure 1) for a closed-loop bandwidth of 1.5MHz. In the arc-tangent mode, however, the gain of the feedback path is much greater than unity for practical angle values and is theoretically unbounded. For example, if the forward path is set up to generate $(1V)tan(\theta)$, the incremental gain near $\theta = 0$ is slightly less than unity (since a 20mV change in voltage A causes a change of $(1V)tan(1^\circ)$ or 17.5mV in output W) but at $\theta = 85^\circ$ the gain is 115. While the resistive divider used to limit the angle voltage A will lower the loop gain, it can still exceed unity. The capacitors C_c and C_m in Figure 9 provide the HF compensation required for operation up to $\pm 85^\circ$, with all values of U.

ARCSINE AND ARCCOSINE MODES

The basic principles for the arcsine and arccosine are similar to those described for the arctangent. As before, the argument of the function is the ratio (-Z/U), where U may be preset to 1V or 10V, the loop gain must be negative over the principal angular range of the output, and the feedback voltage must be limited to ensure that this range is not exceeded. The loop stability is easier to ensure, since the peak gain is bounded. With U = 10V the maximum incremental gain of the forward path (at 0° for the sine and $+90^{\circ}$ for the cosine) is 8.75 and the peak loop gain is much less than this because of the attenuation used to limit the angular range. Thus relatively little additional HF compensation is required.

Connections for the arcsine are similar to the arctangent (Figure 9) except that Y2 is grounded, and C_c and C_m can be reduced or even omitted. R_f is adjusted for a peak angular range of $\pm 90^\circ$ at the (attenuated) output; if too high, the function will still be correct, but the maximum angle will be less than 90°; if too low, the function will exhibit hysteresis near the peak output. Adjustments will be needed for other values of load resistance and supply voltages. Note that the general limitation on the amplitude input (U<= $|-V_s|$) must be observed. Figure 11 shows an X-Y plot of the arcsine output for Z = -10V to +10V (horizontal axis of photograph) with three values of U (2V, 5V and 10V). The arcsine can be inverted by reversing the Z-interface.

Figure 11. The Arcsine Output for Z= \pm 10V and U=2V, 5V and 10V

For the arccosine, use the arcsine connections with X1 tied to V_r and insert a small-signal diode in series with R_f , having its cathode on the angle-interface side. This allows the output to move only in a positive direction. Z1 now becomes the positive numerator input, and the principal range is from 0° (when Z/U = -1) to $+180^\circ$. The function is similar in appearance to the arcsine, except for the $+90^\circ$ output pedestal and the reversal of phase along the horizontal axis. Note that

$$\cos^{-1}(Z/U) = 90^{\circ} - \sin^{-1}(Z/U) = 90^{\circ} + \sin^{-1}(-Z/U).$$

To generate the negative arccosine, reverse the X- and Z-interfaces and the polarity of the diode. The output now runs from -180° for an input of $Z = (Z_1 - Z_2) = -10V$ (with U = 10V) to 0° at Z = +10V.

It is strongly recommended that X-Y oscilloscope methods are used to investigate functional behavior during the development of any of these modes of operation: time-domain displays can easily become confusing.

Figure 12. General-Purpose Function Generator

Applications

WIDE-RANGE WAVEFORM GENERATOR

Figure 12 shows an inexpensive signal generator, providing voltage control of frequency from 20Hz to 20kHz and a pre-set sine amplitude of 2.8V (within 0.1dB of 2V rms). This output may be further modulated by an input of up to $\pm 2.8V$ to U2, or gated off by an input of +1.5V or more to GT; Figure 13 shows the gated response. If required, a further input can be summed into Z2. The sine output can be set to 10V amplitude by connecting UP to VR and grounding U1.

An AD654 is used to generate the triwave which appears across the timing capacitor C_{f_2} and is buffered, amplified and level-shifted by A1 and A2. Using a spectrum analyzer, P3 and P4 are adjusted to minimize even- and odd-harmonic distortion, respectively. The triwave linearity is not good enough to realize the inherent capabilities of the AD639, but total harmonic distortion is in the - 50dB to - 60dB range. A3 provides further gain for a ± 10V triwave output. The square-wave output is taken directly from the AD654 and is unbuffered. It swings between ground and + 15V; if pins 2 and 5 of the AD654 are connected to - 15V, this output is 30V pk-pk.

The frequency scaling with the linear input (shown) is 10kHz/V, calibrated using P1. The frequency can be controlled manually, using a potentiometer and the V_r output of the AD639. P1 has sufficient trim range to provide a full-scale frequency of 20kHz with the 1.8V peak input. The alternative input scheme provides a "log-sweep" response with an approximate scaling of 10^V kHZ (when V is in volts). The range is now from about 10Hz to 100kHz; the frequency should be set to 1kHz with V=0, using P2. The frequency is now sensitive to variations in

Figure 13. Gated Output. Top Trace: 0 to +2V Gate Input. Bottom Trace: 2V rms Gated Sine Output

both temperature and the +15V supply, but stability will be adequate for many applications.

Frequency Multiplication

Because of the exceptionally wide angular range of the numerator function of the AD639, it is possible to generate sinewave outputs with 2, 3, 4 or 5 times the triwave frequency using the cosine mode for even multiples or the sine mode for odd multiples.² For example, to multiply the output frequency by 3, use the sine function with the X-input driven to $\pm 5.4V (\pm 270^\circ)$. Distortion remains low; all harmonics are typically under -50dBs, even for the frequency-quintupling mode.

²For full details see "A Remarkable Monolithic Microsystem Generates Trigonometric Functions," Barrie Gilbert, *Industrial Electronics Equipment* Design, September 1984, pp. 19-24. Reprints available.

Applications

Figure 14. Four-Quadrant Sine Multiplier; for Cosine, Interchange X1 and X2 and Connect Angle 'Lo' Input to VR

FOUR-QUADRANT SINE/COSINE MULTIPLICATION

In synchro applications it is often necessary to multiply an AC sinusoidal 'carrier' by a further sine 'modulation' function. This can be achieved in two ways; the first is suitable only when there is a large ratio between the carrier frequency and the modulation frequency. Using a single AD639, the carrier input $Asin(\omega t)$ is applied to U2, and a DC bias voltage established on U1 (which can be provided by a series resistor connected to $+V_s$). The modulation input, x, is applied to angle inputs connected for $-\sin(x)$. The output is then $W = -\sin(x)$ $(U_1 - Asin(\omega t))$. Using AC-coupling to the load, the voltage $Asin(x)sin(\omega t)$ results. Since the peak value of W is $(U_1 + A)$, a maximum of about 6V amplitude can be achieved before output saturation. A further limitation of this approach is that the ACcoupling may allow excessive transmission of the sine modulation function. However, with typical values of 400Hz for the carrier and 10Hz for the upper modulation frequency, this simple approach is practical. Cosine modulation is similarly achieved.

An alternative method is DC-coupled and thus imposes no frequency-ratio limitations; it also allows an input/output amplitude of up to 12V. Two AD639s are used (Figure 14), the second having both the X- and U-interfaces phase-inverted relative to the first, and the two outputs are summed. The figure shows a general bipolar input, A, applied to the U-inputs. The first device generates Asin(x) when A is positive and zero when A is negative. The second device generates -Asin(x) (actually Asin(-x)) when A is negative and zero when A is positive. The instantaneous sum of the two half-sines is Asin(x). The switching speed of the U-interface is adequate to handle a sinusoidal input $A = (10V)sin(\omega t)$ at frequencies up to at least 1kHz, without significant crossover distortion. In synchro applications errors as small as 5 arc-minutes can be achieved.

Polar-to-Cartesian Conversion

Using a pair of AD639s connected as shown in Figure 14, and a second pair connected similarly for the cosine function, a vector

of magnitude A and angle x can be resolved into its orthogonal components Asin(x) and Acos(x), with unrestricted operation in all quadrants and very high accuracy.

Cartesian-to-Polar Conversion

A point Z,U in a plane can be converted to a magnitude component, A, and an angle component, θ . A suitable vector summation circuit can be found in the AD637 data sheet. The AD639 in the arctangent mode can provide the angle output $\theta = \tan^{-1}(Z/U)$. If U is bipolar, an absolute-value circuit using an AD630 should be added.

Sine/Cosine (Quadrature) Oscillators

Quadrature oscillators generate a pair of sinusoudal outputs displaced by 90°, and invariably are based on a "state-variable" loop consisting of two integrators and a sign-inverter. Practical difficulties in this approach are (1) considerable additional circuitry is required to control the amplitude of the oscillation; (2) a trade-off arises between the settling-time of this control circuitry and the distortion level, particularly troublesome at low frequencies; (3) the amplitude balance of the two outputs is dependent on the matching of two time-constants; (4) two tracking analog multipliers or multiplying DACs are needed if the frequency is to be programmable.

These problems are avoided using a function-shaping technique based on a triwave oscillator, which requires only one time-constant, and whose frequency can thus be more easily controlled. The need for an amplitude control system is eliminated using the scheme shown in Figure 15. The two outputs have accurate amplitudes of 10V (without the need for an external reference source) or can be individually controlled by external voltages, without any effect on frequency. Variable-amplitude sine and cosine outputs can be added (using the Z-input discussed earlier) to provide continuously-variable phase-control of the output.

Figure 15. Quadrature Oscillator

The triwave oscillator comprises an AD630, which alternates the sign of the 1.8V reference from one of the AD639s to generate a square-wave output of $\pm 1.8V$ amplitude, and an integrator formed by R1, C1 and the op-amp, which generates the triwave. The amplitude of the triwave is determined by the ratio of R3 and R4, and is nominally $\pm 1.845V$, 2.5% higher than needed at the inputs of the AD639s, providing the adjustment range needed to minimize distortion. In many applications, all adjustments can be eliminated; to do this, make R3 = R4 = 5k Ω , omit P2, P4, R5 and R7 and replace P1, P3, R6, and R8 with short circuits. The frequency is nominally $1/4C_1R_1$, and is 1kHz with the component values shown. A variety of methods may be used to provide external control of frequency, including the use of a another AD630 in series with R1, or the use of a multiplying DAC.

Figure 16. Top Waveform: Difference Voltage Between Triwave and Squarewave. Bottom Waveform: Resulting Output

The sine output is generated using the triwave directly. P1 and P2 should be adjusted using a spectrum analyzer for minimum odd-order and even-order harmonics, respectively. The cosine output is generated by using the *difference* between the triwave and the square-wave, shown in the upper waveform in Figure 16. This composite voltage first generates a sine-function over the range 0 to $+180^\circ$, then over the range 0 to -180° , to produce the function shown in the lower waveform, which can be seen to be 90° out of phase with the triwave. The complete set of waveforms available from this generator are shown in Figure 17.

Figure 17. Timing Relationships Between All Outputs of the Quadrature Oscillator

Figure 18. Spectrum of Cosine Output at 1kHz

P3 and P4 are adjusted for minimum odd-order and even-order cosine harmonics, respectively; Figure 18 shows the cosine spectrum for a well-adjusted circuit.

Due to the finite transition time back to the baseline in the drive voltage to the cosine generator, a brief spike occurs at the zero-crossing of this output. The frequency components will be beyond the bandwidth of the output amplifier in the AD639, and the energy contained in these spikes will not generally be troublesome. They may be further reduced, if necessary, by adding a capacitor between pins 14 and 15, to roll off the AD639 output response.

Precision, Wideband Channel Processing Element

AD890

FEATURES

- An 80MHz Bandwidth Permitting a 50Mb/s Data Transfer Rate
- A Variable Gain Amplifier with 30dB max Gain and 40dB Control Range

Two Gain of 4 RF Buffers

- 200 Ω Differential Load Drive Capability
- **A Pair of Precision Rectifiers**
- AGC Level and Threshold Outputs
- An Averaging, High Gain Sample-and-Hold for Accurate AGC Operation
- Typical Gain Drift in Hold Mode: 0.2dB/ms
- Gains Trimmed and Temperature Compensated
- AGC Operation Independent of AGC Level
- Symmetrical AGC Attack/Decay Times
- 1μs AGC Attack/Decay Times Using a 1000pF External Capacitor
- Suitable for Use as an Accurate Video Programmable Gain Amplifier
- Dynamic Clamp Ensures Fast Recovery After Write to Read Transients
- AGC RF Output Level is Internally Preset

PRODUCT DESCRIPTION

The AD890 is primarily intended for high-performance disk subsystem use and as such it is configured around the classic read channel processing block diagram. It is intended to be connected between the head preamplifier and the qualification circuitry required for digital data recovery. When used with the AD891 rigid disk data qualifier, data transfer rates in excess of 50Mb/s can be processed.

A temperature-compensated AGC loop, with an exponential transfer characteristic, permits optimal settling and allows for predictable performance in the classic single integrator control loop configuration. Fast acquisition and low droop while in the hold mode allow for AGC operation to be performed within the sector header without compromising channel behavior when reading data.

The AD890 processing element has the flexibility to perform both continuous and sampled AGC functions; it is also ideal for embedded, dedicated, or mixed servo applications. Two userdefined filter/equalizer stages may be employed, thus allowing maximum design flexibility. This greatly simplifies the design of the overall channel characteristics. Using the AD890, the designer no longer needs to resort to passive techniques to isolate network functions; this avoids problems of signal loss and interaction.

Two low-offset, 100MHz full-wave rectifiers provide the capability to track a 1V peak signal. The rectifier generating the "Qualifier Threshold" output may be used for creating a data qualification level. A second rectifier is used to drive the sample-and-hold circuitry.

The 80MHz bandwidth of the AD890 ensures good phase linearity up to 50MHz. Thus, data transfer rates in excess of 50Mb/s can be supported with good error rates and predictable channel behavior.

The AD890 is available in both a 24-pin, slim-line cerdip package and in a 28-pin PLCC package and is specified to operate over the 0 to 70°C commercial temperature range.

PRODUCT HIGHLIGHTS

- 1. A highly predictable gain control function allows the user to perform a very accurate preset operation and facilitates D/A converter control capability.
- 2. Two low-offset, 100MHz full-wave rectifiers are provided.
- 3. An internal clamping circuit ensures short recovery times after read/write switching of the external head chip.
- 4. An 80MHz bandwidth ensures good phase linearity.
- 5. A 0.2dB per ms droop in gain during AGC hold mode.
- 6. All RF gain stages offer calibrated temperature-stable gains.

SPECIFICATIONS (@+25°C and ±5V dc, unless otherwise noted)

			10001		
Model	Conditions	Min	Tyn	Max	Units
	Conditions			171ax	Omis
VARIABLE GAIN AMPLIFIER		20.5	20.0	20.5	J.D.
Maximum Gain	Unite 26 JD Colle Distantion	29.5	30.0	30.5	
± 30B Bandwidtn	Up to 26dB Gain Reduction dP Cain Reduction $f = 1hHz$	100	5		
Input Voltage Noise	Pacommended n n Differential	10	5	200	mV
Input Desistance	Recommended p-p Differential	10	12	200	
Output Impedance			5		0
Harmonic Distortion	0dB Gain Reduction		0 15		%
	26dB Gain Reduction		1.5		%
Output dc Level			3.5		v
Turn-On Time	-		30		ns
Turn-Off Time			200		ns
Input Signal Attenuation		198	45		dB
On-State Input Impedance	Differential	Think a	14		Ω
Nominal Gain		12:50	12 75	13.00	dB
Gain Variation	T to T	2400	+0.25	13.00	dB
+ 3dB Bandwidth	I min to I max	160	- 0.25		MH ₇
Input Voltage Noise ³	f = 1kHz		7777		nV/\sqrt{Hz}
Input Resistance		100	,		kQ
Input Common-Mode Range		1.5		+1.5	v
Output Resistance	a the set of		10		Ω
Harmonic Distortion	300mV Peak Output, 2000 Load	gill style.	0.20		%
Output Signal Level	Recommended p-p Differential		1.3		v
Output dc Level	a she tan tan a sa a sa	1. 1916 1. 1.	2.5		v
FULL WAVE RECTIFIER		•			
Input Signal Level	p-p Differential	0.3		3	v
- 3dB Bandwidth	100mV (a 1V Peak Input	100		-	MHz
dc Offset ⁴	r		10	±20	mV
AGC CONTROL SECTION					·
Attack Time	26dB Gain Step – 1000pF CSAMPLE		1.0		цs
	$26dB Gain Step - < 50pF C_{SAMPLE}$		120		ns
Hold Time	1dB Gain Change – 1000pF CSAMPLE		10		ms
AGC Control Range		36	40		dB
AGC Control Sensitivity	Per 20mV Input		1		dB
AGC Control Linearity	26dB AGC Range			±0.25	dB
Set Level Input Range	For Specified Accuracy	0		800	mV
	Nondestructive Input Range	-0.3		V _{CC}	V
MODE CONTROL SECTION					
TTL Compatible					
V _{IH}		2.0			V
V _{IL}				0.8	V
I _{IH}				100	nA
I _{IL}	1			2.0	μA
Mode Switching Times				50	ns
POWER SUPPLY REQUIREMENTS					
Rated Performance			± 5.0		V
Operating Range		±4.6		±6.5	V
Quiescent Current	T _{min} to T _{max}				
V _{CC}		44	60	76	mA
V _{EE}		18	28	40	mA

NOTES

Gain calibrated in gain set mode with 0 volts applied to the Gain Set Pin

Specifications subject to change without notice.

²Clamp operation is specified with a source impedance of 2000 in series with 0.1 µF ³Over the full 100MHz bandwidth of the AD890, the worst-case rms signal-to-noise ratio is 40dB or better with a 40dB AGC range.

 4 Measured using a 4k Ω resistor connected between the Qualifier Threshold Pin and V₁₁.

All min and max specifications are guaranteed. Specifications in **boldface** are tested on all production units at final electrical test Results from those tests are used to calculate outgoing quality levels.

Logic Assignments	Bit 0	Bit 1	ORDERING GUIDE	
AGC Acquire	0	0		Package
AGC Hold	0	1	Model Package	Options*
Gain Set	1	0	AD89010 24-Pin Cerdin	0.24
Input Clamp	1	1	AD890JP 28-Pin PLCC	Q-24 P-28A

*See Section 16 for package outline information.

ABSOLUTE MAXIMUM RATINGS*

A.

P.,

Supply Voltage $\dots \dots \dots$
RF Gain Stage Differential Input Voltage ± 5.6V
Storage Temperature Range
AD890JP, AD890JQ
Operating Temperature Range ¹
AD890JP, AD890JQ
Lead Temperature Range (Soldering 60sec) + 300°C
NOTE ¹ 28-pin PLCC package: $\theta J_A = 100^{\circ}C/W$; 24-pin cerdip package: $\theta J_A = 80^{\circ}C/W$.
*Stresses shows these listed under "Absolute Medium" "Pitres" men anne

làtīngs permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability: 70153 . Ma the lister

> **CONNECTION DIAGRAMS** 4 and

, in

28-Pin PLCC Package

et_a

SPECIAL FUNCTION COMPONENTS 9-31

Applying the AD890

GENERAL LAYOUT REQUIREMENTS

Almost 60dB of total gain is available at 100MHz. Care must be taken to ensure good RF practice in the PC layout to avoid oscillations in the 150MHz-350MHz region. A parallel combination of 0.1μ F and 0.01μ F ceramic bypass capacitors should be used as close to the supply pins as possible.

Additionally, a single pole RC filter applied at the input of each stage, with a cut off in the region of 100MHz-150MHz, will help avoid oscillation problems. As a general rule, keep the connections to interstage components as short as possible; it is also recommended that any low pass filtering function which may be required by the system be performed between the VGA stage and the first X4 buffer amplifier. A ground plane should be used to surround any interstage components wherever possible. If these simple rules are followed, stable operation should be assured.

BIASING THE RF GAIN STAGES

The VGA Stage

The 30dB variable gain stage is biased at a potential of one diode drop above analog ground. No additional dc bias is required, but ac coupling is necessary. The bias voltage is maintained during normal operation and during operation of the clamp I in order for the clamp to operate correctly with an emitter follower driven input, 50Ω - 100Ω resistors should be placed in series with the input coupling capacitors. These resistors can be used in conjunction with a 5.1pF shunt capacitor to limit the input bandwidth to 150MHz. In the case of an open collector driven input with resistive termination, no additional series resistors are required.

The differential outputs have a nominal dc value of 1.5V less than the positive supply. Internal 1300 Ω resistors provide bias current to the output emitter followers which operate with 2.7mA nominal current. Output drive can be increased by an additional 2.5mA by paralleling external resistors to either the analog ground or the negative power supply. However, caution should be exercised in order to avoid causing excess dissipation for the package. The recommended output level for the VGA is 300mV p-p differential into 200 Ω loads.

The X4 Buffers

The inputs of these stages have no committed dc biasing, and an input bias current path must be provided. This path can normally be supplied via shunt resistors to analog ground which are generally part of the interstage filter termination networks. The inputs can be biased successfully within ± 1.5 V of analog ground.

Output drive can be increased in a similar manner to that described for the VGA stage. The nominal dc output level is 2.5V with the internal 500Ω load resistors connected to analog ground which provides a nominal standing current of 5mA to the output emitter followers. This current can be increased by up to an additional 5mA by paralleling external resistors to either analog ground or the negative power supply. As before, precautions to limit excessive overall power dissipation apply when steps are taken to increase the output drive capability.

OPERATING THE FULL WAVE RECTIFIERS

The full wave rectifiers consist of two nearly identical stages. Full wave rectification is performed in each stage using two transistors whose emitters are connected together. The inputs to the two full wave rectifiers are biased at one diode drop above analog ground; therefore, ac coupling is recommended. The full wave rectifier outputs – "AGC Rectifier" and "Qualifier Threshold" – are connected directly to these commoned emitters. Thus, the normal output voltage with zero input signal applied is close to analog ground. The "AGC Rectifier" pin allows access to the output of the rectifier which drives the AGC sampleand-hold section of the AD890. The "Qualifier Threshold" pin allows access to the output of the threshold rectifier.

The AGC rectifier has an internal $2k\Omega$ resistive pull-down connected between analog ground and the negative power supply pin. The threshold line has no built in pull-down, in order to allow for a peak hold capability during thresholding. If a well controlled rectifier offset is required, an external $4k\Omega$ pull-down resistor at the "Qualifier Threshold" pin is recommended and will produce a nominal 10mV offset.

THE AGC SAMPLE-AND-HOLD

5

The AGC sample and hold section performs averaging of the input waveform to set the RF average output level to 200mV single ended, or 330mV peak for a sinusoidal signal. Thus, without a peak hold capacitor at the "AGC Rectifier" pin, accurate AGC operation only occurs with sinusoidal input signals. An approximate 2mA pull-down current is permanently present at the "AGC Rectifier" pin, and a capacitor may be added here to provide a degree of peak hold for AGC operation within nonsinusoidal fields. A capacitance value of less than 0.03µF or less per µs of transition spacing is recommended. The addition of the capacitor alters the symmetry of the attack and decay rates of the rectifier, which is otherwise symmetric in operation. In order to ensure that the overall AGC response is the same for both high-to-low and low-to-high input level steps, it is necessary to make the rectifier attack and decay times at least a factor of two less than the AGC response time.

The AGC acquire time is approximately 1μ s per 1000pF of hold capacitor. A low leakage variety of hold capacitor, such as a silver mica, is necessary to ensure low droop rates. The "Gain Set" pin should be tied to analog ground if not used, in order to prevent excessive leakage which would otherwise affect the hold performance.

The AGC control potential is present at the "Sample-and-Hold Capacitor" pin. If control over open-loop gain is desired, based on AGC control potentials obtained during trial AGC operations, a FET input op amp should be used to buffer this node in order to avoid disturbing the hold operation.

USING THE AD890 AS A PROGRAMMABLE GAIN AMPLIFIER

The AD890 is ideally suited for use as an accurate video programmable gain amplifier. If the X4 buffers are utilized with the variable gain amplifier, nearly 60dB of total gain is available at frequencies up to 100MHz. The VGA gain and exponentiator scale factors are trimmed with respect to dc control potentials applied to the "Gain Set" pin. In this mode of operation (see Logic Assignments for bit pattern to be applied to the "Bit 0" and "Bit 1" pins), a 0V dc potential applied to the "Gain Set" pin will produce a nominal VGA gain of 30dB. With an additional 12.75dB from each X4 buffer, total nominal gain is 55dB. Each 20mV increment of voltage applied will produce a 1dB reduction in gain. A simple equation can be used to calculate the nominal gain of VGA in this mode:

VGA Gain (dB) = $(30 - V_{GAIN SET} \times 50)$

where V_{GAIN SET} is in volts.

readily achieved. Figure 1 shows the AD890 configured for +5V, +12V operation. The analog and digital grounds must be

Figure 1. AD890 Connection for +5V, +12V Operation

connected to the +5V line or to an available center tap of the +12V supply. Thus connected, a current of approximately 30mA will flow in this line under normal operation. The input clamping action occurs with respect to this line, increasing its current by an additional 12mA or so.

Both the +5V and +12V supplies should be RF bypassed to ground with at least two capacitors: values of 0.1µF and 0.01µF are recommended. In addition, some higher level of decoupling capacitance such as 3.3µF value may be desirable. Next, insert a series-connected 6.8Ω 1/4W resistor and 100mA diode in series with the +12V supply. This helps to reduce overdissipation in the chip.

Power supply decoupling should occur on the circuit side of the resistor-diode network. A second diode can be substituted for the 6.8 Ω resistor if the voltage difference between the two supplies is greater than 5.6 volts.

Finally mode control is achieved by using open collector drivers and resistors as shown; 5.1V Zener diodes can be substituted for resistors R1 and R2. Internal diode clamping in the AD890 permits this mode of operation.

The mode switching times will be affected by resistor values chosen; this is due to the RC time constants formed by the resistors in conjunction with the input capacitance of the chip package

INTEGRATING WITH THE AD891 RIGID DISK DRIVE DATA QUALIFIER

Figure 2 shows a typical application using the AD890 and AD891 connected together to create a 30MHz channel (cerdip connections shown). This circuit includes a 5-pole 30MHz Gaussian-to-6dB transitional filter plus a second-order RLC time domain equalizer. A typical second-order, fully differential, passive delay-line differentiator interface for the AD891 is also included. (For a more detailed description of the delay-line differentiator, see the AD891 data sheet.) The analog and digital grounds should be connected at the power supply common.

読み

USING EQUALIZERS WITH THE AD890

The AD890 is ideal for applications where equilization is employed. The X4 buffer output drivers are designed to operate into 200Ω loads, making tapped delay-line designs easy. Sum and differencing of different tap weights can be achieved by simple resistive dividers.

. . 6

As an alternative, a simple RLC network can be implemented to provide a low-cost, fully differential alternative to the three-tap, tapped delay-line equalizer which often is used for pulse slimming. Essentially, the equalizer shown in Figure 3 consists of an RC lattice, which provides the magnitude characteristic, together with an LR shunt section which acts to define the overall passband group delay and the ratio of minimum to maximum gains within the passband.

Figure 3. RLC Equalizer

The network shown approximates a function of the form:

 $F(\omega \tau) = 1 - k \cos \omega \tau$, where k = 0.6, and $\tau = 36$ ns.

The circuit is optimized for a 120ns transition PW50. Altering the 953 Ω resistor and the 24 μ H inductor can change both k and

r, permitting cylinder dependent equalization to be performed, thus minimizing problems of overequalization. To alter k, the ratio of the 1.1kΩ and 953Ω resistors should be changed. To alter τ , the reactive element should be scaled proportionally. The equalizer in Figure 2 is optimized for k = 0.6 and τ = 12ns.

It is important to note the benefits of fully differential (as opposed to single-ended) operation: 1) reduced harmonic distortion due to symmetric operation; 2) improved power supply noise rejection; 3) less insertion loss, allowing for reduced gain and, hence, improved distortion in stages prior to the equalizer.

CHOICE OF LOW PASS FILTER WITH THE RECOMMENDED EQUALIZER

A fifth order, Gaussian-to-6dB transitional filter is recommended for use with the equalizer. Such a low pass filter is shown in Figure 4. Low group delay ripple and high out-of-band rejection make this design work well with the recommended equalizer and the differentiator specified in the AD891 data sheet. The recommended location for the low pass filter is between the VGA and first X4 buffer. The equalizer should be placed between the first and second X4 buffers. This minimizes the potential for oscillations induced by interstage parasitic feedback.

Figure 4. 5th Order Gaussian-to-6dB Transitional Filter

Rigid Disk Data Channel Qualifier

AD891

FEATURES

Three Matched, Offset-Trimmed Comparators 3.1ns (typ) Comparator Propagation Delay **ECL Logic Permits 50Mb/s Transfer Rates** 6.8ns Delay (typ) from Inputs to Data Output 500ps (typ) Additional Pulse Pairing **Temperature-Compensated Operation Compatible with 10kH ECL Logic Two Temperature-Compensated One-Shots One-Shot Periods Set Using External Resistors**

PRODUCT DESCRIPTION

The AD891 disk channel qualifier is intended as a companion chip to the AD890 wideband channel processor. Together, they comprise a sophisticated package, capable or recovering, information from differentiating channels with transfer rates in

The AD891 provides both level and time-domain qualification. Level qualification is performed on alternating half cycles of the data waveform using a user-defined threshold level which is applied to each of two 3.1ns propagation delay comparators. ii. This technique prevents single bit errors from being propagated into two bit errors. A third comparator is used to provide zerocrossing detection. Factory trimmed offsets and a careful internal layout ensure symmetric operation and low pulse pairing with a differential input waveform.

An external RLC passive delay-line differentiator should be used with the AD891; the design for a typical network is specified in detail in the applications section of this data sheet. The use of an external network permits equal delay times through both the differentiated and undifferentiated signal paths, thus ensuring correct centering of the qualification windows. Using the recommended external network also helps ensure optimal signal passband flatness and dispersion.

The outputs from the amplitude-qualification comparators are applied to the "D" inputs of two master-slave D-type flip-flops which are then clocked by the outputs from the zero-crossing comparator. Each valid zero-crossing event causes a one-shot with a user-definable period to be triggered. This disables the operation of the flip-flops, thus preventing the detection of additional zero-crossing events during the one-shot period.

Simultaneously, an output one-shot is activated, the leading edge of which is synchronous with the change in the flip-flop outputs. The period of this one-shot is also user-definable and is intended to ensure adequate output pulse duration for transmission within the external environment. Each one-shot requires a single metal-film resistor to set its period. All one-shots have trimmed pulse periods; temperature stability is maintained by the use of an internal bandgap reference.

The AD891's internal logic consists of temperature-compensated reduced-swing ECL which exhibits typical propagation delays of 600ps per gate. The output data conforms to standard 10kH ECL logic levels. The AD891 can drive a properly terminated 75 Ω transmission line.

The AD891 is specified to operate over the commercial (0 to +70°C) temperature range. It is available either in a 14-pin cerdip package or in a 20-pin PLCC package.

PRODUCT HIGHLIGHTS

in.

- 1. When paired with the AD890 wideband channel processor, data can be recovered in excess of a 50 Mb/s rate.
- 2. Comparators have 3.1ns typical propagation delay.
- 3. 10kH ECL logic compatible.
- 4. 500ps typical additional pulse pairing through chip.
- 5. Two internal, temperature-compensated one shots.
- 6. Features both amplitude and time-delay qualification.

SPECIFICATIONS (@ + 25°C and ± 5V dc, unless otherwise noted)

Model	Conditions	Min	AD891J Typ	Max	Units
COMPARATOR SPECIFICATIONS Propagation Delay Comparator Mismatch	20mV Overdrive 200mV Overdrive		3.3 3.1	300	ns ns
Input Offset Voltage Noise Induced Offset Voltage Input Offset Current Input Bias Current Open-Loop Gain	10^8 Error Rate	- 	0.25 ± 300 100 1.3 66	1.0	μV μV nA μA
Input Resistance Input Common-Mode Range	Differential Referred to Digital GND	-1.5	500	+2.2	kΩ V
INTERNAL LOGIC SPECIFICATIONS Logic "1" Level Logic "0" Level Rise Time Fall Time D-Type Flin-Flops			-0.75 -1.4 1.2 1.0		V V ns ns
Clock – Q Delay Clock – Q Delay Reset – Q Delay Reset – Q Delay			1.3 1.2 0.6 0.55		ns ns ns ns
ONE-SHOT SPECIFICATIONS Resistor Scaling ¹ Pulse Duration Resistor Range	$\begin{array}{l} & \text{One-Shot Pulse} \approx 7\\ R_{SET} = R_{ixin} \mbox{to } R_{max}\\ R_{SET} = 80 k\Omega\\ R_{SET} = 10 k\Omega\\ R_{SET} = R_{min} \mbox{to } R_{max} \end{array}$	3.1R _{SET} 99 97 39 0.75	100 42	180 103 45 56	ns ns ns kΩ
EXTERNAL LOGIC SPECIFICATIONS ² Output Logic "1" Output Logic "0" Rise Time Fall Time	$T_J = +25^{\circ}C$		-0.85 -1.85 1.4 1.2		V V ns ns
DATA THROUGHPUT SPECIFICATIONS Propagation Delay ³ Additional Pulse Pairing ⁴	Differentiator Input to Data Output 200mV Overdrive		6.8		ns
Max Transfer Rate Min Transfer Rate ⁵	Sns Input Rise Time	50	500	1000	ps Mb/s Mb/s
POWER SUPPLY REQUIREMENTS Rated Performance Operating Range Quiescent Current	T _{min} to T _{max}	±4.65	±5.0	±6.8	v v
V _{CC} V _{EE}	- mii 🔨 - max	15 55	23 68	35 85	mA mA

NOTES

¹One-shot pulse in ns; R_{SET} specified in k Ω . ²Logic specifications obtained for the "Data +" and "Data –" outputs using 1k Ω pull-down resistors tied to V_{EE} and 100 Ω resistors connected to -2V.

³Propagation delay is measured from the zero-crossing comparator input to the "Data +" output with 200mV overdrive.

⁴Measurements were performed using a ± 100mV square wave having a rise time under 5ns; this was applied to the input of the

zero-crossing comparator. The resultant pulse pairing is the difference in delay times for two consecutive output pulses.

⁵The minimum transfer rate is limited only by the maximum recommended one-shot period of 180ns.

Specifications subject to change without notice.

Specifications in **boldface** are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage $\ldots \ldots \pm$	7.5V
Comparator Differential Input Voltage	5.6 V
Storage Temperature Range P,Q $\ldots \ldots -65^{\circ}C$ to $+1$	50°C
Operating Temperature Range ²	
AD891P, AD891Q 0 to +	70°C
Lead Temperature Range (Soldering 60sec) +	300°C

14-Pin Cerdip (Q) Package

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²20-pin PLCC package: $\theta_{JA} = +70^{\circ}$ C/Watt; 14-pin cerdip package: $\theta_{JA} = +105^{\circ}$ C/Watt.

PIN CONFIGURATIONS

20-Pin PLCC (P) Package

ORDERING GUIDE

Model No.	Package Option ³
AD891JQ	Cerdip (Q-14)
AD891JP	PLCC(P-20A)

*See Section 16 for package outline information.

Applying the AD891

THEORY OF OPERATION

The AD891 consists of three comparators, two D-type flip-flops, an internal bandgap reference and a pair of externally adjustable one-shots. Two comparators are used to provide data amplitude qualification, and the third acts as a zero-crossing detector when used with an external passive differentiator circuit. (Refer to the AD891 block diagram and Figure 2.)

Figure 2 illustrates the operation of the AD891, using the recommended passive delay-line differentiator described in the following section. Sequence "A" represents the pattern written on the disk, where a logic "1" is a change in magnetic state. Each change in magnetic state results in an output pulse. The analog input to the AD891 consists of a sequence of alternating pulses "B." The data pattern shown is worst case for a 1-7 code input. "C" represents the output waverform from the external differentiator, such that the points at which zero-crossings occur correspond to the peaks of the analog input "B." Sequence "D" shows the output from the zero-crossing comparator. Changes in state of this output are used to clock the two internal D-type flip-flops. The flip-flops are enabled using the output "E" from the positive and negative threshold comparators, such that the flip-flop outputs change state only when the analog input exceeds the programmed threshold levels (positive or negative). When the threshold levels are exceeded and a zero-crossing event occurs, the flip-flops change state, producing an output pulse "F." The duration of this pulse, seen at the Data +/Data – outputs, is set using an external resistor, as is the internal time-out which is used to prevent noise induced retriggering. The final output data sequence is shown in "G." As can be seen, despite inflections in the analog input, the data is correctly detected and the output is a time-shifted version of the write data.

Since the 1-7 code input is the most demanding of the popular encoding schemes to qualify, the AD891 is clearly suitable for other codes, such as MFM and 2-7. The recommended time domain filter one-shot period for MFM and 1-7 code is equal to 75% of the bit cell clock period. For 2-7 code the one-shot period can be increased to 150% of the bit cell clock period.

Figure 1. AD891 Operation for Worst Case 1-7 Code Pattern

DESIGN CONSIDERATIONS

In designing a suitable passive delay-line differentiator, either the fully differential (Figure 2a) or single-ended (Figure 2b) configuration can be used. The equations governing component selection for both connections are as shown.

If the single-ended configuration is employed, then the inputs to the negative half-cycle comparator need to be biased such that the comparator is turned off. This can be accomplished by placing the "Amp –" input at a potential at least 100mV more negative than the "Level In –" input. The "Amp –" pin may be connected to the "V_{EE}" pin and the "Level In –" pin may be connected to the "Digital GND" pin, provided that the potential difference does not exceed 5.6 volts, which is the absolute maximum differential input rating of the device.

Good RF layout practice should be obeyed, with decoupling networks of 0.1μ F in parallel with 0.01μ F at both the "V_{CC}" and "V_{EE}" pins. A ground plane should be used extensively. Two digital grounds are supplied: Pin 12 is for the internal logic while Pin 5 is provided for the "Data" outputs only. (These pins are for the cerdip package; the corresponding PLCC package pins are 17 and 9, respectively.) The filter time and output pulse setting resistors should be tied, as directly as possible, to the "Digital GND" pin.

Figure 2a. Fully Differential Configuration of Passive Delay-Line Differentiator

RECOMMENDED COMPONENTS

$$f_{\rm D} = \frac{1}{2\pi\sqrt{L_{\rm D}\,C_{\rm D}}}$$

$$R_{\rm D} = K \left[\sqrt{\frac{L_{\rm D}}{C_{\rm D}}} \right]$$

f = 1.5 Times the Maximum Desired Differentiated Frequency

 R_D Minimum Value: 120 Ω 150 Ω or Greater is Recommended

1.3 (Best Magnitude Response) ≤K ≤1.7 (Best Group Delay Response)

The "Data –" and "Data +" pins require pull-down resistors to "V_{EE}" as per normal practice in ECL. The use of $30k\Omega$ resistors connected between the "Filter Time Set" and "Output Pulse Set" pins and digital ground will produce a nominal 100ns oneshot period; $10k\Omega$ resistors will nominally produce 42ns one-shot periods. The timing of the two one-shots may be set independently.

For best performance, the three input comparators should be operated at a common-mode potential close to digital ground. The digital ground should be connected to the analog ground as near to the power supply as possible to minimize noise injection.

INTEGRATING WITH THE AD890 WIDEBAND CHANNEL PROCESSING ELEMENT

Figure 3 shows a typical application using the AD891 and AD890 connected together to create a 30MHz channel (cerdip connections shown). This circuit includes a 5-pole 30MHz gaussian-to-6dB transitional filter plus a second-order RLC time domain equalizer. The fully differential passive delay-line differentiator previously discussed is also included. The analog and digital grounds should be connected only to the power supply common.

Figure 2b. Single-Ended Configuration of Passive Delay-Line Differentiator

9

OPERATION WITH +5V, +12V SUPPLIES

Operation with $+5V (\pm 0.25V)$ and $+12V (\pm 1.2V)$ supplies is readily achieved. The digital ground pins must be connected to the +5V line or to an available center tap of the +12V supply. The specified output ECL logic levels are therefore referred to the +5V supply. Pull-down resistors for the "Data +" and "Data –" pins should be connected to $V_{\rm EE}$. Thus connected, a current of approximately 23mA will flow in the +5V supply under normal operation.

In order to ensure correct comparator operation, a pair of 100mA diodes should be added in series with the +12V supply which is connected to the V_{CC} terminal. This connection is shown in Figure 4 (shown for cerdip package).

Both the +5V and +12V supplies should be RF bypassed to ground; the values of 0.1μ F and 0.01μ F in parallel are recommended. In addition, some higher value of decoupling capacitance – such as 3.3μ F – may be desirable. This decoupling should be applied directly at the AD891 "V_{CC}" and "Digital GND" pins. Finally, the common-mode range for the comparators is now referred to the +5V supply line, and care must be taken to operate within the common-mode limits.

Figure 4. AD892 Connection for +5V, +12V Operation

Digitally Programmable Delay Generator

AD9500

FEATURES

10ps Delay Resolution 2.5ns to 100μs+ Full-Scale Range Fully Differential Inputs Separate Trigger and Reset Inputs Low Power Dissipation – 310mW

APPLICATIONS

ATE Pulse Deskewing Arbitrary Waveform Generators High-Stability Timing Source Multiple Phase Clock Generators

AD9500 FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The AD9500 is a digitally programmable delay generator, which provides programmed delays, selected through an 8-bit digital code, in resolutions as small as 10ps. The AD9500 is constructed in a high-performance bipolar process, designed to provide high-speed operation for both digital and analog circuits.

The AD9500 employs differential TRIGGER and RESET inputs which are designed primarily for ECL signal levels but function with analog and TTL input levels. An on-board ECL reference midpoint allows both of the inputs to be driven by either single ended or differential ECL circuits. The AD9500 output is a complementary ECL stage, which also provides a parallel $\overline{Q_R}$ output circuit to facilitate reset timing implementations.

The digital control data is passed to the AD9500 through a transparent latch controlled by the LATCH ENABLE signal. In the transparent mode, the internal DAC of the AD9500 will attempt to follow changes at the inputs. The LATCH ENABLE is otherwise used to strobe the digital data into the AD9500 latches.

The AD9500 is available as an industrial temperature range device, -25° C to $+85^{\circ}$ C, and as an extended temperature range device, -55° C to $+125^{\circ}$ C. Both grades are packaged in a 24-pin ceramic "Skinny" DIP (0.3" package width), as well as 28-pin surface mount packages. Contact the factory for MIL-STD-883, revision C, qualified devices.

PIN CONFIGURATIONS

ORDERING INFORMATION

Device	Temperature Range	Description	Package Options*
AD9500BP	- 25°C to + 85°C	28-Pin PLCC (Plastic), Industrial Temperature	P-28A
AD9500BQ	- 25°C to + 85°C	24-Pin "Skinny" DIP, Industrial Temperature	Q-24
AD9500TE	- 55°C to + 125°C	28-Pin LCC, Extended Temperature	E-28A
AD9500TQ	- 55°C to + 125°C	24-Pin "Skinny" DIP, Extended Temperature	Q-24

*See Section 16 for package outline information.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS¹

Positive Supply Voltage $(+V_S)$	v
Negative Supply Voltage $(-V_S)$	v
ECL COMMON to Ground Differential2.0V to +5.0	v
Digital Input Voltage Range 3.5V to +5.0	V
Trigger/Reset Input Voltage Range	v
Trigger/Reset Differential Voltage	V
Minimum R _{SET}	Ω
Digital Output Current (Q and \overline{Q})	A
Digital Output Current $(\overline{Q_R})$ 2m	A

Offset Adjust Current (Sinking)								4mA
Power Dissipation (+25°C Free Air) ²						• •	. 2.	62W
Operating Temperature Range								
AD9500BP/BQ					25°	C τ	o +	85°C
AD9500TE/TQ			-	- 5	5°C	to C	+1	25℃
Storage Temperature Range			-	- 6	5°C	c to	+1	50°C
Junction Temperature							+1	75℃
Lead Soldering Temperature (10sec)	•					•	+3	00°C

ELECTRICAL CHARACTERISTICS (Supply Voltages + $V_S = +5.0V$, $-V_S = -5.2V$; $C_{EXT} = 0pF$; $R_{SET} = 500\Omega$, unless otherwise stated)

Parameter	Mil ³ Sub Group	Temp	- Min	Industrial - 25°C to + 85°C AD9500BP/BQ Typ) Max	-5 Al Min	Military 5°C to +125°C D9500TE/TQ Typ	C Max	Units
RESOLUTION			8			8			Bits
ACCURACY ⁴									
Differential Linearity	7	+25℃			0.5			0.5	LSB
Integral Linearity	7	+25°C		· ·	1.0		~ .	1.0	LSB
Monotonicity	/	+25°C		Guaranteed			Guaranteed		
DIGITAL INPUT									
Logic "1" Voltage	7,8	Full	2.0			2.0			v
Logic "0" Voltage	7,8	Full			0.8			0.8	V
Logic "1" Current	1,2,3	Full			5			5	μA
Logic "0" Current	1,2,3	Full		·	5			5	μA
Digital Input Capacitance	12	+25℃			5.5			5.5	pF
Data Setup Time	12	+25°C		0.4	0.75		0.4	0.75	ns
Data Hold Time	12	°+25℃		0.4	0.75		0.4	0.75	ns
Latch Pulse Width (t _{LPW})	12	+25℃	3.0			3.0			ns
RESET/TRIGGER INPUTS ⁷									
TRIGGER Input Voltage Range		Full		-2.5;4.5			-2.5;4.5		l v
RESET Input Voltage Range		Full		-2.5;2.0			-2.5; 2.0		v
Differential Switching Voltage	7,8	Full		40	300		40	300	mV
Input Bias Current	1	+25°C		40	50		40	50	μA
	2,3	Full			75			75	μA
Input Resistance		+25 <u>°</u> C		4			4		kΩ
Input Capacitance	12	+25℃		6.5	7.25		6.5	7.25	pF
Minimum Input Pulse Width									
(t _{TPW} , t _{RPW})		+25℃		2.0			2.0		ns
DYNAMIC PERFORMANCE ⁸									
Maximum Trigger Rate	12	+25℃	100			100			MHz
Minimum Propagation Delay (t _{PD}) ⁹	4	+25℃	5.4	6.4	7.4	5.4	6.4	7.4	ns
Minimum Propagation Delay TC ¹⁰		Full		7.5			7.5		ps/°C
Full-Scale Range TC		Full		0.5			0.5		ps/°C
Delay Uncertainty (Jitter)		+25°C		10			10		ps
Reset Propagation Delay (t _{RD}) ¹¹	4	+25℃	5.4	6.4	7.4	5.4	6.4	7.4	ns
Reset-to-Trigger Holdoff (t _{THO}) ¹²	4	+25℃	0.2	0		0.2	0		ns
Trigger-to-Reset Holdoff (t _{RHO}) ¹³	4	+25℃	2.0	1.5		2.0	1.5		ns
Minimum Output Pulse Width		+25°C		3.3			3.3		ns
Output Rise Time	12	+25℃			2.0			2.0	ns
Output Fall Time	12	+25℃			2.0			2.0	ns
Delay Coefficient Settling Time $(t_{DAC})^{14}$		+25℃		29			29		ns
Linear Ramp Settling Time (t _{LRS})		+25°C		22			22		ns

Parameter	Mil ³ Sub Group	Temp	Ir - 25° AD? Min	dustrial C to +85 9500BP/B	S°C RQ May	– 55 AD Min	Military °C to + 12 9500TE/	25°C TQ Max	Units
SUPPORT FUNCTIONS	Group	Temp		Тур	IVIAX	IVIII	Тур		
ECL _{REF} ECL _{REF} Voltage Drift ¹⁵ Offset Adjust Range	1	+25℃ Full Full	-1.4	-1.3 1.1 -2	-1.2	- 1.4	-1.3 1.1 -2	-1.2	V mV/°C mA
DIGITAL OUTPUTS ⁸									
Logic "1" Voltage Logic "0" Voltage	1, 2, 3 1, 2, 3	Full Full	-1.1		-1.5	-1.1		-1.5	V V
POWER SUPPLY ¹⁶									
Positive Supply Current (+5.0V)	1 2,3	+25℃ Full		24	28 30		24	28 30	mA mA
Negative Supply Current (-5.2V)	1 2,3	+ 25℃ Full		37	42 44		37	42 44	mA mA
Nominal Power Dissipation Power Supply Rejection Ratio ¹⁷	,	+ 25°C		312			312		mW
Full-Scale Range Sensitivity Minimum Propagation Delay	7	+25℃		70	300		70	300	ps/V
Sensitivity	7	+ 25°		150	500		150	500	ps/V

NOTES

¹Absolute maximum ratings are limiting values, to be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Typical thermal impedance

24-Pin Ceramic

 $\theta_{JA} = 56^{\circ}C/W; \theta_{IC} = 16^{\circ}C/W$ $\theta_{JA} = 60^{\circ}C/W; \theta_{JC} = 22^{\circ}C/W$ $\theta_{JA} = 69^{\circ}C/W; \theta_{JC} = 25^{\circ}C/W$ 28-Pin PLCC (Plastic) 28-Pin Ceramic LCC

³Military subgroups apply to military qualified devices only.

 ${}^{4}R_{SET} = 10k\Omega$. (Full-scale delay = 100ns).

⁵The digital data inputs must remain stable for the specified time prior to the LATCH ENABLE signal.

⁶The digital data inputs must remain stable for the specified time after the LATCH ENABLE signal.

- ⁷The TRIGGER and RESET inputs are differential and must be driven relative to one another. Both of these inputs are ECL compatible, but can also be used with TTL logic families in a limited fashion.
- ⁸Outputs terminated through 50Ω resistors to -2.0V.

EXPLANATION OF GROUP A MILITARY SUBGROUPS

Subgroup 1 - Static tests at +25°C.

- Subgroup 2 Static tests at max rated operating temp.
- Subgroup 3 Static tests at min rated operating temp.
- Subgroup 4 Dynamic tests at +25°C.
- Subgroup 5 Dynamic tests at max rated operating temp.
- Subgroup 6 Dynamic tests at min rated operating temp.
- Subgroup 7 Functional tests at $+25^{\circ}$ C.

⁹Program Delay = 0.0ps (Digital Data = 00_H). In Operation, any

- programmed delays are in addition to the Minimum Propagation Delay. ¹⁰Measured from the 50% transition point of the reset signal input, to the 50% transition point of the resetting output.
- ¹¹Minimum time from falling edge of RESET to triggering input, to insure a valid output event.
- ¹²Change in total delay through AD9500, exclusive of changes in minimumpropagation delay tPD.
- ¹³Minimum time from triggering event to rising edge of RESET, to insure a valid output event.
- ¹⁴Measured from the LATCH ENABLE input to the point when the AD9500 becomes 8-bit accurate again, after a full-scale change in the programmed delay.
- ¹⁵Standard 10K and 10KH ECL families operate with a 1.1mV/°C drift by design.
- ¹⁶Supply voltages should remain stable within $\pm 5\%$ for normal operation. ¹⁷Measured at \pm 5% of $-V_S$ and $+V_S$.

Specifications subject to change without notice.

- Subgroup 8 Functional tests at max and min rated operating temp.
- Subgroup 9 Switching tests at +25°C.
- Subgroup 10 Switching tests at max rated operating temp.
- Subgroup 11 Switching tests at min rated operating temp.
- Subgroup 12 Periodically sample tested.

9

FUNCTIONAL DESCRIPTION

PIN NAME	DESCRIPTION
D_4-D_6 $D_7(MSB)$	 One of eight digital inputs used to set the programmed delay. One of eight digital inputs used to set the programmed delay. D₇ (MSB) is the most significant bit of the digital input word.
ECL _{REF}	- ECL midpoint reference, nominally $-1.3V$. Use of the ECL _{REF} , allows either of the TRIGGER or the RESET inputs to be configured for single-ended ECL inputs.
OFFSET ADJUST	- The OFFSET ADJUST is used to adjust the minimum propagation delay (t_{PD}) , by pulling or pushing a small current out of or into the pin.
Cs	- C_s allows the full-scale range to be extended by using an external timing capacitor. The value of C_{EXT} , connected between C_s and $+V_s$, may range from 0pF to 0.1μ F +. See R_s ($C_{INTERNAL}$ = 10pF).
$+V_{s}$	– Positive supply terminal, nominally +5.0V.
TRIGGER	- Noninverted input of the edge-sensitive differential trigger input stage. The output at Q will be delayed by the programmed delay, after the triggering event. The programmed delay is set by the digital input word. The TRIGGER input must be driven in conjunction with the TRIGGER input.
TRIGGER	- Inverted input of the edge-sensitive differential trigger input stage. The output at Q will be delayed by the programmed delay, after the triggering event. The programmed delay is set by the digital input word. The TRIGGER input must be driven in conjunction with the TRIGGER input
RESET	 Inverted input of the level-sensitive differential reset input stage. The output at Q will be reset after a signal is received at the reset inputs. In the "minimum configuration," the minimum output pulse width will be equal to the "reset propagation delay," t_{RD}. The RESET input must be driven in conjunction with the RESET input
RESET	- Noninverted input of the level-sensitive differential reset input stage. The output at Q will be reset after a signal is received at the reset inputs. In the "minimum configuration," the minimum output pulse width will be equal to the "reset propagation delay," t_{RD} . The RESET input must be driven in conjunction with the RESET input
Q	 One of two complementary ECL outputs. A "triggering" event at the inputs will produce a logic HIGH on the Q output. A "resetting" event at the inputs will produce a logic LOW on the Q output
Q	– One of two complementary ECL outputs. A "triggering" event at the inputs will produce a logic LOW on the \overline{Q} output. A "resetting" event at the inputs will produce a logic HIGH on the \overline{Q} output.
$\overline{Q_R}$	$\overline{Q_R}$ output is parallel to the \overline{Q} output. The $\overline{Q_R}$ output is typically used to drive delaying circuits for extending output pulse widths. A "triggering" event at the inputs will produce a logic LOW on the $\overline{Q_R}$ output. A "resetting" event at the inputs will produce a logic HIGH on the $\overline{Q_P}$ output.
ECL COMMON	 The collector common for the ECL output stage. The collector common may be tied to +5.0V, but normally it is tied to the circuit ground for standard ECL outputs.
$-V_s$	- Negative supply terminal, nominally $-5.2V$.
R _s	- R_S is the reference current setting terminal. An external setting resistor, R_{SET} , connected between R_S and $-V_S$ determines the internal reference current. See C_S ($250\Omega \le R_{SET} \le 50k\Omega$).
GROUND LATCH ENABLE	 The ground return for the TTL and analog inputs. Transparent TTL latch control line. A logic HIGH on the LATCH ENABLE freezes the digital code at the logic inputs. A logic LOW on the LATCH ENABLE allows the internal current levels to be continuously undeted through the logic inputs De thru De
D ₀ (LSB)	- One of eight digital inputs used to set the programmed delay. D_0 (LSB) is the least significant bit of the digital input word.
D ₃ -D ₁	- One of eight digital inputs used to set the programmed delay.

.

Die Dimensi	101	ns	٠	٠	•	•	•	٠	٠	•	•	•	٠		10	4	×	10	30	×	18	(r	na	X)	mı	15
Pad Dimens	io	ns		•	•															4	×	4 (m	in)	mi	ls
Metalization		•					•	•	•				•			•						А	lw	miı	nui	m
Backing																			•					N	lor	ıe
Substrate Po	ote	nt	ial																						-V	s
Passivation																						0	xy	nit	rid	le
Die Attach																				(Go	old	E	ute	ect	ic
Bond Wire						1	.2	5	m	il,	, <i>I</i>	۱ı	un	niı	nu	m	ı; [`]	U	ltr	as	or	nic	B	on	din	ıg
										0	r	lr	ni	l,	G	ol	d;	G	iol	d	B	all	В	on	din	ıg

Input/Output Circuits

Burn-In Circuit

INSIDE THE AD9500

The heart of the AD9500 is the linear ramp generator. A triggering event at the input of the AD9500 initiates the ramp cycle. As the ramp voltage falls, it will eventually go below the threshold set up by the internal DAC (digital-to-analog converter). A comparator monitors both the linear ramp voltage and the DAC threshold level. The output of the comparator serves as the output for the AD9500, and the interval from the trigger until the output switches is the total delay time of the AD9500.

The total delay through the AD9500 is made up of two components. The first is the full-scale programmed delay, $t_{D~(max)}$, determined by R_{SET} and C_{EXT} . The second component of the total delay is the minimum propagation delay through the AD9500 (t_{PD}). The full-scale delay is variable from 2.5ns to greater than 1ms. The internal DAC is capable of generating 256 separate programmed delays within the full-scale range (this gives 10ps increments for a 2.5ns full-scale setting).

The actual programmed delay is directly related to both the digital control data (digital data to the internal DAC) and the RC time constant established by R_{SET} and C_{EXT} . The specific relationship is as follows:

Total Delay = Minimum Propagation Delay + Programmed Delay

= t_{PD} + (digital value/256) R_{SET} (C_{EXT} + 10pF)

Typical Programmed Delay Ranges

The internal DAC determines the programmed delay by way of the threshold level at its output. The LATCH ENABLE control for the on-board latch is active (latches) logic "HIGH". In the logic "LOW" state, the latch is transparent, and the internal DAC will attempt to follow changes at the digital data inputs. Both the LATCH ENABLE control and the data inputs are TTL compatible. The internal DAC may be updated at any time, but full timing accuracy may not be attained unless triggering events are held off until after the DAC settling time (t_{DAC}) .

On resetting, the ramp voltage held in the timing capacitor $(C_{EXT} + 10pF)$ is discharged. The AD9500 discharges the bulk of the ramp voltage very quickly, but to maintain *absolute* accuracy, subsequent triggering events should be held off until after the linear ramp settling time (t_{LRS}). Applications which employ high frequency triggering at a constant rate will not be affected by the slight settling errors since they will be constant for fixed reset-to-trigger cycles.

The RESET and TRIGGER inputs of the AD9500 are differential and must be driven relative to one another. Accordingly, the TRIGGER and RESET inputs are ideally suited for analog or complementary input signals. Single-ended ECL input signals can be accommodated by using the ECL midpoint reference (ECL_{REF}) to drive one side of the differential inputs.

The output of the AD9500 consists of both Q and \overline{Q} driver stages, as well as the $\overline{Q_R}$ output which is used primarily for extending the output pulse width. In the most direct reset configuration, either the Q or the \overline{Q} output is tied to the respective RESET input. This generates a delayed output pulse with a duration equal to the reset delay time (t_{RD}) of approximately 6ns. Note that the reset delay time (t_{RD}) of approximately 6ns. Note that the reset delay time (t_{RD}) becomes extended for very small programmed delay settings. The duration of the output pulse can be extended by driving the reset inputs with the $\overline{Q_R}$ output through an RC network (see "Extended Output Pulse Width" application). Using the $\overline{Q_R}$ output to drive the reset circuit avoids loading the Q or \overline{Q} outputs.

APPLICATIONS

The AD9500 is a very versatile device, but at the same time, it is not difficult to use. Essentially there are only a few basic configurations which can be extended into a number of applications. The TRIGGER and RESET inputs of the AD9500 can be treated as single ended, or as differential, which allows the AD9500 to operate with a wide range of signal sources. The output pulse from the AD9500 can be reset in one of two ways, either immediately by driving the RESET inputs with the output itself, or in a delayed mode.

MINIMUM CONFIGURATION

The minimum configuration uses only one of the TRIGGER inputs. The other is connected to the ECL reference midpoint, ECL_{REF}. This allows the AD9500 to be triggered with standard 10K or 10KH ECL signals. Once a triggering event occurs, the Q output will go into the logic HIGH state, and the \overline{Q} output will go into the logic LOW state after the programmed delay. The Q output is then used to drive the RESET input, causing the AD9500 to reset itself. The result is a delayed output pulse which is only as wide as the reset propagation delay (t_{RD}).

Single Input – Minimum Timing Configuration

EXTENDED OUTPUT PULSE WIDTHS

The extended pulse configuration is similar to the minimum configuration. The difference here is that the output pulse width has been extended. Operation is identical in terms of triggering the AD9500; the functional difference is in the resetting circuit. In this case the $\overline{Q_R}$ output is used to drive the \overline{RESET} input through a resistor/capacitor charging network. The charging network will cause the signal at the \overline{RESET} input to fall more slowly, which will extend the output pulse width. An added benefit of the extended pulse width configurations is that both the Q and the \overline{Q} outputs are completely free for other uses.

Extended Output Pulse Width Configuration

MULTICHANNEL DESKEWING

Perhaps the most appropriate use of the AD9500 is in multiple delay matching applications. Slight differences in impedance and cable length can create large timing skews within a high-speed system. Much of this skew can be eliminated by running each signal through an AD9500. With one line used as a standard, the programmed delays of the other AD9500s are adjusted to eliminate the timing skews. With the very fine timing adjustments possible from the AD9500 (as small as 10ps), nearly any high-speed system should be able to automatically adjust itself to extremely tight tolerances.

Multiple Delay Matching

MEASURING UNKNOWN DELAYS

Two AD9500s can be combined to measure delays with a high degree of precision. One AD9500 is set with little or no programmed delay, and its output is used to drive the unknown delay circuit, which in turn drives the input of a "D" type flipflop. The second AD9500 is triggered along with the first, and its output provides a clocking signal for the flipflop. The programmed delay of the second AD9500 is then varied to detect the output edge from the unknown delay circuit. Detecting the output edge is relatively straightforward. If the programmed delay through the second AD9500 is too long, the flipflop output will be at logic HIGH. If, on the other hand, the programmed delay through the second AD9500 is too short, the flipflop output will be at logic LOW. When the programmed delay is properly adjusted, the flipflop will likely bounce between logic HIGH and logic LOW. The digital code value used to create the second programmed delay is a direct indication of the delay through the unknown circuit. The most accurate results can only be attained by calibrating the system without the unknown delay circuit in place.

Measuring Unknown Delays

MEASURING HIGH-SPEED AC WAVEFORMS

The same circuitry used to measure unknown delays can be extended to measure the time response of high-speed ac waveforms. With the addition of a digital-to-analog converter and an analog comparator, the circuit functions very much like the previous application. The DAC sets a threshold level which drives one of the differential comparator inputs. The other comparator input is driven by the device under test (DUT). The output of the first AD9500 causes the DUT to produce an output. The second AD9500, which is also triggered along with the first AD9500, strobes the comparator latch enable.

If the DUT output is greater than the DAC threshold when the comparator is latched, the comparator output will be at logic HIGH. If the output is below the DAC threshold, the comparator will be at logic LOW. The programmed delay setting of the second AD9500 is adjusted to the point where the DUT output equals the DAC threshold. By varying the DAC threshold level and adjusting the second AD9500 programmed delay, a point by point reconstruction of the ac waveform can be created.

Measuring ac Waveforms

PROGRAMMABLE OSCILLATOR

Another interesting use of the AD9500 is in a digitally programmable oscillator. The highly accurate delays generated by the AD9500 can be exploited to create a ring oscillator with variable duty cycle. The delayed output of the first AD9500 is used to drive the TRIGGER input of the second AD9500. The output of the second AD9500, in turn, is used to drive the TRIGGER input of the first AD9500. Together the two devices will alternately trigger each other creating two pulse chains on the outputs.

The total delay through both AD9500s combined, determines the period of the oscillation frequency. The duty cycle can be controlled by using the outputs to drive the SET and RESET inputs of a flipflop. The total delay through the first AD9500 will control the flipflop logic LOW output pulse width, and the second AD9500 will control the flipflop logic HIGH output pulse width.

Ring Oscillator

LAYOUT CONSIDERATIONS

The AD9500 is a precision timing device, and as such high-frequency design techniques must be employed to achieve the best performance. The use of a low impedance ground plane is particularly important. Ideally the ground plane should be on the component side of the layout and extend under the AD9500, to shield it from system timing signals. Sockets pose a special problem for a circuit like the AD9500 because of the additional inter-lead capacitance they create. If sockets must be used, pin sockets are generally preferred. Power supply decoupling is also critical to a high-speed design; a 0.1μ F ceramic capacitor and a 0.01μ F mica capacitor for both power supplies should be very effective. DAC threshold stability can be improved by decoupling the OFFSET ADJUST pin to +5.0V (note that this will lengthen the DAC settling time, t_{DAC}).

100MHz TRIGGERING

The AD9500 can be triggered at rates above 100MHz. This is accomplished by resetting the AD9500 shortly after it is triggered, which also tends to generate an extremely narrow output pulse. The delay circuit between the trigger input and the reset input provides the variable delay required for various configurations from 2.5ns full-scale to over 10ns full-scale (greater than 10ns total delay precludes 100MHz triggering).

Reset Holdoff for High-Speed Triggering

DELAY OFFSET ADJUSTMENTS

As the full-scale delay is increased, a component of the minimum propagation delay also increases. This is caused by the additional time required by the ramp (now with a much "flatter" slope) to fall below the DAC threshold corresponding to the minimum propagation delay (t_{PD}). One means of decreasing the minimum propagation delay (when the full-scale delay, set by R_{SET} and C_{EXT} is large) is to offset the internal DAC threshold toward the initial ramp levels, thus reducing the time for the internal ramp to cross the threshold once the AD9500 is triggered.

The DAC levels are offset toward the initial ramp level by injecting a small current into the offset adjust pin. Note, however, that the ramp start-up region is less linear than the later portions of the ramp, which is the primary reason for the built-in offset. If the minimum propagation delay is kept above 5ns (the linear portion of the ramp), no significant degradation in linearity should result. This concept can be extended to match the actual propagation delays of several AD9500s, by injecting or sinking a small current (<2mA) into or out of each of the OFFSET ADJUST pins.

GENERAL PERFORMANCE ENCHANCEMENTS

High-speed operation is generally more consistent if C_{EXT} is kept small (i.e., no external capacitor) to maintain small discharge time constants. Integral linearity, however, benefits from larger values of C_{EXT} by buffering small system spikes and surges. Another means of improving integral linearity is to draw a small current ($\approx 200\mu$ A) out of the OFFSET ADJUST pin with a 47kΩ pull-down resistor. This has the effect of moving the internal DAC reference levels into a relatively more linear region of the ramp. This technique is generally only useful for small full-scale delay configurations. Its use with larger full-scale delays will extend the minimum propagation delay (t_{PD}). A pull-up resistor to +5.0V creates the opposite effect by reducing the minimum propagation delay (t_{PD}) at the expense of increased reset propagation delay (t_{PD}) and degraded linearity (see OFFSET matching circuit).

An external DAC can be used with the AD9500 for increased resolution and higher update rates. For the most part, a standard ECL DAC, operating between +5.0V and ground, should work with the AD9500. The output of the external DAC must be connected to the OFFSET ADJUST pin of the AD9500 with the internal DAC turned off (D₀ thru D₇ at logic LOW). For normal operation, the external DAC output should range from 0mA to -2mA (sinking).

The Offset Adjust Pin Can Be Used to Match Several AD9500s

Operation with External DAC

Temperature Transducers Contents

Page

Selection Guide	10 – 3
Orientation	10 – 4
AC2626 – General Purpose Temperature Probe	10 – 5
AD590 – Two-Terminal IC Temperature Transducer	10 – 7
AD592 – Low Cost, Precision IC Temperature Transducer	10 – 17

10-2 TEMPERATURE TRANSDUCERS

Selection Guide Temperature Transducers

Model	Output Current µA/K	Calibration Error °C	Nonlinearity °C	Package	Page
AC2626	1	0.5	0.3	Stainless steel probe	10 - 5
AD590	1	1.7	0.3	Hermetic can or probe- compatible ceramic	10 – 7
AD592	1	0.8	0.15	Plastic package	10 – 17

Orientation Temperature Transducers

The devices in this section are two-terminal monolithic integrated circuits designed to measure temperatures within the range -55° C to $+150^{\circ}$ C. When +4V to +30V of excitation voltage is applied, they act as current sources that provide an output proportional to absolute temperature, 1μ A/K. Expressed in degrees Celsius (T_C),

 $I = 1\mu A^{\circ}C \cdot T_C + 273.2\mu A$

Current sources have a number of advantages: they are based on a linear relationship and are highly repeatable; the current is independent of voltage drops, voltage noise and common-mode voltage – and practically independent of excitation voltage; the current can be translated to a voltage at a remote destination via an appropriate value of resistance (V = IR) – and simple offsetting circuitry (if necessary).

They are easy to use; they don't require linearization circuitry, high-precision voltage amplifiers, resistance-measuring circuitry or cold-junction compensation. Indeed, they are themselves widely used for cold-junction compensation of thermocouple circuitry.

There are many other applications, including appliance temperature sensing, automotive temperature measurement and control, HVAC (heating, ventilating and air conditioning) system monitoring, industrial temperature control, board-level electronics temperature diagnostics, temperature readout options in instrumentation and temperature-correction circuitry for precision electronics.

AD592 Low-Cost Precision IC Temperature Transducer The AD592 is a low-cost, plastic packaged device with an operating temperature range of -25° C to $+105^{\circ}$ C and precalibrated accuracy (using laser wafer-trimming) to within 0.5°C (AD592CN) at $+25^{\circ}$ C. Its specified nonlinearity (maximum deviation from a best straight line) is 0.35°C maximum over temperature and less than 0.15°C from 0 to $+70^{\circ}$ C.

AD590 IC Temperature Transducer

The AD590 is similar in principle to the AD592 but is encased in a choice of a hermetically sealed metal can and a probecompatible ceramic sensor package. Its maximum temperature range for rated performance is -55° C to $+150^{\circ}$ C, with maximum nonlinearity of 0.3°C over the temperature range (AD590M).

AC2626 General-Purpose Temperature Probe

The AC2626 is a stainless steel tubular probe containing an AD590 chip, with specifications generally similar to those of the AD590. The probe has an outside diameter of 3/16'' (4.76mm); it is available in 6'' (152.4mm) and 4'' (101.6mm) lengths and has 3-foot Teflon-coated lead wires.

The probe is designed for immersion in both liquids and gases and can also be used for temperature measurements in refrigeration and general temperature monitoring. Its applications include flow-rate measurement, level detection of fluids and anemometry.

For measurements in pipes or other closed vessels, a compression fitting (AC2629) is available. It may be applied anywhere along the probe and is available in a choice of brass and stainless steel.

RELATED PRODUCTS

A variety of digital panel instruments are available for use in temperature monitoring. They can be found in the section on Digital Panel Instruments. The AD2040* low-cost, 3-digit temperature indicator and the AD2038* 6-channel digital scanning thermometer may be of especial interest.

For interfacing temperature measurements to systems, signalconditioning products in wide variety of architectures and physical forms can be found in the section on signal conditioning; for the circuit designer, suitable operational, instrumentation and isolation amplifiers can be found in the respective sections.

For background information, a valuable aid to understanding, design, and applications is the *Transducer Interfacing Handbook*, published by Analog Devices (1980). It is available for \$14.50 (hard cover) from P. O. Box 796, Norwood, MA 02062.

*Data sheets available upon request.

General Purpose Temperature Probe

AC2626

FEATURES

Linear Current Output: $1\mu A/K$ Wide Range: -55° C to $+150^{\circ}$ C Laser Trimmed Sensor (AD590) to $\pm 1.0^{\circ}$ C Calibration Accuracy (AC2626L) Excellent Linearity: $\pm 0.4^{\circ}$ C Over Full Range (AC2626L) 6 Inch or 4 Inch Standard, Stainless Steel Sheath 3/16 Inch in Outside Diameter 3 Feet Teflon Coated Lead Wire Wide Power Supply Range $\pm 4V$ to $\pm 30V$ Low Cost Fast Response: 2 Seconds (In Stirred Water) Sensor Isolated From Sheath

PRODUCT DESCRIPTION

The AC2626 is a stainless steel tubular probe measuring 3/16 inch (4.76mm) in outside diameter and is available in 6 inch (152.4mm) or 4-inch (101.6mm) lengths. The probe is available in linearity grades of 0.3° C, 0.4° C, 0.8° C or 1.5° C.

The probe is designed for both liquid and gaseous immersion applications as well as temperature measurements in refrigeration or any general temperature monitoring application.

For taking measurements in pipes or other closed vessels, the AC2629 compression fitting is available. The AC2629 may be applied anywhere along the probe and is supplied in two materials. The low cost AC2629B is constructed of brass and the higher priced AC2629SS is made of stainless steel.

PRODUCT HIGHLIGHTS

The AC2626 is based on the AD590 temperature transducer, a two terminal integrated circuit which produces an output current linearly proportional to absolute temperature.

Costly linearization circuitry, precision voltage amplifiers, resistance measuring circuitry and cold junction compensation are not needed in applying the AC2626.

Due to the high impedance current output of the AD590, the AC2626 is particularly useful in remote sensing applications, because of its insensitivity to voltage drops over lines. The output characteristics also make the AC2626 easy to multiplex.

In addition to temperature measurement, applications include temperature compensation, biasing proportional to absolute temperature, flow rate measurement, level detection of fluids and anemometry.

DIRECT INTERFACE PRODUCTS

For display and/or control applications, two companion products are available. The AD2038, 6 channel digital thermometer, and the AD2040, low cost temperature indicator, were designed to be used in conjunction with the AC2626.

- The AD2038 is a low cost, ac line powered 6 channel digital scanning thermometer designed to interface to printers, computers, serial data transmitters, etc., for display, control, logging or transmission of multi-point temperature data. Channel selection is made via three methods: manual, using the switch provided on the front; auto/scan, where the AD2038 cycling on an internal clock can continually scan the six input channels or external selection, where control inputs provided on the rear connector enable channel selection via external BCD coding.
- 2. The AD2040 is a low cost, 3 digit temperature indicator. An internal precision voltage reference, resistor network and span and zero adjusts allow the AD2040 to read out directly in °C, °F, K or R. User selectable readout as well as all other connections, i.e., +5V dc power and AC2626 interface are all made via the terminal block on the rear.

APPLICATION HINTS

- 1. Under all operating conditions, a minimum 4V dc must be present across the AC2626.
- Use of twisted pair wiring is recommended, particularly for remote applications or in high noise environments. Shielded wire is desirable in severe noise environments.
- 3. For the lowest cost, the J and K grades are recommended. Where probe interchangeability is desired, grade L is recommended.

SPECIFICATIONS (typical @ + 25°C and + 5V unless otherwise specified)

MODEL	AC2626J	AC2626K	AC2626L	AC2626M
ABSOLUTE MAXIMUM RATINGS ¹				
Forward Voltage (VS)	+44V	*	*	*
Reverse Voltage (VS)	-20V	*	*	*
Breakdown Voltage (Case to Leads)	±200V	*	*	*
Rated Performance Temp. Range	-55°C to +150°C	*	*	*
Storage Temperature Range	-60°C to +160°C	*	*	*
POWER SUPPLY				
Operating Voltage Range	+4V to $+30V$	•	*	•
OUTPUT				
Nominal Current Output @ +25°C				
(298 2°K)	298 2µA	* 1	*	•
Nominal Temperature Coefficient	1µA/°C	*	•	•
Calibration Frror @ +25°C	±5 0°C max	±2.5°C max	±1.0°C max	±0.5°C max
Absolute Error (over rated performance				
temperature range)				
Without External Calibration				
Adjustment	±10 0°C max	±5 5°C max	±3 0°C max	±1 7°C max
With +25°C Calibration Error	0	•	0	0
Set to Zero	±3 0°C max	±2 0°C max	±1.6°C max	±1.0°C max
Nonlinearity	±1 5°C max	±0.8°C max	±0 4°C max	±0 3°C max
Repeatability ²	0 1°C	*	•	•
Long Term Drift'	0.1°C max/month	*	•	*
Time Constant" (in stirred water)	2 sec.	*	*	•
Current Noise	40pA√Hz	*	•	*
Power Supply Rejection				
+4V≪V _S ≪+5V	0 5μA/V	*	•	*
+5V≤V _S ≤+15V	0 2μA/V	*	*	*
+15V≪V _S ≪+30V	0.1µA/V	*	•	*
Electrical Turn-On Time	20µs	*	*	*
+ Lead Color	yellow	orange	blue	green

ORDERING GUIDE

NOTES ¹ Maximum safe recommended pressure 7500psi (5.17 × 10⁴ Kpa), ² Maximum deviation between +25°C readings after temperature cycling between -55°C and +150°C, guaranteed,

¹ The time constant is defined as the time required to reach 63.2% of an instantaneous temperature change, ¹ The time constant is defined as the time required to reach 63.2% of an instantaneous temperature change,

*Specifications same as AC2626J. Specifications subject to change without notice.

CALIBRATION

For most applications, a single point calibration is sufficient. With the probe at a known temperature, adjust RT so that Vo corresponds to the known temperature.

If more detailed information is desired, see the AD590 data sheet and application note.

MECHANICAL OUTLINE

Dimensions shown in inches and (mm).

AC2626

AC2629

STAINLESS STEEL TYPE 316 COMPRESSION FITTING (See Note 3)

NOTE 1 Probes are available in 4 inch or 6-inch lengths NOTE 2 + lead wire is color coded J, vellow, K, orange, L, blue. NOTE 3 When assembling compression fitting (AC2629) to probe, tighten the 1/2" nut 3/4's of a turn from finger tight

Two-Terminal IC Temperature Transducer

AD590*

FEATURES

Linear Current Output: 1µA/K Wide Range: -55°C to +150°C Probe Compatible Ceramic Sensor Package Two-Terminal Device: Voltage In/Current Out Laser Trimmed to ±0.5°C Calibration Accuracy (AD590M) Excellent Linearity: ±0.3°C Over Full Range (AD590M) Wide Power Supply Range: +4V to +30V Sensor Isolation from Case Low Cost

AD590 PIN DESIGNATIONS

BOTTOM VIEW

PRODUCT DESCRIPTION

The AD590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature. For supply voltages between +4V and +30V the device acts as a high impedance, constant current regulator passing 1 μ A/K. Laser trimming of the chip's thin film resistors is used to calibrate the device to 298.2 μ A output at 298.2K (+25°C).

The AD590 should be used in any temperature sensing application below +150°C in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance measuring circuitry and cold junction compensation are not needed in applying the AD590.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, biasing proportional to absolute temperature, flow rate measurement, level detection of fluids and anemometry. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high impedance current output. Any well-insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

*Covered by Patent No. 4,123,698

PRODUCT HIGHLIGHTS

- 1. The AD590 is a calibrated two terminal temperature sensor requiring only a dc voltage supply (+4V to +30V). Costly transmitters, filters, lead wire compensation and linearization circuits are all unnecessary in applying the device.
- 2. State-of-the-art laser trimming at the wafer level in conjunction with extensive final testing insures that AD590 units are easily interchangeable.
- 3. Superior interference rejection results from the output being a current rather than a voltage. In addition, power requirements are low (1.5mW's @ 5V @ +25°C). These features make the AD590 easy to apply as a remote sensor.
- 4. The high output impedance (>10M Ω) provides excellent rejection of supply voltage drift and ripple. For instance, changing the power supply from 5V to 10V results in only a 1 μ A maximum current change, or 1°C equivalent error.
- The AD590 is electrically durable: it will withstand a forward voltage up to 44V and a reverse voltage of 20V. Hence, supply irregularities or pin reversal will not damage the device.
SPECIFICATIONS ($@ +25^{\circ}$ and $V_s = 5V$ unless otherwise noted)

Model		AD590J			AD590K		
	Min	Тур	Max	Min	Тур	Max	Units
ABSOLUTE MAXIMUM RATINGS							
Forward Voltage $(E + to E -)$			+ 44			+ 44	Volts
Reverse Voltage $(E + to E -)$			- 20	1		-20	Volts
Breakdown Voltage (Case to $E + \text{ or } E - $)			± 200			±200	Volts
Rated Performance Temperature Range ¹	- 55		+150	- 55		+ 150	°C
Storage Temperature Range ¹	-65		+155	-65		+ 155	l ℃
Lead Temperature (Soldering, 10 sec)			+ 300			+ 300	°C
POWER SUPPLY							1
Operating Voltage Range	+ 4		+ 30	+4		+ 30	Volts
OUTPUT							
Nominal Current Output @ +25°C(298.2K)		298.2			298.2		μA
Nominal Temperature Coefficient		1			1		μA/K
Calibration Error @ +25°C			±5.0			±2.5	°C
Absolute Error (over rated performance							
temperature range)							
Without External Calibration Adjustment			±10			±5.5	°C
With +25°C Calibration Error Set to Zero			±3.0			±2.0	°C
Nonlinearity			±1.5			±0.8	l ℃
Repeatability ²			± 0.1			± 0.1	°C
Long Term Drift ³			± 0.1			± 0.1	°C
Current Noise		40			40		pA/√Hz
Power Supply Rejection							
$+4V \le V_S \le +5V$		0.5			0.5		μA/V
$+5V \le V_S \le +15V$		0.2			0.2		μA/V
$+15V \le V_S \le +30V$		0.1			0.1		μA/V
Case Isolation to Either Lead		10 ¹⁰			10 ¹⁰		Ω
Effective Shunt Capacitance		100			100		pF
Electrical Turn-On Time		20		Ì	20		μs
Reverse Bias Leakage Current ⁴							
(Reverse Voltage = 10V)		10			10		pA
PACKAGE OPTION ⁵							
TO-52(H-03A)		AD590JH	ł	1	AD590K	н	1
Flat Pack (F–2A)		AD590JF	7		AD590K	F	

NOTES

¹The AD590 has been used at -100°C and +200°C for short periods of measurement with no physical damage to the device. However, the absolute errors specified apply to only the rated performance temperature range.

²Maximum deviation between +25°C readings after temperature cycling between - 55°C and + 150°C; guaranteed not tested. ³Conditions: constant +5V, constant +125°C; guaranteed, not tested.

⁴Leakage current doubles every 10°C.

⁵See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

TEMPERATURE SCALE CONVERSION EQUATIONS

°C =
$$\frac{5}{9}$$
 (°F -32) K = °C +273.15
°F = $\frac{9}{5}$ °C +32 °R = °F +459.7

Model	-	AD590L		1	AD590M	[1
	Min	Тур	Max	Min	Тур	Max	Units
ABSOLUTE MAXIMUM RATINGS							
Forward Voltage $(E + to E -)$			+ 44			+ 44	Volts
Reverse Voltage $(E + to E -)$			-20			- 20	Volts
Breakdown Voltage (Case to $E + \text{ or } E - $)			± 200			± 200	Volts
Rated Performance Temperature Range ¹	- 55		+150	- 55		+ 150	°C
Storage Temperature Range ¹	- 65		+ 155	-65		+ 155	°C
Lead Temperature (Soldering, 10 sec)			+ 300			+ 300	°C
POWER SUPPLY				1			
Operating Voltage Range	+4		+ 30	+4		+ 30	Volts
OUTPUT				1	•		
Nominal Current Output @ +25°C(298.2K)	1	298.2			298.2		μA
Nominal Temperature Coefficient		1			1		μA/K
Calibration Error @ + 25°C			±1.0			±0.5	l ℃
Absolute Error (over rated performance							
temperature range)	1						
Without External Calibration Adjustment			±3.0			±1.7	°C
With +25°C Calibration Error Set to Zero			±1.6			±1.0	0℃
Nonlinearity			±0.4			±0.3	°C
Repeatability ²			± 0.1			± 0.1	°C
Long Term Drift ³			± 0.1	1		± 0.1	°C
Current Noise		40			40		pA√Hz
Power Supply Rejection							
$+4V \le V_S \le +5V$		0.5			0.5		μA/V
$+5V \le V_S \le +15V$		0.2			0.2		μA/V
$+15V \le V_S \le +30V$		0.1			0.1		μA/V
Case Isolation to Either Lead		10 ¹⁰			10 ¹⁰		Ω
Effective Shunt Capacitance		100			100		pF
Electrical Turn-On Time		20			20		μs
Reverse Bias Leakage Current ⁴							
(Reverse Voltage = 10V)		10			10		pA
PACKAGE OPTION ⁵		-					
TO-52 (H-03A)		AD590LH	ł		AD590M	н	
Flat Pack (F-2A)		AD590LH	7		AD590M	F	

The 590H has 60μ inches of gold plating on its Kovar leads and Kovar header. A resistance welder is used to seal the nickel cap to the header. The AD590 chip is euterctically mounted to the header and ultrasonically bonded to with 1 MIL aluminum wire. Kovar composition: 53% iron nominal; 29% ±1% nickel; 17% ±1% cobalt; 0.65% manganese max; 0.20% silicon max; 0.10% aluminum max; 0.10% magnesium max; 0.10% zirconium max; 0.10% titanium max; 0.06% carbon max.

FLAT-PACK PACKAGE: DESIGNATION "F"

The 590F is a ceramic package with gold plating on its Kovar leads, Kovar lid, and chip cavity. Solder of 80/20 Au/Sn composition is used for the 1.5 mil thick solder ring under the lid. The chip cavity has a nickel underlay between the metalization and the gold plating. The AD590 chip is eutectically mounted in the chip cavity at 410° C and ultrasonically bonded to with 1 mil aluminum wire. Note that the chip is in direct contact with the ceramic base, not the metal lid.

CIRCUIT DESCRIPTION¹

The AD590 uses a fundamental property of the silicon transistors from which it is made to realize its temperature proportional characteristic: if two identical transistors are operated at a constant ratio of collector current densities, r, then the difference in their base-emitter voltages will be $(kT/q)(\ln r)$. Since both k, Boltzman's constant and q, the charge of an electron, are constant, the resulting voltage is directly proportional to absolute temperature (PTAT). In the AD590, this PTAT voltage is converted to a PTAT current by low temperature coefficient thin film resistors. The total current of the device is then forced to be a multiple of this PTAT current. Referring to Figure 1, the schematic diagram of the AD590, Q8 and Q11 are the transistors that produce the PTAT voltage. R5 and R6 convert the voltage to current. Q10, whose collector current tracks the collector currents in Q9 and Q11, supplies all the bias and substrate leakage current for the rest of the circuit, forcing the total current to be PTAT. R5 and R6 are laser trimmed on the wafer to calibrate the device at $+25^{\circ}$ C.

Figure 2 shows the typical V–I characteristic of the circuit at $+25^{\circ}$ C and the temperature extremes.

Figure 1. Schematic Diagram

Figure 2. V-I Plot

¹ For a more detailed circuit description see M.P. Timko, "A Two-Terminal IC Temperature Transducer," IEEE J. Solid State Circuits, Vol. SC-11, p. 784-788, Dec. 1976.

EXPLANATION OF TEMPERATURE SENSOR SPECIFICATIONS

The way in which the AD590 is specified makes it easy to apply in a wide variety of different applications. It is important to understand the meaning of the various specifications and the effects of supply voltage and thermal environment on accuracy.

The AD590 is basically a PTAT (proportional to absolute temperature)¹ current regulator. That is, the output current is equal to a scale factor times the temperature of the sensor in degrees Kelvin. This scale factor is trimmed to $1\mu A/K$ at the factory, by adjusting the indicated temperature (i.e. the output current) to agree with the actual temperature. This is done with 5V across the device at a temperature within a few degrees of 25°C (298.2K). The device is then packaged and tested for accuracy over temperature.

CALIBRATION ERROR

At final factory test the difference between the indicated temperature and the actual temperature is called the calibration error. Since this is a scale factor error, its contribution to the total error of the device is PTAT. For example, the effect of the 1° C specified maximum error of the AD590L varies from 0.73° C at -55° C to 1.42° C at 150° C. Figure 3 shows how an exaggerated calibration error would vary from the ideal over temperature.

Figure 3. Calibration Error vs. Temperature

The calibration error is a primary contributor to maximum total error in all AD590 grades. However, since it is a scale factor error, it is particularly easy to trim. Figure 4 shows the most elementary way of accomplishing this. To trim this circuit the temperature of the AD590 is measured by a reference temperature sensor and R is trimmed so that $V_T = 1 \text{mV/K}$ at that temperature. Note that when this error is trimmed out at one temperature, its effect is zero over the entire temperature range. In most applications there is a current to voltage conversion resistor (or, as with a current input ADC, a reference) that can be trimmed for scale factor adjustment.

Figure 4. One Temperature Trim

 1 T(°C) = T(K) -273.2; Zero on the Kelvin scale is "absolute zero"; there is no lower temperature.

ERROR VERSUS TEMPERATURE: WITH CALIBRATION ERROR TRIMMED OUT

Each AD590 is also tested for error over the temperature range with the calibration error trimmed out. This specification could also be called the "variance from PTAT" since it is the maximum difference between the actual current over temperature and a PTAT multiplication of the actual current at 25°C. This error consists of a slope error and some curvature, mostly at the temperature extremes. Figure 5 shows a typical AD590K temperature curve before and after calibration error trimming.

Figure 5. Effect of Scale Factor Trim on Accuracy

ERROR VERSUS TEMPERATURE: NO USER TRIMS

Using the AD590 by simply measuring the current, the total error is the "variance from PTAT" described above plus the effect of the calibration error over temperature. For example the AD590L maximum total error varies from 2.33°C at -55°C to 3.02°C at 150°C. For simplicity, only the larger figure is shown on the specification page.

NONLINEARITY

Nonlinearity as it applies to the AD590 is the maximum deviation of current over temperature from a best-fit straight line. The nonlinearity of the AD590 over the -55° C to $+150^{\circ}$ C range is superior to all conventional electrical temperature sensors such as thermocouples, RTD's and thermistors. Figure 6 shows the nonlinearity of the typical AD590K from Figure 5.

Figure 7A shows a circuit in which the nonlinearity is the major contributor to error over temperature. The circuit is trimmed by adjusting R_1 for a 0V output with the AD590 at 0°C. R_2 is then adjusted for 10V out with the sensor at 100°C. Other pairs of temperatures may be used with this procedure as long as they are measured accurately by a reference sensor. Note that for +15V output (150°C) the V+ of the op amp must be greater than 17V. Also note that V- should be at least -4V: if V- is ground there is no voltage applied across the device.

Figure 7A. Two Temperature Trim

Figure 7B. Typical Two-Trim Accuracy

VOLTAGE AND THERMAL ENVIRONMENT EFFECTS

The power supply rejection specifications show the maximum expected change in output current versus input voltage changes. The insensitivity of the output to input voltage allows the use of unregulated supplies. It also means that hundreds of ohms of resistance (such as a CMOS multiplexer) can be tolerated in series with the device.

It is important to note that using a supply voltage other than 5V does not change the PTAT nature of the AD590. In other words, this change is equivalent to a calibration error and can be removed by the scale factor trim (see previous page).

The AD590 specifications are guaranteed for use in a low thermal resistance environment with 5V across the sensor. Large changes in the thermal resistance of the sensor's environment will change the amount of self-heating and result in changes in the output which are predictable but not necessarily desirable.

The thermal environment in which the AD590 is used determines two important characteristics: the effect of self heating and the response of the sensor with time.

Figure 8. Thermal Circuit Model

Figure 8 is a model of the AD590 which demonstrates these characteristics. As an example, for the TO-52 package, θ_{JC} is the thermal resistance between the chip and the case, about

26°C/watt. θ_{CA} is the thermal resistance between the case and its surroundings and is determined by the characteristics of the thermal connection. Power source P represents the power dissipated on the chip. The rise of the junction temperature, T₁, above the ambient temperature T_A is:

$$T_J - T_A = P (\theta_{JC} + \theta_{CA}).$$
 Eq. 1

Table I gives the sum of θ_{JC} and θ_{CA} for several common thermal media for both the "H" and "F" packages. The heatsink used was a common clip-on. Using Equation 1, the temperature rise of an AD590 "H" package in a stirred bath at +25°C, when driven with a 5V supply, will be 0.06°C. However, for the same conditions in still air the temperature rise is 0.72°C. For a given supply voltage, the temperature rise varies with the current and is PTAT. Therefore, if an application circuit is trimmed with the sensor in the same thermal environment in which it will be used, the scale factor trim compensates for this effect over the entire temperature range.

MEDIUM	$\theta_{JC} + \theta_{CA}$	(°C/watt)	τ (sec)(Note 3)
	H	<u>F</u>	H	<u>F</u>
Aluminum Block	30	10	0.6	0.1
Stirred Oil ¹	42	60	1.4	0.6
Moving Air ²				
With Heat Sink	45	-	5.0	
Without Heat Sink	115	190	13.5	10.0
Still Air				
With Heat Sink	191	-	108	-
Without Heat Sink	480	650	60	30

¹ Note: τ is dependent upon velocity of oil; average of several velocities listed above.

² Air velocity \cong 9ft/sec.

³The time constant is defined as the time required to reach 63.2% of an instantaneous temperature change.

Table I. Thermal Resistances

The time response of the AD590 to a step change in temperature is determined by the thermal resistances and the thermal capacities of the chip, C_{CH} , and the case, C_C . C_{CH} is about 0.04 watt-sec/°C for the AD590. C_C varies with the measured medium since it includes anything that is in direct thermal contact with the case. In most cases, the single time constant exponential curve of Figure 9 is sufficient to describe the time response, T(t). Table I shows the effective time constant, τ , for several media.

Figure 9. Time Response Curve

Applying the AD590

GENERAL APPLICATIONS

Figure 12. Differential Measurements

Figure 10. Variable Scale Display

Figure 10 demonstrates the use of a low-cost Digital Panel Meter for the display of temperature on either the Kelvin, Celsius or Fahrenheit scales. For Kelvin temperature Pins 9, 4 and 2 are grounded; and for Fahrenheit temperature Pins 4 and 2 are left open.

The above configuration yields a 3 digit display with 1° C or 1° F resolution, in addition to an absolute accuracy of $\pm 2.0^{\circ}$ C over the -55° C to $\pm 125^{\circ}$ C temperature range if a one-temperature calibration is performed on an AD590K, L, or M.

Figure 11. Series & Parallel Connection

Connecting several AD590 units in series as shown in Figure 11 allows the minimum of all the sensed temperatures to be indicated. In contrast, using the sensors in parallel yields the average of the sensed temperatures.

The circuit of Figure 12 demonstrates one method by which differential temperature measurements can be made. R_1 and R_2 can be used to trim the output of the op amp to indicate

a desired temperature difference. For example, the inherent offset between the two devices can be trimmed in. If V+ and V- are radically different, then the difference in internal dissipation will cause a differential internal temperature rise. This effect can be used to measure the ambient thermal resistance seen by the sensors in applications such as fluid level detectors or anemometry.

Figure 13. Cold Junction Compensation Circuit for Type J Thermocouple

Figure 13 is an example of a cold junction compensation circuit for a Type J Thermocouple using the AD590 to monitor the reference junction temperature. This circuit replaces an ice-bath as the thermocouple reference for ambient temperatures between $+15^{\circ}$ C and $+35^{\circ}$ C. The circuit is calibrated by adjusting R_T for a proper meter reading with the measuring junction at a known reference temperature and the circuit near $+25^{\circ}$ C. Using components with the T.C.'s as specified in Figure 13, compensation accuracy will be within $\pm 0.5^{\circ}$ C for circuit temperatures between $+15^{\circ}$ C and $+35^{\circ}$ C. Other thermocouple types can be accommodated with different resistor values. Note that the T.C.'s of the voltage reference and the resistors are the primary contributors to error.

Figure 14. 4 to 20mA Current Transmitter

Figure 14 is an example of a current transmitter designed to be used with 40V, $1k\Omega$ systems; it uses its full current range of 4mA to 20mA for a narrow span of measured temperatures. In this example the 1μ A/K output of the AD590 is amplified to $1mA/^{\circ}$ C and offset so that 4mA is equivalent to 17° C and 20mA is equivalent to 33° C. R_T is trimmed for proper reading at an intermediate reference temperature. With a suitable choice of resistors, any temperature range within the operating limits of the AD590 may be chosen.

Figure 15. Simple Temperature Control Circuit

Figure 15 is an example of a variable temperature control circuit (thermostat) using the AD590. R_H and R_L are selected to set the high and low limits for R_{SET} . R_{SET} could be a simple pot, a calibrated multi-turn pot or a switched resistive divider. Powering the AD590 from the 10V reference isolates the AD590 from supply variations while maintaining a reasonable voltage (~7V) across it. Capacitor C_1 is often needed to filter extraneous noise from remote sensors. R_B is determined by the β of the power transistor and the current requirements of the load.

Figure 16 shows how the AD590 can be configured with an 8bit DAC to produce a digitally controlled set point. This

Figure 16. DAC Set Point

particular circuit operates from 0 (all inputs high) to $+51^{\circ}$ C (all inputs low) in 0.2°C steps. The comparator is shown with 1°C hysteresis which is usually necessary to guard-band for extraneous noise; omitting the 5.1M Ω resistor results in no hysteresis.

Figure 17. AD590 Driven from CMOS Logic

The voltage compliance and the reverse blocking characteristic of the AD590 allows it to be powered directly from +5V CMOS logic. This permits easy multiplexing, switching or pulsing for minimum internal heat dissipation. In Figure 17 any AD590 connected to a logic high will pass a signal current through the current measuring circuitry while those connected to a logic zero will pass insignificant current. The outputs used to drive the AD590's may be employed for other purposes, but the additional capacitance due to the AD590 should be taken into account.

Figure 18. Matrix Multiplexer

CMOS Analog Multiplexers can also be used to switch AD590 current. Due to the AD590's current mode, the resistance of such switches is unimportant as long as 4V is maintained across the transducer. Figure 18 shows a circuit which combines the principal demonstrated in Figure 17 with an 8 channel CMOS Multiplexer. The resulting circuit can select one of eighty sensors over only 18 wires with a 7 bit binary word. The inhibit input on the multiplexer turns all sensors off for minimum dissipation while idling.

Figure 19. 8-Channel Multiplexer

Figure 19 demonstrates a method of multiplexing the AD590 in the two-trim mode (Figure 7). Additional AD590's and their associated resistors can be added to multiplex up to 8 channels of $\pm 0.5^{\circ}$ C absolute accuracy over the temperature range of -55° C to +125°C. The high temperature restriction of +125°C is due to the output range of the op amps; output to +150°C can be achieved by using a +20V supply for the op amp.

10-16 TEMPERATURE TRANSDUCERS

Low Cost, Precision IC Temperature Transducer

AD592*

FEATURES

High Precalibrated Accuracy: 0.5° C max @ 25° C Excellent Linearity: 0.15° C max (0 to $+70^{\circ}$ C) Wide Operating Temperature Range: -25° C to $+105^{\circ}$ C Single Supply Operation: +4V to +30VExcellent Repeatability and Stability High Level Output: 1μ A/K Two Terminal Monolithic IC: Temperature In/ Current Out Minimal Self-Heating Errors

AD592 CONNECTING DIAGRAM

***PIN 2 CAN BE EITHER ATTACHED OR UNCONNECTED**

BOTTOM VIEW

PRODUCT DESCRIPTION

The AD592 is a two terminal monolithic integrated circuit temperature transducer that provides an output current proportional to absolute temperature. For a wide range of supply voltages the transducer acts as a high impedance temperature dependent current source of 1 μ A/K. Improved design and laser wafer trimming of the IC's thin film resistors allows the AD592 to achieve absolute accuracy levels and nonlinearity errors previously unattainable at a comparable price.

The AD592 can be employed in applications between -25 °C and +105 °C where conventional temperature sensors (i.e., thermistor, RTD, thermocouple, diode) are currently being used. The inherent low cost of a monolithic integrated circuit in a plastic package, combined with a low total parts count in any given application, make the AD592 the most cost effective temperature transducer currently available. Expensive linearization circuitry, precision voltage references, bridge components, resistance measuring circuitry and cold junction compensation are not required with the AD592.

Typical application areas include; appliance temperature sensing, automotive temperature measurement and control, HVAC (heating/ventilating/air conditioning) system monitoring, industrial temperature control, thermocouple cold junction compensation, board-level electronics temperature diagnostics, temperature readout options in instrumentation, and temperature correction circuitry for precision electronics. Particularily useful in remote sensing applications, the AD592 is immune to voltage drops and voltage noise over long lines due to its high impedance current output. AD592s can easily be multiplexed; the signal current can be switched by a CMOS multiplexer or the supply voltage can be enabled with a tri-state logic gate. The AD592 is available in three performance grades; the AD592AN, AD592BN and AD592CN. All devices are packaged in a plastic TO-92 case rated from -45° C to $+125^{\circ}$ C. Performance is specified from -25° C to $+105^{\circ}$ C. AD592 chips are also available, contact the factory for details.

PRODUCT HIGHLIGHTS

- 1. With a single supply (4V to 30V) the AD592 offers 0.5°C temperature measurement accuracy.
- A wide operating temperature range (-25°C to +105°C) and highly linear output make the AD592 an ideal substitute for older, more limited sensor technologies (i.e., thermistors, RTDs, diodes, thermocouples).
- The AD592 is electrically rugged; supply irregularities and variations or reverse voltages up to 20V will not damage the device.
- Because the AD592 is a temperature dependent current source, it is immune to voltage noise pickup and IR drops in the signal leads when used remotely.
- 5. The high output impedance of the AD592 provides greater than 0.5°C/V rejection of supply voltage drift and ripple.
- 6. Laser wafer trimming and temperature testing insures that AD592 units are easily interchangeable.
- Initial system accuracy will not degrade significantly over time. The AD592 has proven long term performance and repeatability advantages inherent in integrated circuit design and construction.

*Covered by Patent No. 4,123,698.

$\label{eq:specifications} SPECIFICATIONS \end{tabular} (typical @ 25^{\circ}, V_s = 5V, unless otherwise noted)$

		AD592A	N		AD592B	IN		AD592C	N	
Model	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
ACCURACY Calibration Error @25°C ¹		1.5	2.5		0.7	1.0		0.3	0.5	°C
$T_A = 0.0 + 70$ C Error over Temperature Nonlinearity ² $T_A = -25 \text{ to } + 105^{\circ}\text{C}$ Error over Temperature ³		1.8 0.15 2.0	3.0 0.35 3.5		0.8 0.1 0.9	1.5 0.25 2.0		0.4 0.05 0.5	0.8 0.15 1.0	ຕ ຕິ ຕິ
Nonlinearity ² OUTPUT CHARACTERISTICS Nominal Current Output @25°C (298.2K)		0.25 298.2	0.5		0.2 298 2	0.4		298.2	0.35	°С µА
Temperature Coefficient Repeatability ⁴ Long Term Stability ⁵		1	0.1 0.1		1	0.1 0.1	``	1	0.1 0.1	μΑ/°C °C °C/month
ABSOLUTE MAXIMUM RATINGS Operating Temperature Package Temperature ⁶ Forward Voltage(+ to -) Reverse Voltage(- to +) Lead Temperature (Soldering 10 sec)	- 25 - 45		+ 105 + 125 44 20 300	- 25 - 45		+ 105 + 125 44 20 300	- 25 - 45		+ 105 + 125 44 20 300	ະ ເ v v v
POWER SUPPLY Operating Voltage Range Power Supply Rejection $+4V < V_S < +5V$ $+5V < V_S < + 15V$ $+15V < V_S < + 30V$	4		30 0.5 0.2 0.1	4		30 0.5 0.2 0.1	4		30 0.5 0.2 0.1	V °C/V °C/V °C/V

NOTES

An external calibration trim can be used to zero the error @25°C. ³Defined as the maximum deviation from a mathematically best fit line. ³Parameter tested on all production units at + 105°C only. C grade at -25°C also.

⁴Maximum deviation between + 25°C readings after a temperature cycle between - 45°C and + 125°C. Errors of this type are noncummulative. ⁵Operation @125°C, error over time is noncummulative. ⁶Although performance is not specified beyond the operating temperature range, temperature excursions within the package temperature range will not damage the device. Specifications subject to change without notice.

.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

TEMPERATURE SCALE CONVERSION EQUATIONS

$${}^{\circ}C = \frac{5}{9} ({}^{\circ}F - 32) \qquad K = {}^{\circ}C + 273.15$$
$${}^{\circ}F = \frac{9}{5} {}^{\circ}C + 32 \qquad {}^{\circ}R = {}^{\circ}F + 459.7$$

Typical Performance Curves

AD592BN Accuracy Over Temperature

Long-Term Stability @ 85°C and 85% Relative Humidity

10

Long-Term Stability @ 125°C

AD592 ORDERING GUIDE

Model	Package Option 1	Max Cal Error @ 25°C	Max Error - 25°C to + 105°C	Max Nonlinearity - 25°C to + 105°C
AD592CN	TO-92	0.5°C	1.0°C	0.35°C
AD592BN	TO-92	1.0°C	2.0°C	0.4°C
AD592AN	TO-92	2.5°C	3.5℃	0.5°C
MOTE				

NOTE

¹See Section 16 for package outline information.

THEORY OF OPERATION

The AD592 uses a fundamental property of silicon transistors to realize its temperature proportional output. If two identical transistors are operated at a constant ratio of collector current densities, r, then the difference in base-emitter voltages will be $(kT/q)(\ln r)$. Since both k, Boltzman's constant and q, the charge of an electron are constant, the resulting voltage is directly Proportional To Absolute Temperature (PTAT). In the AD592 this difference voltage is converted to a PTAT current by low temperature coefficient thin film resistors. This PTAT current is then used to force the total output current to be proportional to degrees Kelvin. The result is a current source with an output equal to a scale factor times the temperature (K) of the sensor. A typical V-I plot of the circuit at $+25^{\circ}C$ and the temperature extremes is shown in Figure 1.

Figure 1. V–I Characteristics

Factory trimming of the scale factor to 1μ A/K is accomplished at the wafer level by adjusting the AD592's temperature reading so it corresponds to the actual temperature. During laser trimming the IC is at a temperature within a few degrees of 25°C and is powered by a 5V supply. The device is then packaged and automatically temperature tested to specification.

FACTORS AFFECTING AD592 SYSTEM PRECISION

The accuracy limits given on the Specifications page for the AD592 makes it easy to apply in a variety of diverse applications. To calculate a total error budget in a given system it is important to correctly interpret the accuracy specifications, nonlinearity errors, the response of the circuit to supply voltage variations and the effect of the surrounding thermal environment. As with other electronic designs external component selection will have a major effect on accuracy.

CALIBRATION ERROR, ABSOLUTE ACCURACY AND NONLINEARITY SPECIFICATIONS

Three primary limits of error are given for the AD592 such that the correct grade for any given application can easily be chosen for the overall level of accuracy required. They are the calibration accuracy at 25°C, and the error over temperature from 0 to 70°C and -25°C to +105°C. These specifications correspond to the actual error the user would see if the current output of a AD592 were converted to a voltage with a precision resistor. Note that the maximum error at room temperature, over the commercial IC temperature range, or an extended range including the boiling point of water, can be directly read from the Specifications Table. All three error limits are a combination of initial error, scale factor variation and nonlinearity deviation from the ideal 1μ A/K output. Figure 2 graphically depicts the guaranteed limits of accuracy for an AD592CN.

Figure 2. Error Specifications (AD592CN)

The AD592 has a highly linear output in comparison to older technology sensors (i.e., thermistors, RTDs and thermocouples), thus a nonlinearity error specification is separated from the absolute accuracy given over temperature. As a maximum deviation from a best-fit straight line this specification represents the only error which cannot be trimmed out. Figure 3 is a plot of typical AD592CN nonlinearity over the full rated temperature range.

Figure 3. Nonlinearity Error (AD592CN)

TRIMMING FOR HIGHER ACCURACY

Calibration error at 25°C can be removed with a single temperature trim. Figure 4 shows how to adjust the AD592's scale factor in the basic voltage output circuit.

Figure 4. Basic Voltage Output (Single Temperature Trim)

To trim the circuit the temperature must be measured by a reference sensor and the value of R should be adjusted so the output (V_{OUT}) corresponds to 1mV/K. Note that the trim procedure should be implemented as close as possible to the temperature highest accuracy is desired for. In most applications if a single temperature trim is desired it can be implemented where the AD592 current-to-output voltage conversion takes place (e.g., output resistor, offset to an op amp). Figure 5 illustrates the effect on total error when using this technique.

Figure 5. Effect of Scale Factor Trim on Accuracy

If greater accuracy is desired, initial calibration and scale factor errors can be removed by using the AD592 in the circuit of Figure 6.

Figure 6. Two Temperature Trim Circuit

With the transducer at 0°C adjustment of R1 for a 0V output nulls the initial calibration error and shifts the output from K to °C. Tweaking the gain of the circuit at an elevated temperature by adjusting R2 trims out scale factor error. The only error remaining over the temperature range being trimmed for is nonlinearity. A typical plot of two trim accuracy is given in Figure 7.

SUPPLY VOLTAGE AND THERMAL ENVIRONMENT EFFECTS

The power supply rejection characteristics of the AD592 minimizes errors due to voltage irregularity, ripple and noise. If a supply is used other than 5V (used in factory trimming), the power supply error can be removed with a single temperature trim. The PTAT nature of the AD592 will remain unchanged. The general insen-

Figure 7. Typical Two Trim Accuracy

sitivity of the output allows the use of lower cost unregulated supplies and means that a series resistance of several hundred ohms (e.g., CMOS multiplexer, meter coil resistance) will not degrade the overall performance.

The thermal environment in which the AD592 is used determines two performance traits: the effect of self-heating on accuracy and the response time of the sensor to rapid changes in temperature. In the first case, a rise in the IC junction temperature above the ambient temperature is a function of two variables; the power consumption level of the circuit and the thermal resistance between the chip and the ambient environment (θ_{IA}). Self-heating error in °C can be derived by multiplying the power dissipation by θ_{IA} . Because errors of this type can vary widely for surroundings with different heat sinking capacities it is necessary to specify θ_{IA} under several conditions. Table I shows how the magnitude of self-heating error varies relative to the environment. In typical free air applications at 25°C with a 5V supply the magnitude of the error is 0.2°C or less. A common clip-on heat sink will reduce the error by 25% or more in critical high temperature, large supply voltage situations.

Medium	θ _{JA} (°C/watt)	τ(sec)*
Still Air		
Without Heat Sink	175	60
With Heat Sink	130	55
Moving Air		
Without Heat Sink	60	12
With Heat Sink	40	10
Fluorinert Liquid	35	5
Aluminum Block**	30	2.4

* τ is an average of five time constants (99.3% of final value). In cases where the thermal response is not a simple exponential function, the actual thermal response may be better than indicated. **With thermal grease.

Table I. Thermal Characteristics

Response of the AD592 output to abrupt changes in ambient temperature can be modeled by a single time constant τ exponential function. Figure 8 shows typical response time plots for several media of interest.

Figure 8. Thermal Response Curves

The time constant, τ , is dependent on θ_{JA} and the thermal capacities of the chip and the package. Table I lists the effective τ (time to reach 63.2% of the final value) for several different media. Copper printed circuit board connections where neglected in the analysis, however, they will sink or conduct heat directly through the AD592's solder dipped Kovar leads. When faster response is required a thermally conductive grease or glue between the AD592 and the surface temperature being measured should be used. In free air applications a clip-on heat sink will decrease output stabilization time by 10–20%.

MOUNTING CONSIDERATIONS

If the AD592 is thermally attached and properly protected, it can be used in any temperature measuring situation where the maximum range of temperatures encountered is between -25° C and $+105^{\circ}$ C. Because plastic IC packaging technology is employed, excessive mechanical stress must be safeguarded against when fastening the device with a clamp or screw-on heat tab. Thermally conductive epoxy or glue is recommended under typical mounting conditions. In wet or corrosive environments any electrically isolated metal or ceramic well can be used to shield the AD592. Condensation at cold temperatures can cause leakage current related errors and should be avoided by sealing the device in nonconductive epoxy paint or dips.

APPLICATIONS

Connecting several AD592 devices in parallel adds the currents through them and produces a reading proportional to the average temperature. Series AD592s will indicate the lowest temperature

Figure 9. Average and Minimum Temperature Connections

because the coldest device limits the series current flowing through the sensors. Both of these circuits are depicted in Figure 9.

The circuit of Figure 10 demonstrates a method in which a voltage output can be derived in a differential temperature measurement.

Figure 10. Differential Measurements

R1 can be used to trim out the inherent offset between the two devices. By increasing the gain resistor $(10k\Omega)$ temperature measurements can be made with higher resolution. If the magnitude of V + and V - is not the same, the difference in power consumption between the two devices can cause a differential self-heating error.

Cold junction compensation (CJC) used in thermocouple signal conditioning can be implemented using an AD592 in the circuit configuration of Figure 11. Expensive simulated ice baths or hard to trim, inaccurate bridge circuits are no longer required.

Figure 11. Thermocouple Cold Junction Compensation

The circuit shown can be optimized for any ambient temperature range or thermocouple type by simply selecting the correct value for the scaling resistor – R. The AD592 output $(1\mu A/K)$ times R should approximate the line best fit to the thermocouple curve (slope in V/°C) over the most likely ambient temperature range. Additionally, the output sensitivity can be chosen by selecting the resistors R_{G1} and R_{G2} for the desired noninverting gain. The offset adjustment shown simply references the AD592 to °C. Note that the TC's of the reference and the resistors are the primary contributors to error. Temperature rejection of 40 to 1 can be easily achieved using the above technique.

Although the AD592 offers a noise immune current output, it is not compatible with process control/industrial automation current loop standards. Figure 12 is an example of a temperature to 4-20mA transmitter for use with 40V, $1k\Omega$ systems.

In this circuit the 1μ A/K output of the AD592 is amplified to 1mA/°C and offset so that 4mA is equivalent to 17°C and 20mA is equivalent to 33°C. Rt is trimmed for proper reading at an

Figure 12. Temperature to 4–20mA Current Transmitter

intermediate reference temperature. With a suitable choice of resistors, any temperature range within the operating limits of the AD592 may be chosen.

Reading temperature with an AD592 in a microprocessor based system can be implemented with the circuit shown in Figure 13.

Figure 13. Temperature to Digital Output

By using a differential input A/D converter and choosing the current to voltage conversion resistor correctly any range of temperatures (up to the 130°C span the AD592 is rated for) centered at any point can be measured using a minimal number of components. In this configuration the system will resolve up to 1° C.

A variable temperature controlling thermostat can easily be built using the AD592 in the circuit of Figure 14.

 $R_{\rm HIGH}$ and $R_{\rm LOW}$ determine the limits of temperature controlled by the potentiometer $R_{\rm SET}$. The circuit shown operates over the full temperature range ($-25^{\circ}{\rm C}$ to $+105^{\circ}{\rm C}$) the AD592 is rated for. The reference maintains a constant set point voltage and insures that approximately 7V appears across the sensor. If it is necessary to guardband for extraneous noise hysteresis can be added by tying a resistor from the output to the ungrounded end of $R_{\rm LOW}$.

Figure 14. Variable Temperature Thermostat

Multiple remote temperatures can be measured using several AD592s with a CMOS multiplexer or a series of 5V logic gates because of the device's current-mode output and supply-voltage compliance range. The on-resistance of a FET switch or output impedance of a gate will not effect the accuracy, as long as 4V is maintained across the transducer. MUXs and logic driving circuits should be chosen to minimize leakage current related errors. Figure 15 illustrates a locally controlled MUX switching the signal current from several remote AD592s. CMOS or TTL gates can also be used to switch the AD592 supply voltages, with the multiplexed signal being transmitted over a single twisted pair to the load.

Figure 15. Remote Temperature Multiplexing

To minimize the number of MUXs required when a large number of AD592s are being used, the circuit can be configured in a matrix. That is, a decoder can be used to switch the supply voltage to a column of AD592s while a MUX is used to control which row of sensors are being measured. The maximum number of AD592s which can be used is the product of the number of channels of the decoder and MUX. An example circuit controlling 80 AD592s is shown in Figure 16. A 7-bit digital word is all that is required to select one of the sensors. The enable input of the multiplexer turns all the sensors off for minimum dissipation while idling.

Figure 16. Matrix Multiplexer

To convert the AD592 output to °C or °F a single inexpensive reference and op amp can be used as shown in Figure 17. Although this circuit is similar to the two temperature trim circuit shown in Figure 6, two important differences exist. First, the gain resistor is fixed alleviating the need for an elevated temperature trim. Acceptable accuracy can be achieved by choosing an inexpensive resistor with the correct tolerance. Second, the AD592 calibration error can be trimmed out at a known convenient temperature (i.e., room temperature) with a single pot adjustment. This step is independent of the gain selection.

Figure 17. Celsius or Fahrenheit Thermometer

Signal Conditioning Components & Subsystems Contents

Page

Selection Guide	11 – 3
Orientation	11 – 4
AD594/595 – Monolithic Thermocouple Amplifiers with Cold Junction Compensation	11 – 5
AD596/597 – Thermocouple Conditioner and Set-Point Controller	11 – 13
AD693 – Loop Powered, 4-20mA Sensor Transmitter	11 – 19
1B21 – Isolated, Loop Powered, Voltage-to-Current Converter	11 – 31
1B22 – Programmable, Isolated Voltage-to-Current Converter	11 – 35
1B31 – Wide Bandwidth Strain Gage Signal Conditioner	11 – 37
1B32 – Bridge Transducer Signal Conditioner	11 – 45
1B41 – Isolated RTD Signal Conditioner	11 – 53
1B51 – Isolated mV/Thermocouple Signal Conditioner	11 – 55
2B20 – High Performance, 4-20mA Output Voltage-to-Current Converter	11 – 59
2B22 – High Performance, Isolated Voltage-to-Current Converter `	11 – 63
2B23 – Programmable Output, Isolated Voltage-to-Current Converter	11 – 67
2B30/2B31 – High Performance, Economy Strain Gage/RTD Conditioners	11 – 71
2B50 – Isolated, Thermocouple Signal Conditioner	11 – 77
2B54/2B55 – Four-Channel, Isolated Thermocouple/mV Conditioners	11 - 81
2B Series – Low Cost Two-Wire Transmitters	11 – 87
3B Series – Complete Signal Conditioning I/O Subsystem	11 - 89
4B Series – Alarm Limit Subsystem	11 – 93
5B Series – Compact, Low Cost Modular Signal Conditioners	11 – 95

11–2 SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS

76

Selection Guide Signal Conditioning Components & Subsystems

Model	V/I Trar	ismitters	Isolated	Sensor	Sensor Type(s)	IC	Hybrid Package	Module	Page
	LoopTower		Istrated	Excitation		v	Таскаве	mount	11 5
AD394/AD393					TC	X			11 - 13
AD693	x			x	mV: All	x			11 - 15 11 - 19
1801	v		v					v	11 21
1821	х	v	x					x v	11 - 51
1022		л	л	v	Strain Core		v	л	11 - 33 11 - 37
1B31 1B32				x	Strain Gage RTD		x		11 - 37 11 - 45
1052					DITAL GALE, NTD				11 = 45
1B41			X	Х	RTD			X	11 - 53
1851			<u> </u>		IC, mV			X	11 - 55
2B20		х						х	11 – 59
2B22		х	х					Х	11 – 63
2B23		х	х					х	11 – 67
2B24	х		х					Х	11 – 87
2B30					Strain Gage, RTD			X	11 - 71
2B31				х	Strain Gage, RTD			х	11 – 71
2B50			x		TC, mV			X	11 – 77
2B52	х		х		TC, mV			х	11 - 87
2B53	х				TC, mV			х	11 - 87
2B54/2B55			X		mV, 4-channel			X	11 - 81
2B57	х			х	Solid State (AD590)			x	11 – 87
2B58				x	3-wire RTD			x	11 - 87
2B59	х			x	2-wire RTD			x	11 – 87
3B Series				— See Orie	entation —		······		11 - 89
4B Series				- See Orie	entation —				11 – 93
5B Series				- See Orie	entation —				11 – 95

11

Orientation Signal Conditioning Components & Subsystems

Signal conditioners provide an analog interface between sensors and the systems they serve. They amplify signals, provide zero suppression where necessary, introduce electrical isolation, furnish excitation for passive transducers and provide analog outputs in the form required by the system – either voltage or current – at appropriate levels.

The most popular sensors are thermocouples, RTDs (resistance temperature detectors) and strain gages; they are low-level devices requiring precision amplification with low drift and noise. A useful discussion of their properties and signal-conditioning requirements can be found in the Analog Devices *Transducer Interfacing Handbook* (1980, \$14.50 postpaid), available from P.O.Box 796, Norwood MA 02062.

Signal-conditioning circuits can be assembled using many of the precision products to be found in this databook, such as operational amplifiers, instrumentation amplifiers, and isolation amplifiers, along with other electronic circuit elements and appropriate hardware. However, many system designers have found that with less expenditure of valuable engineering talent, excellent, reliable results can be achieved at lower cost by purchasing complete dedicated signal conditioners with fully specified performance in standard packages.

The general requirements for signal conditioners include the usual precision electrical characteristics, such as high gain, low drift and noise, accurate scale factors and fast – or filtered – response. Quite often, electrical isolation must be provided between the point of measurement and the system; besides maximizing common-mode rejection, this can provide protection of people and equipment. Where ruggedness and safety are involved, it may be useful to choose products, when available, that meet appropriate standards developed by such entities as IEEE and Factory Mutual Insurance Company.

Many sensors require auxiliary circuitry; for example, thermocouples require a constant-temperature reference junction or an equivalent "ice-point" reference circuit, and strain gages and RTDs are passive devices that need excitation. Although the results of a measurement may be produced – and are ultimately needed – in the form of voltage, they may have to be transmitted as a varying current with a standard span, such as 4 to 20mA; often the power for such current loops is furnished to the sensor and its conditioner from the remote destination.

Another requirement arises from the fact that systems often involve many diverse channels of measurement. Such systems need a *family* of signal conditioners to meet the multiplicity of functional needs, yet it is desirable that they be compactly and ruggedly housed, modular, provided with a power supply and capable of being interchanged as system needs change. It is for such applications that the 3B, 4B and 5B families and their housings were designed.

The selection guide lists the available devices that are recommended for new system designs, along with their salient features; detailed information will be found in the data sheets. Examples of such devices include conditioners for thermocouples, RTDs, strain gages, and low (mV)-level signal sources and current transmitters that convert the signal information to 4-20mA or 0-20mA currents for loops requiring analog information in that form. If a modular subsystem is desired, selection information for choosing specific modules within the 3B, 4B and 5B families will be found in the family data sheets.

The individually listed devices are manufactured in various forms, ranging from monolithic integrated circuits (AD594/595/596/597 and AD693) to devices in dual in-line packages – using hybrid and surface-mount technologies – to modules with either pins for chassis wiring or screw terminals for field wiring.

The 3B Series is an integrated modular signal-conditioning subsystem consisting of a series of color-coded functionally complete plug-in mix-and-match input and output modules on a universal backplane available for mounting in either rugged industrial chassis or a standard rack. The backplane connects directly to field wiring via screw terminals and to the system destination via connectors. A standard 19" relay rack mount will hold 16 modules; 8- and 4-module units are also available. Among the characteristics of the modules are input protection, low-pass filtering, $\pm 1\mu V/^{\circ}C$ zero drift, and galvanic isolation to $\pm 1,500$ volts peak. The output modules translate high-level voltage inputs to standard process-current levels (0-20mA or 4-20mA) with accuracy to within 0.1%.

The 4B Series Alarm Limit Subsystem is compatible in physical appearance with the 3B Series. Alarm units accept signals from 3B Series voltage or process outputs – or high-level outputs from other sensor circuitry; they make decisions and produce output indications for alarm or on-off control when monitored conditions fall outside specified limits. Typical applications include process control, factory automation, energy management, and data acquisition and control. The 4B Series subsystem comprises a backplane and a family of plug-in mix-and-match alarm limit modules (up to 12 per rack or four per 4-channel backplane).

The 5B Series of modules comprises a family of plug-in singlechannel signal conditioners for sensors that perform complete signal-conditioning functions optimized for the nature of each device's specified input. Characterized by high performance, small size and low price, they are ideal for monitoring such analog quantities as temperature, pressure and flow in industrial data-acquisition applications.

They are isolated (1,500 volts rms), operate from single 5-volt supplies and have $\pm 0.05\%$ calibration accuracy; they are identical in size (2.25" $\times 2.25" \times 0.60"$) and pinout. Physically compatible backplanes will hold as many as 16 units in a 19" rack-mount space 3 1/2" high. Signal-conditioning functions include input protection, filtering, chopper-stabilized low-drift amplification, isolation, linearization for RTD and thermocouple inputs and excitation for passive sensors.

5B Series modules have 240-volt protection for all field terminations. All feature excellent common-mode rejection, meet IEEE 472-1974 surge-withstand specs and operate over the -40° C to $+85^{\circ}$ C ambient temperature range. They are physically rugged, with sturdy 0.04' pin connections and no adjustment potentiometers to compromise accuracy and system integrity; they are secured with a single self-contained mounting screw.

Monolithic Thermocouple Amplifiers with Cold Junction Compensation

AD594*/AD595*

FEATURES

Pretrimmed for Type J (AD594) or Type K (AD595) Thermocouples Can Be Used with Type T Thermocouple Inputs Low Impedance Voltage Output: 10mV/°C Built-In Ice Point Compensation Wide Power Supply Range: +5V to ±15V Low Power: <1mW typical Thermocouple Failure Alarm Laser Wafer Trimmed to 1°C Calibration Accuracy Set-Point Mode Operation Self-Contained Celsius Thermometer Operation High Impedance Differential Input Side-Brazed DIP or Low Cost Cerdip

PRODUCT DESCRIPTION

The AD594/AD595 is a complete instrumentation amplifier and thermocouple cold junction compensator on a monolithic chip. It combines an ice point reference with a precalibrated amplifier to produce a high level (10mV/°C) output directly from a thermocouple signal. Pin-strapping options allow it to be used as a linear amplifier-compensator or as a switched output set-point controller using either fixed or remote set-point control. It can be used to amplify its compensation voltage directly, thereby converting it to a stand-alone Celsius transducer with a low-impedance voltage output.

The AD594/AD595 includes a thermocouple failure alarm that indicates if one or both thermocouple leads become open. The alarm output has a flexible format which includes TTL drive capability.

The AD594/AD595 can be powered from a single ended supply (including + 5V) and by including a negative supply, temperatures below 0°C can be measured. To minimize self-heating, an unloaded AD594/AD595 will typically operate with a total supply current of 160 μ A, but is also capable of delivering in excess of \pm 5mA to a load.

The AD594 is precalibrated by laser wafer trimming to match the characteristic of type J (iron-constantan) thermocouples and the AD595 is laser trimmed for type K (chromel-alumel) inputs. The temperature transducer voltages and gain control resistors are available at the package pins so that the circuit can be recalibrated for other thermocouple types by the addition of two or three resistors. These terminals also allow more precise calibration for both thermocouple and thermometer applications.

*Protected by U.S. Patent No. 4,029,974.

AD594/AD595 FUNCTIONAL BLOCK DIAGRAM

The AD594/AD595 is available in two performance grades. The C and the A versions have calibration accuracies of $\pm 1^{\circ}$ C and $\pm 3^{\circ}$ C, respectively. Both are designed to be used from 0 to $+50^{\circ}$ C, and are available in 14-pin, hermetically sealed, side-brazed ceramic DIPs as well as low cost cerdip packages.

PRODUCT HIGHLIGHTS

- 1. The AD594/AD595 provides cold junction compensation, amplification, and an output buffer in a single IC package.
- 2. Compensation, zero, and scale factor are all precalibrated by laser wafer trimming (LWT) of each IC chip.
- 3. Flexible pin-out provides for operation as a set-point controller or a stand-alone temperature transducer calibrated in degrees Celsius.
- Operation at remote application sites is facilitated by low quiescent current and a wide supply voltage range of +5V to dual supplies spanning 30V.
- 5. Differential input rejects common-mode noise voltage on the thermocouple leads.

SPECIFICATIONS (@ $+25^{\circ}$ C and V_s = 5V, Type J (AD594), Type K (AD595) Thermocouple, unless otherwise noted)

Model	1 4	AD594A	*****		AD594C			AD595A		Γ	AD595C		<u> </u>
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
ABSOLUTE MAXIMUM RATINGS													
$+V_{S}$ to $-V_{S}$			36	1		36			36	1	·	36	Volts
Common-Mode Input Voltage	$-V_{S} - 0.15$		+ Vs	$-V_{S} - 0.1$	5	$+V_{S}$	$-V_{S}-0.$	15	$+V_{s}$	$-V_{S} - 0$.15	$+V_{S}$	Volts
Differential Input Voltage	- Vs		$+V_{s}$	- Vs		$+V_{s}$	- V _s		$+V_{s}$	-Vs		$+V_{s}$	Volts
Alarm Voltages	-		-	-		-	-		-	-		-	
+ ALM	- Vs		$-V_{S} + 36$	- Vs		$-V_{S} + 36$	- Vs		$-V_{S} + 36$	- Vs		$-V_{S} + 36$	Volts
- ALM	- V _s		+ Vs	- Vs		$+V_{s}$	- V _s		$+V_{s}$	- V _s		$+V_{s}$	Volts
Operating Temperature Range	- 55		+ 125	- 55		+ 125	- 55		+ 125	- 55		+ 125	°C
Output Short Circuit to Common	Indefinite			Indefinite			Indefinite			Indefinit	e		
TEMPERATURE MEASUREMENT											·····		
(Specified Temperature Range	ļ									1			
0 to + 50°C)													
Calibration Error at + 25°C1	· ·		±3			± 1			±3			±i	°C
Stability vs Temperature ²			±0.05			±0.025			±0.05			±0.025	°C/°C
Gain Error	1		±1.5			±0.75			±1.5			±0.75	%
Nominal Transfer Function			10			10			10			10	mV/°C
AMPLIFIER CHARACTERISTICS													
Closed Loop Gam ³		193.4				193.4			247.3	l		247.3	
Input Offset Voltage	(Temperatur	e ın °C)×	51.70µV/°C	(Temperatu	ıre ın ℃)×	51.70µV/°C	(Tempera	ture in °C)×	40.44µV/℃	(Tempera	ature ın ℃)×	40.44µV/℃	μV
Input Bias Current		0.1			0.1			0.1			0.1		μA
Differential Input Range	- 10		+ 50				- 10		+ 50	~ 10		+ 50	mV
Common-Mode Range	-V _s -0.15		$+V_{S}-4$	-Vs-0.1	5	$+V_{S} - 4$	-Vs-0.	15	$+V_{s} - 4$	-V _s -0	.15	$+V_{s}-4$	Voits
Common-Mode Sensitivity-RTO			10			10			10			10	mV/V
Power Supply Sensitivity-RTO			10			10			10			10	mV/V
Output Voltage Range													
Dual Supplies	$-V_{s} + 2.5$		$+V_{S}-2$	-Vs +2.5		$+V_{S}-2$	-V _S +2.	5	$+V_{s}-2$	-Vs+2	.5	$+V_{S}-2$	Volts
Single Supply	0		$+ V_{S} - 2$	0		$+ V_{S} - 2$	0		$+V_{s}+2$	0		$+ V_{S} - 2$	Volts
Usable Output Current ⁴		± 5			± 5			± 5			± 5		mA
3dB Bandwidth		15			15			15			15		kHz
ALARM CHARACTERISTICS													
VCE(SAT) at 2mA		0.3			0.3			03			0.3		Volts
Leakage Current			±1			±1			±1			±1	µA max
Operating Voltage at - ALM			+Vs -4			+Vs -4			$+V_{s}-4$			$+V_{s}-4$	Volts
Short Circuit Current		20			20			20			20		mA
POWER REQUIREMENTS													
Specified Performance	+ Vs	$= 5, -V_{s}$	= 0	+ Vs =	$= 5, -V_{s}$	= 0	+ V s	$= 5, -V_{S}$	= 0	+ V	$s = 5, -V_s =$	= 0	Volts
Operating ⁵	+ Vs1	to -Vs≤	30	+ Vet	o – Vs≤3	0	+ V.s	to $-V_s \leq 3$	D	+ V	sto−Vs≤30)	Volts
Oujescent Current (No Load)						-							
+ Vs		160	300		160	300		160	300		160	300	μA
- V _S		100			100			100			100		μA
PACKAGE OPTIONS ⁶													
TO-116(D-14)		D594AL)		AD594CI	D		AD595AI)		AD595CI)	
Cerdip (O-14)		D594AC	2		AD594C0	2 I		AD595AG	2		AD595CC	2	

NOTES ¹Calibrated for minimum error at +25°C using a thermocouple sensitivity of 51.7 μ V/°C Since a 1 type thermocouple deviates from this straight line approximation, the AD594 will normally read 3.1mV when the measuring junction is at 0°C. The AD595 will similarly read 3.2mV at 0°C. ²Defined as the slope of the line connecting the AD594/AD595 errors measured at 0°C and 50°C ambient temperature. ³Pin 8 shorted to pin 9.

 $^4\text{Current Sink Capability in single supply configuration is limited to current drawn to ground through a 50kl resistor at output voltages below 2 5V. <math display="inline">^5-V_S$ must not exceed -16.5V. $^6\text{Section 16 for package outline information}$

Specifications subject to change without notice

Specifications shown in boldface are tested on all production units at final operturations shown in controls the tester on an production cannot a main electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Thermocouple Temperature ℃	Type J Voltage mV	AD594 Output mV	Type K Voltage mV	AD595 Output mV		Thermocouple Temperature °C	Type J Voltage mV	AD594 Output mV	Type K Voltage mV	AD595 Output mV
- 200	- 7.890	- 1523	- 5.891	- 1454	1	500	27.388	5300	20.640	5107
- 180	- 7.402	- 1428	- 5.550	- 1370		520	28 511	5517	21.493	5318
- 160	- 6.821	- 1316	- 5.141	- 1269		540	29.642	5736	22.346	5529
- 140	- 6.159	-1188	- 4 669	- 1152		560	30.782	5956	23.198	5740
- 120	- 5 426	- 1046	- 4.138	- 1021	11	580	31.933	6179	24.050	5950
- 100	- 4 632	- 893	- 3.553	- 876		600	33.096	6404	24.902	6161
- 80	- 3.785	- 729	- 2.920	- 719	11	620	34.273	6632	25.751	6371
- 60	- 2 892	- 556	- 2.243	- 552		640	35.464	6862	26.599	6581
- 40	- 1 960	- 376	- 1.527	- 375		660	36.671	7095	27.445	6790
- 20	995	- 189	- 777	- 189		680	37 893	7332	28.288	6998
- 10	- 501	- 94	392	94		700	39.130	7571	28.128	7206
0	0	3.1	0	2.7		720	40 382	7813	29.965	7413
10	.507	101	.397	101		740	41 647	8058	30.799	7619
20	1 019	200	798	200		750	42.283	8181	31 214	7722
25	1 277	250	1.000	250		760	-	-	31.629	7825
30	1 536	300	1 203	300		780	-	-	32.455	8029
40	2 058	401	1 611	401		800	-	-	33.277	8232
50	2 585	503	2 022	503	11	820	-	-	34.095	8434
60	3 115	606	2.436	605		840	-	-	34.909	8636
80	4 186	813	3 266	810		860	-	-	35.718	8836
100	5 268	1022	4 095	1015		880	-	-	36.524	9035
120	6.359	1233	4.919	1219		900	-	-	37.325	9233
140	7 457	1445	5.73 3	1420	11	920	-	-	38.122	9430
160	8.560	1659	6.539	1620		940	-	-	38.915	9626
180	9.667	1873	7.338	1817		960		-	39.703	9821
200	10.777	2087	8.137	2015		980	-	-	40.488	10015
220	11.887	2302	8.938	2213		1000	-	-	41.269	10209
240	12 998	2517	9.745	2413	11	1020	-	-	42 045	10400
260	14 108	2732	10.560	2614		1040	-	-	42.817	10591
280	15 217	2946	11.381	2817		1060	-	-	43.585	10781
300	16.325	3160	12.207	3022		1080	-	-	44.349	10970
320	17.432	3374	13.039	3327		1100	-	-	45.108	11158
340	18.537	3588	13.874	3434	11	1120	-	-	45.863	11345
360	19.640	3801	14.712	3641	11	1140	-	-	46.612	11530
380	20.743	4015	15.552	3849		1160	-	-	47.356	11714
400	21.846	4228	16.395	4057		1180	-	-	48.095	11897
420	22.949	4441	17.241	4266		1200	-	-	48.828	12078
440	24.054	4655	18.088	4476	11	1220	-	-	49.555	12258
460	25.161	4869	18.938	4686		1240	-		50.276	12436
480	26.272	5084	19.788	4896		1250	-	-	50.633	12524

Table I. Output Voltage vs. Thermocouple Temperature (Ambient +25°C, $V_{\mathcal{S}}$ = -5V, +15V)

INTERPRETING AD594/AD595 OUTPUT VOLTAGES

To achieve a temperature proportional output of 10mV/°C and accurately compensate for the reference junction over the rated operating range of the circuit, the AD594/AD595 is gain trimmed to match the transfer characteristic of J and K type thermocouples at 25°C. For a type J output in this temperature range the TC is 51.70μ V/°C, while for a type K it is 40.44μ V/°C. The resulting gain for the AD594 is 193.4 (10mV/°C divided by 51.7μ V/°C) and for the AD595 is 247.3 (10mV/°C divided by 40.44μ V/°C). In addition, an absolute accuracy trim induces an input offset to the output amplifier characteristic of 16 μ V for the AD594 and 11 μ V for the AD595. This offset arises because the AD594/AD595 is trimmed for a 250mV output while applying a 25°C thermocouple input.

Because a thermocouple output voltage is nonlinear with respect to temperature, and the AD594/AD595 linearly amplifies the compensated signal, the following transfer functions should be used to determine the actual output voltages: AD595 output = (Type K Voltage + 11μ V) × 247.3 or conversely:

Type J voltage = $(AD594 \text{ output } / 193.4) - 16\mu V$

Type K voltage = $(AD595 \text{ output } / 247.3) - 11 \mu V$

Table I above lists the ideal AD594/AD595 output voltages as a function of Celsius temperature for type J and K ANSI standard thermocouples, with the package and reference junction at 25°C. As is normally the case, these outputs are subject to calibration, gain and temperature sensitivity errors. Output values for intermediate temperatures can be interpolated, or calculated using the output equations and ANSI thermocouple voltage tables referred to zero degrees Celsius. Due to a slight variation in alloy content between ANSI type J and DIN FE-CUNI thermocouples Table I should not be used in conjunction with European standard thermocouples. Instead the transfer function given previously and a DIN thermocouple table should be used. ANSI type K and DIN NICR-NI thermocouples are composed of identical alloys and exhibit similar behavior. The upper temperature limits in Table I are those recommended for type I and type K thermocouples by the majority of vendors.

AD594 output = (Type J Voltage + 16μ V) × 193.4

SINGLE AND DUAL SUPPLY CONNECTIONS

The AD594/AD595 is a completely self-contained thermocouple conditioner. Using a single +5V supply the interconnections shown in Figure 1 will provide a direct output from a type J thermocouple (AD594) or type K thermocouple (AD595) measuring from 0 to $+300^{\circ}$ C.

Figure 1. Basic Connection, Single Supply Operation

Any convenient supply voltage from +5V to +30V may be used, with self-heating errors being minimized at lower supply levels. In the single supply configuration the +5V supply connects to pin 11 with the V- connection at pin 7 strapped to power and signal common at pin 4. The thermocouple wire inputs connect to pins 1 and 14 either directly from the measuring point or through intervening connections of similar thermocouple wire type. When the alarm output at pin 13 is not used it should be connected to common or -V. The precalibrated feedback network at pin 8 is tied to the output at pin 9 to provide a 10mV/°C nominal temperature transfer characteristic.

By using a wider ranging dual supply, as shown in Figure 2, the AD594/AD595 can be interfaced to thermocouples measuring both negative and extended positive temperatures.

Figure 2. Dual Supply Operation

With a negative supply the output can indicate negative temperatures and drive grounded loads or loads returned to positive voltages. Increasing the positive supply from 5V to 15V extends the output voltage range well beyond the 750°C temperature limit recommended for type J thermocouples (AD594) and the 1250°C for type K thermocouples (AD595).

Common-mode voltages on the thermocouple inputs must remain within the common-mode range of the AD594/AD595, with a return path provided for the bias currents. If the thermocouple is not remotely grounded, then the dotted line connections in Figures 1 and 2 are recommended. A resistor may be needed in this connection to assure that common mode voltages induced in the thermocouple loop are not converted to normal mode.

THERMOCOUPLE CONNECTIONS

The isothermal terminating connections of a pair of themocouple wires forms an effective reference junction. This junction must be kept at the same temperature as the AD594/AD595 for the internal cold junction compensation to be effective.

A method that provides for thermal equilibrium is the printed circuit board connection layout illustrated in Figure 3.

Figure 3. PCB Connections

Here the AD594/AD595 package temperature and circuit board are thermally contacted in the copper printed circuit board tracks under pins 1 and 14. The reference junction is now composed of a copper-constantan (or copper-alumel) connection and copperiron (or copper-chromel) connection, both of which are at the same temperature as the AD594/AD595.

The printed circuit board layout shown also provides for placement of optional alarm load resistors, recalibration resistors and a compensation capacitor to limit bandwidth.

To ensure secure bonding the thermocouple wire should be cleaned to remove oxidation prior to soldering. Noncorrosive rosin flux is effective with iron, constantan, chromel and alumel and the following solders: 95% tin-5% antimony, 95% tin-5% silver or 90% tin-10% lead.

FUNCTIONAL DESCRIPTION

The AD594 behaves like two differential amplifiers. The outputs are summed and used to control a high-gain amplifier, as shown in Figure 4.

Figure 4. AD594/AD595 Block Diagram

In normal operation the main amplifier output, at pin 9, is connected to the feedback network, at pin 8. Thermocouple signals applied to the floating input stage, at pins 1 and 14, are amplified by gain G of the differential amplifier and are then further amplified by gain A in the main amplifier. The output of the main amplifier is fed back to a second differential stage in an inverting connection. The feedback signal is amplified by this stage and is also applied to the main amplifier input through a summing circuit. Because of the inversion, the amplifier causes the feedback to be driven to reduce this difference signal to a small value. The two differential amplifiers are made to match and have identical gains, G. As a result, the feedback signal that must be applied to the right-hand differential amplifier will precisely match the thermocouple input signal when the difference signal has been reduced to zero. The feedback network is trimmed so that the effective gain to the output, at pins 8 and 9, results in a voltage of 10mV/°C of thermocouple excitation.

In addition to the feedback signal, a cold junction compensation voltage is applied to the right-hand differential amplifier. The compensation is a differential voltage proportional to the Celsius temperature of the AD594/AD595. This signal disturbs the differential input so that the amplifier output must adjust to restore the input to equal the applied thermocouple voltage.

The compensation is applied through the gain scaling resistors so that its effect on the main output is also 10mV/°C. As a result, the compensation voltage adds to the effect of the thermocouple voltage a signal directly proportional to the difference between 0°C and the AD594/AD595 temperature. If the thermocouple reference junction is maintained at the AD594/AD595 temperature, the output of the AD594/AD595 will correspond to the reading that would have been obtained from amplification of a signal from a thermocouple referenced to an ice bath.

The AD594/AD595 also includes an input open circuit detector that switches on an alarm transistor. This transistor is actually a current-limited output buffer, but can be used up to the limit as a switch transistor for either pull-up or pull-down operation of external alarms.

The ice point compensation network has voltages available with positive and negative temperature coefficients. These voltages may be used with external resistors to modify the ice point compensation and recalibrate the AD594/AD595 as described in the next column.

The feedback resistor is separately pinned out so that its value can be padded with a series resistor, or replaced with an external resistor between pins 5 and 9. External availability of the feedback resistor allows gain to be adjusted, and also permits the AD594/ AD595 to operate in a switching mode for set-point operation.

CAUTIONS:

The temperature compensation terminals (+C and -C) at pins 2 and 6 are provided to supply small calibration currents only. The AD594/AD595 may be permanently damaged if they are grounded or connected to a low impedance.

The AD594/AD595 is internally frequency compensated for feedback ratios (corresponding to normal signal gain) of 75 or more. If a lower gain is desired, additional frequency compensation should be added in the form of a 300pF capacitor from pin 10 to the output at pin 9. As shown in Figure 5 an additional 0.01µF capacitor between pins 10 and 11 is recommended.

Figure 5. Low Gain Frequency Compensation

RECALIBRATION PRINCIPLES AND LIMITATIONS

The ice point compensation network of the AD594/AD595 produces a differential signal which is zero at 0°C and corresponds to the output of an ice referenced thermocouple at the temperature of the chip. The positive TC output of the circuit is proportional to Kelvin temperature and appears as a voltage at +T. It is possible to decrease this signal by loading it with a resistor from +T to COM, or increase it with a pull-up resistor from +T to the larger positive TC voltage at +C. Note that adjustments to + T should be made by measuring the voltage which tracks it at -T. To avoid destabilizing the feedback amplifier the measuring instrument should be isolated by a few thousand ohms in series with the lead connected to -T.

Figure 6. Decreased Sensitivity Adjustment

Changing the positive TC half of the differential output of the compensation scheme shifts the zero point away from 0°C. The zero can be restored by adjusting the current flow into the negative input of the feedback amplifier, the -T pin. A current into this terminal can be produced with a resistor between -C and -Tto balance an increase in +T, or a resistor from -T to COM to offset a decrease in +T.

If the compensation is adjusted substantially to accommodate a different thermocouple type, its effect on the final output voltage will increase or decrease in proportion. To restore the nominal output to 10mV/°C the gain may be adjusted to match the new compensation and thermocouple input characteristics. When reducing the compensation the resistance between -T and COM automatically increases the gain to within 0.5% of the correct value. If a smaller gain is required, however, the nominal $47k\Omega$ internal feedback resistor can be paralleled or replaced with an external resistor.

Fine calibration adjustments will require temperature response measurements of individual devices to assure accuracy. Major reconfigurations for other thermocouple types can be achieved without seriously compromising initial calibration accuracy, so long as the procedure is done at a fixed temperature using the factory calibration as a reference. It should be noted that intermediate recalibration conditions may require the use of a negative supply. An example using a type E thermocouple and an AD594 is given on the next page.

EXAMPLE: TYPE E RECALIBRATION – AD594/AD595

Both the AD594 and AD595 can be configured to condition the output of a type E (chromel-constantan) thermocouple. Temperature characteristics of type E thermocouples differ less from type J, than from type K, therefore the AD594 is preferred for recalibration.

While maintaining the device at a constant temperature follow the recalibration steps given here. First, measure the device temperature by tying both inputs to common (or a selected common mode potential) and connecting FB to V_O . The AD594 is now in the stand alone Celsius thermometer mode. For this example assume the ambient is 24°C and the initial output V_O is 240mV. Check the output at V_O to verify that it corresponds to the temperature of the device.

Next, measure the voltage -T at pin 5 with a high impedance DVM (capacitance should be isolated by a few thousand ohms of resistance at the measured terminals). At 24°C the -T voltage will be about 8.3mV. To adjust the compensation of an AD594 to a type E thermocouple a resistor, R1, should be connected between +T and +C, pins 2 and 3, to raise the voltage at -Tby the ratio of thermocouple sensitivities. The ratio for converting a type J device to a type E characteristic is:

$$r (AD594) = (60.9 \mu V/^{\circ}C)/(51.7 \mu V/^{\circ}C) = 1.18$$

Thus, multiply the initial voltage measured at -T by r and experimentally determine the R1 value required to raise -T to that level. For the example the new -T voltage should be about 9.8mV. The resistance value should be approximately 1.8k Ω .

The zero differential point must now be shifted back to 0°C. This is accomplished by multiplying the original output voltage V_O by r and adjusting the measured output voltage to this value by experimentally adding a resistor, R2, between -C and -T, pins 5 and 6. The target output value in this case should be about 283mV. The resistance value of R2 should be approximately 240k Ω .

Finally, the gain must be recalibrated such that the output V_O indicates the device's temperature once again. Do this by adding a third resistor, R3, between FB and -T, pins 8 and 5. V_O should now be back to the initial 240mV reading. The resistance value of R3 should be approximately 280k Ω . The final connection diagram is shown in Figure 7. An approximate verification of the effectiveness of recalibration is to measure the differential gain to the output. For type E it should be 164.2.

Figure 7. Type E Recalibration

When implementing a similar recalibration procedure for the AD595 the values for R1, R2, R3 and r will be approximately 650Ω , $84k\Omega$, $93k\Omega$ and 1.51, respectively. Power consumption will increase by about 50% when using the AD595 with type E inputs.

Note that during this procedure it is crucial to maintain the AD594/AD595 at a stable temperature because it is used as the temperature reference. Contact with fingers or any tools not at ambient temperature will quickly produce errors. Radiational heating from a change in lighting or approach of a soldering iron must also be guarded against.

USING TYPE T THERMOCOUPLES WITH THE AD595

Because of the similarity of thermal EMFs in the 0 to 50° C range between type K and type T thermocouples, the AD595 can be directly used with both types of inputs. Within this ambient temperature range the AD595 should exhibit no more than an additional 0.2°C output calibration error when used with type T inputs. The error arises because the ice point compensator is trimmed to type K characteristics at 25°C. To calculate the AD595 output values over the recommended – 200 to 350°C range for type T thermocouples, simply use the ANSI thermocouple voltages referred to 0°C and the output equation given on page 3 for the AD595. Because of the relatively large nonlinearities associated with type T thermocouples the output will deviate widely from the nominal 10mV/°C. However, cold junction compensation over the rated 0 to 50°C ambient will remain accurate.

STABILITY OVER TEMPERATURE

Each AD594/AD595 is tested for error over temperature with the measuring thermocouple at 0°C. The combined effects of cold junction compensation error, amplifier offset drift and gain error determine the stability of the AD594/AD595 output over the rated ambient temperature range. Figure 8 shows an AD594/ AD595 drift error envelope. The slope of this figure has units of °C/°C.

Figure 8. Drift Error vs. Temperature

THERMAL ENVIRONMENT EFFECTS

The inherent low power dissipation of the AD594/AD595 and the low thermal resistance of the package make self-heating errors almost negligible. For example, in still air the chip to ambient thermal resistance is about 80° C/watt (for the D package). At the nominal dissipation of 800μ W the self-heating in free air is less than 0.065°C. Submerged in fluorinert liquid (unstirred) the thermal resistance is about 40° C/watt, resulting in a self-heating error of about 0.032°C.

SET-POINT CONTROLLER

The AD594/AD595 can readily be connected as a set-point controller as shown in Figure 9.

Figure 9. Set-Point Controller

The thermocouple is used to sense the unknown temperature and provide a thermal EMF to the input of the AD594/AD595. The signal is cold junction compensated, amplified to 10mV/°Cand compared to an external set-point voltage applied by the user to the feedback at pin 8. Table I lists the correspondence between set-point voltage and temperature, accounting for the nonlinearity of the measurement thermocouple. If the set-point temperature range is within the operating range (-55° C to $+125^{\circ}$ C) of the AD594/AD595, the chip can be used as the transducer for the circuit by shorting the inputs together and utilizing the nominal calibration of 10mV/°C. This is the centigrade thermometer configuration as shown in Figure 13.

In operation if the set-point voltage is above the voltage corresponding to the temperature being measured the output swings low to approximately zero volts. Conversely, when the temperature rises above the set-point voltage the output switches to the positive limit of about 4 volts with a +5V supply. Figure 9 shows the set-point comparator configuration complete with a heater element driver circuit being controlled by the AD594/ AD595 toggled output. Hysteresis can be introduced by injecting a current into the positive input of the feedback amplifier when the output is toggled high. With an AD594 about 200nA into the +T terminal provides 1°C of hysteresis. When using a single 5V supply with an AD594, a 20M\Omega resistor from V_O to +T will supply the 200nA of current when the output is forced high (about 4V). To widen the hysteresis band decrease the resistance connected from V_O to +T.

ALARM CIRCUIT

In all applications of the AD594/AD595 the -ALM connection, pin 13, should be constrained so that it is not more positive than (V+) - 4V. This can be most easily achieved by connecting pin 13 to either common at pin 4 or V – at pin 7. For most applications that use the alarm signal, pin 13 will be grounded and the signal will be taken from +ALM on pin 12. A typical application is shown in Figure 10.

In this configuration the alarm transistor will be off in normal operation and the 20k pull up will cause the +ALM output on pin 12 to go high. If one or both of the thermocouple leads are interrupted, the +ALM pin will be driven low. As shown in Figure 10 this signal is compatible with the input of a TTL gate which can be used as a buffer and/or inverter.

Figure 10. Using the Alarm to Drive a TTL Gate ("Grounded" Emitter Configuration)

Since the alarm is a high level output it may be used to directly drive an LED or other indicator as shown in Figure 11.

Figure 11. Alarm Directly Drives LED

A 270 Ω series resistor will limit current in the LED to 10mA, but may be omitted since the alarm output transistor is current limited at about 20mA. The transistor, however, will operate in a high dissipation mode and the temperature of the circuit will rise well above ambient. Note that the cold junction compensation will be affected whenever the alarm circuit is activated. The time required for the chip to return to ambient temperature will depend on the power dissipation of the alarm circuit, the nature of the thermal path to the environment and the alarm duration.

The alarm can be used with both single and dual supplies. It can be operated above or below ground. The collector and emitter of the output transistor can be used in any normal switch configuration. As an example a negative referenced load can be driven from -ALM as shown in Figure 12.

The collector (+ALM) should not be allowed to become more positive than (V-) + 36V, however, it may be permitted to be more positive than V+. The emitter voltage (-ALM) should be constrained so that it does not become more positive than 4 volts below the V+applied to the circuit.

Additionally, the AD594/AD595 can be configured to produce an extreme upscale or downscale output in applications where an extra signal line for an alarm is inappropriate. By tying either of the thermocouple inputs to common most runaway control conditions can be automatically avoided. A + IN to common connection creates a downscale output if the thermocouple opens, while connecting - IN to common provides an upscale output.

Figure 12. – ALM Driving A Negative Referenced Load

CELSIUS THERMOMETER

The AD594/AD595 may be configured as a stand-alone celsius thermometer as shown in Figure 13.

Figure 13. AD594/AD595 as a Stand-Alone Celsius Thermometer

Simply omit the thermocouple and connect the inputs (pins 1 and 14) to common. The output now will reflect the compensation voltage and hence will indicate the AD594/AD595 temperature with a scale factor of 10mV/°C. In this three terminal, voltage output, temperature sensing mode, the AD594/AD595 will operate over the full military -55°C to +125°C temperature range.

THERMOCOUPLE BASICS

Thermocouples are economical and rugged; they have reasonably good long-term stability. Because of their small size, they respond quickly and are good choices where fast response is important. They function over temperature ranges from cryogenics to jetengine exhaust and have reasonable linearity and accuracy.

Because the number of free electrons in a piece of metal depends on both temperature and composition of the metal, two pieces of dissimilar metal in isothermal contact will exhibit a potential difference that is a repeatable function of temperature, as shown in Figure 14. The resulting voltage depends on the temperatures, T1 and T2, in a repeatable way.

Since the thermocouple is basically a differential rather than absolute measuring device, a known reference temperature is required for one of the junctions if the temperature of the other is to be inferred from the output voltage. Thermocouples made of specially selected materials have been exhaustively characterized in terms of voltage versus temperature compared to primary temperature standards. Most notably the water-ice point of 0° C is used for tables of standard thermocouple performance.

Figure 14. Thermocouple Voltage with 0°C Reference

An alternative measurement technique, illustrated in Figure 15, is used in most practical applications where accuracy requirements do not warrant maintenance of primary standards. The reference junction temperature is allowed to change with the environment

Figure 15. Substitution of Measured Reference Temperature for Ice Point Reference

of the measurement system, but it is carefully measured by some type of absolute thermometer. A measurement of the thermocouple voltage combined with a knowledge of the reference temperature can be used to calculate the measurement junction temperature. Usual practice, however, is to use a convenient thermoelectric method to measure the reference temperature and to arrange its output voltage so that it corresponds to a thermocouple referred to 0°C. This voltage is simply added to the thermocouple voltage tabulated for an ice-point referenced thermocouple.

The temperature sensitivity of silicon integrated circuit transistors is quite predictable and repeatable. This sensitivity is exploited in the AD594/AD595 to produce a temperature related voltage to compensate the reference or "cold" junction of a thermocouple as shown in Figure 16.

Figure 16. Connecting Isothermal Junctions

Since the compensation is at the reference junction temperature, it is often convenient to form the reference "junction" by connecting directly to the circuit wiring. So long as these connections and the compensation are at the same temperature no error will result.

Thermocouple Conditioners and Set-Point Controllers

AD596*/AD597*

FEATURES

Low Cost Operates with Type J (AD596) or Type K (AD597) Thermocouples Built-In Ice Point Compensation Temperature Proportional Operation – 10mV/°C Temperature Set-Point Operation – ON/OFF Programmable Switching Hysteresis High Impedance Differential Input

AD596/AD597 FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD596/AD597 is a monolithic temperature set-point controller which has been optimized for use at elevated temperatures such as those found in oven control applications. The device cold junction compensates and amplifies a type J or K thermocouple input to derive an internal signal proportional to temperature. The internal signal is then compared with an externally applied set-point voltage to yield a low impedance switched output voltage. Dead-Band or switching hysteresis can be programmed using a single external resistor. Alternately, the AD596/ AD597 can be configured to provide a voltage output (10mV/°C) directly from a type J or K thermocouple signal. It can also be used as a stand-alone voltage output temperature sensor.

The AD596/AD597 can be powered with a single supply from +5V to +30V, or dual supplies up to a total span of 36V. Typical quiescent supply current is 160μ A which minimizes self-heating errors.

The AD596/AD597 includes a thermocouple failure alarm that indicates an open thermocouple lead when operated in the temperature proportional measurement mode. The alarm output has a flexible format which can be used to drive relays, LEDs or TTL logic.

The device is packaged in a reliability qualified, cost effective 10-pin metal can and is trimmed to operate over an ambient temperature range from $+25^{\circ}$ C to $+100^{\circ}$ C. Operation over an extended ambient temperature range is possible with slightly reduced accuracy. The AD596 will amplify thermocouple signals covering the entire -200° C to $+760^{\circ}$ C temperature range recommended for type J thermocouples while the AD597 can accommodate -200° C to $+1250^{\circ}$ C type K inputs.

*Protected by U.S. Patent No. 4,029,974.

The AD596/AD597 has a calibration accuracy of $\pm 4^{\circ}$ C at an ambient temperature of 60°C and an ambient temperature stability specification of 0.05°C/°C from +25°C to +100°C. If higher accuracy, or a lower ambient operating temperature is required, either the AD594 (J thermocouple) or AD595 (K thermocouple) should be considered.

PRODUCT HIGHLIGHTS

- 1. The AD596/AD597 provides cold junction compensation and a high gain amplifier which can be used as a set-point comparator.
- 2. The input stage of the AD596/AD597 is a high quality instrumentation amplifier that allows the thermocouple to float over most of the supply voltage range.
- 3. Linearization not required for thermocouple temperatures close to 175°C (+100°C to +540°C for AD596).
- Cold junction compensation is optimized for ambient temperatures ranging from +25°C to +100°C.
- 5. In the stand-alone mode, the AD596/AD597 produces an output voltage that indicates its own temperature.

SPECIFICATIONS (@ + 60°C and $V_s = 10V$, Type J (AD596), Type K (AD597) Thermocouple, unless otherwise noted)

Model		AD596AH	ł		AD597AH			
	Min ·	Тур	Max	Min	Тур	Max	Units	
ABSOLUTE MAXIMUM RATINGS + V _S to - V _S	$(-V_{0} - 0.15)$		36 + Va	$(-V_0 - 0.15)$		36 + Va	Volts Volts	
Differential Input Voltage	$-V_{-}$		+ VS	-V.		+ V-	Volte	
Alarm Voltages	1 18		1.18	v s			Volta	
+ AI M	-Ve		$(-V_{0}+36)$	- Vc	i i	$(-V_{c}+36)$	Volts	
- ALM	- Ve		$+ V_{e}$	- Ve	ĺ	+ Ve	Volts	
Operating Temperature Range	- 55		+ 125	- 55		+ 125	l °C	
Output Short Circuit to Common	Indefinite			Indefinite	[-	
TEMPERATURE MEASUREMENT (Specified Temperature Range + 25°C to + 100°C)								
Calibration Error ¹	-4		+4	-4		+4	°C	
Stability vs. Temperature ²		± 0.02	± 0.05		±0.02	±0.05	ଂC/ଂC	
Gain Error	-1.5		+1.5	-1.5		+1.5	%	
Nominal Transfer Function		10			10		mV/°C	
AMPLIFIER CHARACTERISTICS								
Closed Loop Gain ³		180.6			245.5		V/V	
Input Offset Voltage	°C×	53.21 + 23	5	°C×	41.27 - 37		μV	
Input Bias Current		0.1			0.1		μA	
Differential Input Range	- 10	1	+ 50	- 10		+ 50	mV	
Common-Mode Range	$(-V_{\rm S}-0.15)$		(+V _S -4)	$(-V_{\rm S}-0.15)$		(+V _S -4)	Volts	
Common-Mode Sensitivity – RTO			10			10	mV/V	
Power Supply Sensitivity – RTO		1	10		1	10	mV/V	
Output Voltage Range								
Dual Supplies	$(-V_{\rm S}+2.5)$		$(+V_{\rm S}-2)$	$(-V_{\rm S}+2.5)$		(+V _S -2)	Volts	
Single Supply	0		(+V _S -2)	0		(+V _s -2)	Volts	
Usable Output Current ⁴	± 5			±5			mA	
3dB Bandwidth		15			15		kHz	
ALARM CHARACTERISTICS								
V _{CE(SAT)} at 2mA		0.3			0.3		Volts	
Leakage Current			±1			±1	μA	
Operating Voltage at - ALM	1		(+V _S -4)			(+V _S -4)	Volts	
Short Circuit Current		20			20		mA	
POWER REQUIREMENTS	(+1	lato - Va)	< 30	(+1	(ato - Va)	< 30	Volts	
Operating Operating		1 1			1			1
		160	300		160	300	u A	
		100	200		100	200	цА	
	1	100				L	+	
TO 100/H 10A)		506 A LI		4	597AH			
IU-100(H-10A)	1 10	JJOAN		AD			1	

NOTES NOTES 'This is a measure of the deviation from ideal with a measuring thermocouple junction of 175°C and a chip temperature of 60°C. The ideal transfer function is given by: AD596. $V_{OUT} = 180.57 \times (V_M - V_A + \text{ (ambient in °C)} \times 53.21 \mu V/°C$ $+ 233 \mu V$) AD597. $V_{OUT} = 245.46 \times (V_M - V_A + \text{ (ambient in °C)} \times 41.27 \mu V/°C$ $- 37 \mu V$).

Where V_M and V_A represent the measuring and ambient temperatures and are taken from the appropriate J or K thermocouple table. The ideal transfer function minimizes the error over the ambient temperature range of 25°C to 100°C with a thermocouple temperature of approximately 175°C.

²Defined as the slope of the line connecting the AD596/AD597 CJC errors measured at 25°C and 100°C ambient temperature.

³Pin 6 shorted to Pin 7.

Current Sink Capability in single supply configuration is limited to current drawn to ground through a $50k\Omega$ resistor at output voltages below 2.5V. ${}^{5}-V_{S}$ must not exceed - 16.5V.

⁶See Section 16 for package outline informatin.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in **boldface** are tested on all production units.

Thermoco Temperat ℃	ouple Type J ture Voltage mV	AD596 Output mV	Type K Voltage mV	AD597 Output mV		Thermoo Tempera °C	ouple Type J ture Voltage mV	AD5% Output mV	Type K Voltage mV	AD597 Output mV
- 200	- 7.890	- 1370	- 5.891	- 1446		500	27.388	5000	20.640	5066
- 180	· - 7.402	1282	- 5.550	- 1362		520	28.511	5203	21.493	5276
- 160	- 6.821	- 1177	- 5.141	- 1262		540	29.642	5407	22.346	5485
- 140	- 6.159	- 1058	- 4.669	- 1146		560	30.782	5613	23,198	5694
- 120	- 5.426	- 925	- 4.138	- 1016		580	31.933	5821	24.050	5903
- 100	- 4.632	- 782	- 3,553	- 872		600	33.096	6031	24,902	6112
- 80	- 3.785	- 629	- 2.920	- 717		620	34.273	6243	25.751	6321
- 60	- 2.892	- 468	- 2.243	- 551	1	640	35,464	6458	26.599	6529
40	- 1.960	- 299	- 1.527	- 375		660	36.671	6676	27.445	6737
- 20	995	- 125	777	- 191		680	37.893	6897	28.288	6944
- 10	501	- 36	392	- 96		700	39,130	7120	29.128	7150
0	0	54	0	0		720	40.382	7346	29.965	7355
10	.507	146	.397	97		740	41.647	7575	30.799	7560
20	1.019	238	.798	196		750	42.283	7689	31,214	7662
25	1.277	285	1.000	245		760	-	-	31.629	7764
30	1.536	332	1,203	295		780	_	_	32,455	7966
40	2.058	426	1.611	395		800	_	-	33,277	8168
50	2.585	521	2.022	496		820	-	_	34 095	8369
50 60	3 115	617	2.436	598		840	-		34 909	8569
80	4.186	810	3.266	802		860	-	-	35.718	8767
100	5 268	1006	4 095	1005		880			36 574	8065
120	6 359	1203	4 919	1207		900	-	-	37 325	9162
140	7 457	1401	5 733	1407		920	-	-	38 122	0357
140	8 560	1600	6 539	1605		940		-	38 915	0557
180	9.667	1800	7.338	1801		960	-	-	39.703	9745
200	10 777	2000	9 127	1007	-+	090			40.499	0029
200	11 997	2000	8.137	2194		1000		-	41 269	10120
240	12 008	2401	9 745	2124		1000	-	-	42 045	10320
240	14 108	2401	10 560	2592		1020	-	-	42.045	10510
200	14.108	2002	11 381	2794		1040	-	-	42.817	10510
	15.217	2002	11.501	2771	+	1000		_	45.505	10020
300	16.325	3002	12.207	2996		1080		-	44.439	10908
320	17.432	3202	13.039	3201		1100	-	-	45.108	11072
340	18.537	3402	13.874	3406	1	1120	-	-	45.863	11258
360	19.640	3601	14.712	3611		1140	-	-	46.612	11441
380	20.743	3800	15.552	3817	_	1160			47.356	11624
400	21.846	3999	16.395	4024		1180	-	-	48.095	11805
420	22.949	4198	17.241	4232		1200	-	-	48.828	11985
440	24.054	4398	18.088	4440		1220	-	-	49.555	12164
460	25.161	4598	18.938	4649		1240	-	-	50.276	12341
480	26.272	4798	19.788	4857		1250	-	-	50.633	12428

Table I. Output Voltage vs. Thermocouple Temperature (Ambient +60°C, $V_S = -5V$, +15V)

TEMPERATURE PROPORTIONAL OUTPUT MODE

The AD596/AD597 can be used to generate a temperature proportional output of 10mV/°C when operated with J and K type thermocouples as shown in Figure 1. Thermocouples produce low level output voltages which are a function of both the temperature being measured and the reference or cold junction temperature. The AD596/AD597 compensates for the cold junction temperature and amplifies the thermocouple signal to produce a high level 10mV/°C voltage output which is a function only of the temperature being measured. The temperature stability of the part indicates the sensitivity of the output voltage to changes in ambient or device temperatures. This is typically 0.02°C/°C over the +25°C to +100°C recommended ambient temperature range. The parts will operate over the extended ambient temperature ranges from -55°C to +125°C, but thermocouple nonlinearity at the reference junction will degrade the temperature stability over this extended range. Table I is a list of ideal AD596/ AD597 output voltages as a function of Celsius temperature for type J and K ANSI standard thermocouples with package and reference junction at 60°C. As is normally the case, these outputs

Figure 1. Temperature Proportional Output Connection

are subject to calibration and temperature sensitivity errors. These tables are derived using the ideal transfer functions:

AD596 output = (Type J voltage $+301.5\mu V$) \times 180.57 AD597 output = (Type K voltage) \times 245.46

The offsets and gains of these devices have been laser trimmed to closely approximate thermocouple characteristics over measurement temperature ranges centered around 175° C with the

AD596/AD597 at an ambient temperature between 25°C and 100°C. This eliminates the need for additional gain or offset adjustments to make the output voltage read:

$$V_{OUT} = 10mV/^{\circ}C \times (\text{thermocouple temperature in }^{\circ}C)$$

(within specified tolerances).

Excluding calibration errors, the above transfer function is accurate to within 1°C from +80°C to +550°C for the AD596 and -20°C to +350°C for the AD597. The different temperature ranges are due to the differences in J and K type thermocouple curves.

European DIN FE-CuNi thermocouple vary slightly from ANSI type J thermocouples. Table I does not apply when these types of thermocouples are used. The transfer functions given previously and a thermocouple table should be used instead.

Figure 1 also shows an optional trimming network which can be used to change the device's offset voltage. Injecting or sinking 200nA from Pin 3 will offset the output aproximately 10mV (1°C).

The AD596/AD597 can operate from a single supply from 5V to 36V or from split supplies totalling 36V or less as shown. Since the output can only swing to within 2V of the positive supply, the usable measurement temperature range will be restricted when positive supplies less than 15V for the AD597 and 10V for the AD596 are used. If the AD596/AD597 is to be used to indicate negative Celsius temperatures, then a negative supply is required.

Common-mode voltages on the thermocouple inputs must remain within the common-mode voltage range of the AD596/AD597, with a return path provided for the bias currents. If the thermocouple is not remotely grounded, then the dotted line connection shown in Figure 1 must be made to one of the thermocouple inputs. If there is no return path for the bias currents, the input stage will saturate, causing erroneous output voltages.

In this configuration, the AD596/AD597 has circuitry which detects the presence of an open thermocouple. If the thermocouple loop becomes open, one or both of the inputs to the device will be deprived of bias current causing the output to saturate. It is this saturation which is detected internally and used to activate the alarm circuitry. The output of this feature has a flexible format which can be used to source or sink up to 20mA of current. The collector (+ALM) should not be allowed to become more positive than ($-V_S$ + 36V), however, it may be permitted to be more positive than +V_S. The emitter voltage (-ALM) should be constrained such that it does not become more positive than 4V below + V_S. If the alarm feature is not used, this pin should be connected to Pins 4 or 5 as shown in Figure 1.

SET-POINT CONTROL MODE

The AD596/AD597 can be connected as a set-point controller as shown in Figure 2. The thermocouple voltage is cold junction compensated, amplified, and compared to an external set-point voltage. The relationship between set-point voltage and temperature is given in Table I. If the temperature to be controlled is within the operating range $(-55^{\circ}C \text{ to } + 125^{\circ}C)$ of the device, it can monitor its own temperature by shorting the inputs to ground. The set-point voltage with the thermocouple inputs grounded is given by the expressions:

AD596 Set-Point Voltage = $^{\circ}C \times 9.6mV/^{\circ}C + 42mV$ AD597 Set-Point Voltage = $^{\circ}C \times 10.1mV/^{\circ}C - 9.1mV$

The input impedance of the set-point pin of the AD596/AD597 is approximately $50k\Omega$. The temperature coefficient of this resistance is $\pm 15ppm/^{\circ}C$. Therefore, the $100ppm/^{\circ}C$ $5k\Omega$ pot

Figure 2. Set-Point Control Mode

shown in Figure 2 will only introduce an additional $\pm 1^{\circ}$ C degradation of temperature stability over the $+25^{\circ}$ C to $+100^{\circ}$ C ambient temperature range.

Switching hysteresis is often used in set-point systems of this type to provide noise immunity and increase system reliability. By reducing the frequency of on-off cycling, mechanical component wear is reduced leading to enhanced system reliability. This can easily be implemented with a single external resistor between Pins 7 and 3 of the AD596/AD597. Each 200nA of current injected into Pin 3 when the output switches will cause

about 1°C of hysteresis; that is: R_{HYST} (Ω) = $\frac{V_{OUT}}{200nA} \times \frac{1}{^{\circ}C_{HYST}}$.

In the set-point configuration, the AD596/AD597 output is saturated at all times, so the alarm transistor will be ON regardless of whether there is an open circuit or not. However, -ALM must be tied to a voltage below (+V_S -4V) for proper operation of the rest of the circuit.

STAND-ALONE TEMPERATURE TRANSDUCER

The AD596/AD597 may be configured as a stand-alone Celsius thermometer as shown in Figure 3.

Figure 3. Stand-Alone Temperature Transducer Temperature Proportional Output Connection

Simply omit the thermocouple and connect the inputs (Pins 1 and 2) to common. The output will now reflect the compensation voltage and hence will indicate the AD596/AD597 temperature. In this three terminal, voltage output, temperature sensing mode, the AD596/AD597 will operate over the full extended -55° C to + 125^{\circ}C temperature range. The output scaling will be 9.6mV per °C with the AD596 and 10.1mV per °C with the AD596 causing it to read slightly high when used in this mode.

THERMOCOUPLE CONNECTIONS

The connection of the thermocouple wire and the normal wire or printed circuit board traces going to the AD596/AD597 forms an effective reference junction as shown in Figure 4. This junction must be kept at the same temperature as the AD596/AD597 for the internal cold junction compensation to work properly. Unless the AD596/AD597 is in a thermally stable enclosure, the thermocouple leads should be brought in directly to Pins 1 and 2.

Figure 4. PCB Connections

To ensure secure bonding, the thermocouple wire should be cleaned to remove oxidization prior to soldering. Noncorrosive resin flux is effective with iron, constantan, chromel, and alumel, and the following solders: 95% tin-5% silver, or 90% tin-10% lead.

SINGLE AND DUAL SUPPLY CONNECTIONS

In the single supply configuration as used in the set-point controller of Figure 2, any convenient voltage from +5V to +36V may be used, with self-heating errors being minimized at lower supply levels. In this configuration, the $-V_S$ connection at Pin 5 is tied to ground. Temperatures below zero can be accommodated in the single supply set-point mode, but not in the single supply temperature measuring mode (Figure 1 reconnected for single supply). Temperatures below zero can only be indicated by a negative output voltage, which is impossible in the single supply mode.

Common-mode voltages on the thermocouple inputs must remain below the positive supply, and not more than 0.15V more negative than the minus supply. In addition, a return path for the input bias currents must be provided. If the thermocouple is not remotely grounded, then the dotted line connections in Figures 1 and 2 are mandatory.

STABILITY OVER TEMPERATURE

The AD596/AD597 is specified for a maximum error of $\pm 4^{\circ}$ C at an ambient temperature of 60°C and a measuring junction temperature at 175°C. The ambient temperature stability is specified to be a maximum of 0.05°C/°C. In other words, for every degree change in the ambient temperature, the output will change no more than 0.05 degrees. So, at 25°C the maximum deviation from the temperature-voltage characteristic of Table I is $\pm 5.75^{\circ}$ C, and at 100°C it is $\pm 6^{\circ}$ C maximum (see Figure 5). If the offset error of $\pm 4^{\circ}$ C is removed with a single offset adjustment, these errors will be be reduced to $\pm 1.75^{\circ}$ C and $\pm 2^{\circ}$ C max. The optional trim circuit shown in Figure 1 demonstrates how the ambient offset error can be adjusted to zero.

Figure 5. Drift Error vs. Temperature

THERMAL ENVIRONMENTAL EFFECTS

The inherent low power dissipation of the AD596/AD597 keeps self-heating errors to a minimum. However, device output is capable of delivering ± 5 mA to an external load and the alarm circuitry can supply up to 20mA. Since the typical junction to ambient thermal resistance in free air is 150°C/W, significant temperature difference between the package pins (where the reference junction is located) and the chip (where the cold junction temperature is measured and then compensated) can exist when the device is operated in a high dissipation mode. These temperature differences will result in a direct error at the output. In the temperature proportional mode, the alarm feature will only activate in the event of an open thermocouple or system transient which causes the device output to saturate. Self-Heating errors will not effect the operation of the alarm but two cases do need to be considered. First, after a fault is corrected and the alarm is reset, the AD596/AD597 must be allowed to cool before readings can again be accurate. This can take 5 minutes or more depending upon the thermal environment seen by the device. Second, the junction temperature of the part should not be allowed to exceed 150°C. If the alarm circuit of the AD596/AD597 is made to source or sink 20mA with 30V across it, the junction temperature will be 90°C above ambient causing the die temperature to exceed 150°C when ambient is above 60°C. In this case, either the load must be reduced, or a heat sink used to lower the thermal resistance.

TEMPERATURE READOUT AND CONTROL

Figure 6 shows a complete temperature indication and control system based on the AD596/AD597. Here the AD596/AD597 is being used as a closed-loop thermocouple signal conditioner and an external op-amp is used to implement set point. This has two important advantages. It provides a high level $(10mV/^{\circ}C)$ output for the A/D panel meter and also preserves the alarm function for open thermocouples.

The A/D panel meter can easily be offset and scaled as shown to read directly in degrees Fahrenheit. If a two temperature calibration scheme is used, the dominant residual errors will arise from two sources; the ambient temperature rejection (typically $\pm 2^{\circ}$ C over a 25°C to 100°C range) and thermocouple nonlinearity typical + 1°C from 80°C to 550°C for type J and + 1°C from -20°C to 350°C for type K.

An external voltage reference is used both to increase the stability of the A/D converter and supply a stable reference for the set-point voltage. A traditional requirement for the design of set-point control thermocouple systems has been to configure the system such that the appropriate action is taken in the event of an open thermocouple. The open thermocouple alarm pin with its flexible current-limited output format supports this function when the part operates in the temperature proportional mode. In addition, if the thermocouple is not remotely grounded, it is possible to program the device for either a positive or negative full scale output in the event of an open thermocouple. This is done by connecting the bias return resistor directly to Pin 1 if a high output voltage is desired to indicate a fault condition. Alternately, if the bias return is provided on the thermocouple lead connected to Pin 2, an open circuit will result in an output low reading. Figure 6 shows the ground return connected to Pin 1 so that if the thermocouple fails, the heater will remain off. At the same time, the alarm circuit lights the LED signalling the need to service the thermocouple. Grounding Pin 2 would lead to low output voltage saturation, and in this circuit would result in a potentially dangerous thermal runaway under fault conditions.

Figure 6. Temperature Measurement and Control

Loop-Powered 4-20mA Sensor Transmitter

AD693

FEATURES

Instrumentation Amplifier Front End Loop-Powered Operation Precalibrated 30mV or 60mV Input Spans Independently Adjustable Output Span and Zero Precalibrated Output Spans: 4-20mA Unipolar 0-20mA Unipolar 12±8mA Bipolar Precalibrated 100Ω RTD Interface 6.2V Reference with Up to 3.5mA of Current Available

6.2V Reference with Up to 3.5mA of Current Available Uncommitted Auxiliary Amp for Extra Flexibility Optional External Pass Transistor to Reduce Self-Heating Errors

AD693 PIN CONFIGURATION

PRODUCT DESCRIPTION

The AD693 is a monolithic signal conditioning circuit which accepts low-level inputs from a variety of transducers to control a standard 4-20mA, two-wire current loop. An on-chip voltage reference and auxiliary amplifier are provided for transducer excitation; up to 3.5mA of excitation current is available when the device is operated in the loop-powered mode. Alternatively, the device may be locally powered for three-wire applications when 0-20mA operation is desired.

Precalibrated 30mV and 60mV input spans may be set by simple pin strapping. Other spans from 1mV to 100mV may be realized with the addition of external resistors. The auxiliary amplifier may be used in combination with on-chip voltages to provide six precalibrated ranges for 100 Ω RTDs. Output span and zero are also determined by pin strapping to obtain the standard ranges: 4-20mA, $12\pm8mA$ and 0-20mA.

Active laser trimming of the AD693's thin-film resistors result in high levels of accuracy without the need for additional adjustments and calibration. Total unadjusted error is tested on every device to be less than 0.5% of full scale at $+25^{\circ}$ C, and less than 0.75% over the industrial temperature range. Residual nonlinearity is under 0.05%. The AD693 also allows for the use of an external pass transistor to further reduce errors caused by self-heating.

For transmission of low-level signals from RTDs, bridges and pressure transducers, the AD693 offers a cost-effective signal conditioning solution. It is recommended as a replacement for discrete designs in a variety of applications in process control, factory automation and system monitoring.

The AD693 is packaged in an 20-pin ceramic side-brazed DIP and is specified over the -40° C to $+85^{\circ}$ C industrial temperature range.

PRODUCT HIGHLIGHTS

- 1. The AD693 is a complete monolithic low-level voltage-tocurrent loop signal conditioner.
- Precalibrated output zero and span options include 4-20mA, 0-20mA, and 12±8mA in two- and three-wire configurations.
- 3. Simple resistor programming adds a continuum of ranges to the basic 30mV and 60mV input spans.
- 4. The common-mode range of the signal amplifier input extends from ground to near the device's operating voltage.
- 5. Provision for transducer excitation includes a 6.2V reference output and an auxiliary amplifier which may be configured for voltage or current output and signal amplification.
- 6. The circuit configuration permits simple linearization of bridge, RTD, and other transducer signals.
- 7. A monitored output is provided to drive an external pass transistor. This feature off-loads power dissipation to extend the temperature range of operation, enhance reliability, and minimize self-heating errors.
- 8. Laser-wafer trimming results in low unadjusted errors and affords precalibrated input and output spans.
- 9. Zero and span are independently adjustable and noninteractive to accommodate transducers or user defined ranges.
- 10. Six precalibrated temperature ranges are available with a 100Ω RTD via pin strapping.
$\label{eq:spectral_$

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AD693AD	······	
Model	Conditions	Min	Тур	Max	Units
LOOP POWERED OPERATION					
TOTAL UNADJUSTED ERROR ^{1,2}			±0.25	±0.5	% Full Scale
T_{min} to T_{max}	1		± 0.4	±0.75	% Full Scale
1000 RTD CALIBRATION ERROR	³ (See Fig. 17)		±0.5	±2.0	°C
LOOP POWERED OPERATION ²					
Zero Current Error ⁴	Zero = 4mA		±25	±80	μA
	Zero = 12mA		±40	±120	μA
	$Zero = 0mA^5$	+7	+ 35	+ 100	μA
vs. Temp.	Zero = 4mA		±0.5	±1.5	µA/℃
Power Supply Rejection (R11)	$12V \le V_{OP} \le 36V^\circ$		±3.0	±5.6	μν/ν
Common-Mode Input Range	$0V \ge V_{CM} \ge 0.2V$ (See Fig. 3)	0		$+ V_{op} - 4V^6$	v
Common-Mode Rejection (RTI)	0V≤V _{См} ≤6.2V	Ů	±10	± 30	
Input Bias Current ⁷	CM		+5	+ 20	nA
T _{min} to T _{max}			+7	+ 25	nA
Input Offset Current ⁷	$V_{SIG} = 0$		±0.5	±3.0	nA
Transconductance	0.0				
Nominal	30mV Input Span		0.5333		A/V
	60mV Input Span		0.2666		A/V
Unadjusted Error			± 0.05	±0.2	%
vs. Common-Mode	$0V \le V_{CM} \le 6.2V$				
	30mV Input Span		± 0.03	±0.04	%/V
Emonus Toma	60mV Input Span		± 0.05	±0.06	%/V
Nonlinearity ⁸	30mV Input Span		± 20 + 0.01	± 50 + 0 05	ppm/°C
rommeanty	60mV Input Span		± 0.01 + 0.02	± 0.07	% of Span
OPERATIONAL VOLTAGE RANG	F				
Operational Voltage, Von ⁶	L	+12		+ 36	v
Quiescent Current	Into Pin 9		+ 500	+ 700	μA
OUTPUT CURRENT LIMIT		+ 21	+ 25	+ 32	mA
COMPONENTS OF ERROR					
SIGNAL AND IFIED?					
SIGNAL AMPLIFIEK			+ 10	+ 200	
vs. Temp			± 40 + 1.0	± 200 + 2.5	μV
Power Supply Rejection	12V≤V _{OP} ≤36V ⁶		± 3.0	±5.6	$\mu V/V$
	$0V \le V_{CM} \le 6.2V$				
V/I CONVERTER ^{9,10}					
Zero Current Error	Output Span = 4-20mA		± 30	±80	μA
Power Supply Rejection	$12V \le V_{OP} \le 36V^6$		± 1.0	± 3.0	μA/V
Transconductance					
Nominal Un a diversa d Evenen			0.2666		A/V
			±0.05	±0.2	%
6.200V REFERENCE ^{9,12}			•		
Output Voltage Tolerance			± 3	± 12	mV
vs. remp. Line Regulation	$12V < V_{op} < 36V^{6}$		± 20 + 200	± 50 + 300	ppm/°C
Load Regulation ¹¹	$0mA \le I_{PFF} \le 3mA$		± 0.3	± 0.75	mV/mA
Output Current ¹³	Loop Powered, (Fig. 10)	+3.0	+3.5		mA
	3-Wire Mode, (Fig. 15)		+5.0		mA
AUXILIARY AMPLIFIER					
Common-Mode Range		0		$+ V_{OP} - 4V^{6}$	v
Input Offset Voltage		1	±50	±200	μV
Input Bias Current			+5	+ 20	nA
Input Offset Current			+0.5	±3.0	nA 1D
Common-Mode Rejection			90 105		dB
a once oupping rejection		•	105		100

Model	Conditions	AD Min T	693AD `yp Max	Units
Output Current Range Output Current Error	Pin I _X OUT Pin V _X – Pin I _X	+ 0.01 ± 0.	+ 5	mA %
TEMPERATURE RANGE Case Operating ¹⁴ Storage	T_{min} to T_{max}	-40 -65	+ 85 + 150	°C °C
PACKAGE OPTION ¹⁵		D-2	0	

NOTES

¹Total error can be significantly reduced (typically less than 0.1%) by trimming the zero current. The remaining unadjusted error sources are transconductance and nonlinearity.

²The AD693 is tested as a loop powered device with the signal amp, V/I converter, voltage reference, and application voltages operating together. Specifications are valid for preset spans and spans between 30mV and 60mV.

³Error from ideal output assuming a perfect 100Ω RTD at 0 and +100°C.

⁴Refer to the Error Analysis to calculate zero current error for input spans less than 30mV.

⁵By forcing the differential signal amplifier input sufficiently negative the 7µA zero current can always be achieved.

⁶The operational voltage (V_{OP}) is the voltage directly across the AD693 (Pin 10 to 6 in two-wire mode, Pin 9 to 6 in

local power mode). For example, $V_{OP} = V_S - (I_{LOOP} \times R_L)$ in two-wire mode (refer to Figure 10).

⁷Bias currents are not symmetrical with input signal level and flow out of the input pins. The input bias current of the inverting input increases with input signal voltage, see Figure 2.

⁸Nonlinearity is defined as the deviation of the output from a straight line connecting the endpoints as the input is swept over a 30mV and 60mV input span.

⁹Specifications for the individual functional blocks are components of error that contribute to, and that are included in, the Loop Powered Operation specifications.

¹⁰Includes error contributions of V/I converter and Application Voltages.

¹¹Changes in the reference output voltage due to load will affect the Zero Current. A 1% change in the voltage reference output will result in an error of 1% in the value of the Zero Current.

 12 If not used for external excitation, the reference should be loaded by approximately 1mA (6.2k Ω to common).

¹³In the loop powered mode up to 5mA can be drawn from the reference, however, the lower limit of the output span will be increased accordingly. 3.5mA is the maximum current the reference can source while still maintaining a 4mA zero.

 14 The AD693 is tested with a pass transistor so $T_A{\cong}T_C.$

¹⁵See Section 16 for package outline information.

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\dots \dots \dots$
Reverse Loop Current
Signal Amp Input Range $\ldots \ldots \ldots$
Reference Short Circuit to Common Indefinite
Auxiliary Amp Input Voltage Range $\ldots \ldots \ldots -0.3V$ to V _{OP}
Auxiliary Amp Current Output 10mA
Storage Temperature
Lead Temperature, 10sec Soldering + 300°C
Max Junction Temperature + 150°C

Typical Characteristics

Figure 1. Maximum Load Resistance vs. Power Supply

Figure 2. Differential Input Current vs. Input Signal Voltage Normalized to +IN

Figure 3. Maximum Common-Mode Voltage vs. Supply

Figure 4. Bandwidth vs. Series Load Resistance

Figure 5. Signal Amplifier PSRR vs. Frequency

Figure 6. CMRR (RTI) vs. Frequency

Figure 7. Input Current Noise vs. Frequency

Figure 8. Input Voltage Noise vs. Frequency

How the AD693 Works

FUNCTIONAL DESCRIPTION

The operation of the AD693 can be understood by dividing the circuit into three functional parts (see Figure 9). First, an instrumentation amplifier front-end buffers and scales the low-level input signal. This amplifier drives the second section, a V/I converter, which provides the 4-to-20mA loop current. The third section, a voltage reference and resistance divider, provides application voltages for setting the various "live zero" currents. In addition to these three main sections, there is an on-chip auxiliary amplifier which can be used for transducer excitation.

VOLTAGE-TO-CURRENT (V/I) CONVERTER

The output NPN transistor for the V/I section sinks loop current when driven on by a high gain amplifier at its base. The input for this amplifier is derived from the difference in the outputs of the matched preamplifiers having gains, G2. This difference is caused to be small by the large gain, +A, and the negative feedback through the NPN transistor and the loop current sampling resistor between I_{IN} and Boost. The signal across this resistor is compared to the input of the left preamp and servos the loop current until both signals are equal. Accurate voltage-tocurrent transformation is thereby assured. The preamplifiers employ a special design which allows the active feedback amplifier to operate from the most positive point in the circuit, I_{IN}.

The V/I stage is designed to have a nominal transconductance of 0.2666 A/V. Thus, a 75mV signal applied to the inputs of the V/I (Pin 16, noninverting; Pin 12, inverting) results in a full-scale output current of 20mA.

The current limiter operates as follows: the output of the feedback preamp is an accurate indication of the loop current. This output is compared to an internal setpoint which backs off the drive to the NPN transistor when the loop current approaches 25mA. As a result, the loop and the AD693 are protected from the consequences of voltage overdrive at the V/I input.

VOLTAGE REFERENCE AND DIVIDER

A stabilized bandgap voltage reference and laser-trimmed resistor divider provide for both transducer excitation as well as precalibrated offsets for the V/I converter. When not used for external excitation, the reference should be loaded by approximately 1mA ($6.2k\Omega$ to common).

The 4mA and 12mA taps on the resistor divider correspond to -15mV and -45mV, respectively, and result in a live zero of 4mA or 12mA of loop current when connected to the V/I converter's

inverting input (Pin 12). Arranging the zero offset in this way makes the zero signal output current independent of input span. When the input to the signal amp is zero, the noninverting input of the V/I is at 6.2V.

Since the standard offsets are laser trimmed at the factory, adjustment is seldom necessary except to accommodate the zero offset of the actual source. (See "Adjusting Zero".)

SIGNAL AMPLIFIER

The Signal Amplifier is an instrumentation amplifier used to buffer and scale the input to match the desired span. Inputs applied to the Signal Amplifier (at Pins 17 and 18) are amplified and referred to the 6.2V reference output in much the same way as the level translation occurs in the V/I converter. Signals from the two preamplifiers are subtracted, the difference is amplified, and the result is fed back to the upper preamp to minimize the difference. Since the two preamps are identical, this minimum will occur when the voltage at the upper preamp just matches the differential input applied to the Signal Amplifier at the left.

Since the signal which is applied to the V/I is attenuated across the two 800Ω resistors before driving the upper preamp, it will necessarily be an amplified version of the signal applied between Pins 17 and 18. By changing this attenuation, you can control the span referred to the Signal Amplifier. To illustrate: a 75mV signal applied to the V/I results in a 20mA loop current. Nominally, 15mV is applied to offset the zero to 4mA leaving a 60mV range to correspond to the span. And, since the nominal attenuation of the resistors connected to Pins 16, 15 and 14 is 2.00, a 30mV input signal will be doubled to result in 20mA of loop current. Shorting Pins 15 and 16 results in unity gain and permits a 60mV input span. Other choices of span may be implemented with user supplied resistors to modify the attenuation. (See section "Adjusting Input Span".)

The Signal Amplifier is specially designed to accommodate a large common-mode range. Common-mode signals anywhere up to and beyond the 6.2V reference are easily handled as long as V_{IN} is sufficiently positive. The Signal Amplifier is biased with respect to V_{IN} and requires about 3.5 volts of headroom. The extended range will be useful when measuring sensors driven, for example, by the auxiliary amplifier which may go above the 6.2V potential. In addition, the PNP input stage will continue to operate normally with common-mode voltages of several hundred mV, negative, with respect to common. This feature accommodates self-generating sensors, such as thermocouples,

Figure 9. Functional Block Diagram

which may produce small negative normal-mode signals as well as common-mode noise on "grounded" signal sources.

AUXILIARY AMPLIFIER

The Auxiliary Amplifier is included in the AD693 as a signal conditioning aid. It can be used as an op amp in noninverting applications and has special provisions to provide a controlled current output. Designed with a differential input stage and an unbiased Class A output stage, the amplifier can be resistively loaded to common with the self-contained 100 Ω resistor or with a user supplied resistor.

As a functional element, the Auxiliary Amplifier can be used in dynamic bridges and arrangements such as the RTD signal conditioner shown in Figure 17. It can be used to buffer, amplify and combine other signals with the main Signal Amplifier. The Auxiliary Amplifier can also provide other voltages for excitation if the 6.2V of the reference is unsuitable. Configured as a simple follower, it can be driven from a user supplied voltage divider or the precalibrated outputs of the AD693 divider (Pins 3 and 4) to provide a stiff voltage output at less than the 6.2 level, or by incorporating a voltage divider as feedback around the amplifier, one can gain-up the reference to levels higher than 6.2V. If large positive outputs are desired, I_X , the Auxiliary Amplifier output current supply, should be strapped to either V_{IN} or Boost. Like the Signal Amplifier, the Auxiliary requires about

Applying the AD693

CONNECTIONS FOR BASIC OPERATION

Figure 10 shows the minimal connections for basic operation: 0-30mV input span, 4-20mA output span in the two-wire, looppowered mode. If not used for external excitation, the 6.2V reference should be loaded by approximately 1mA (6.2k Ω to common).

USING AN EXTERNAL PASS TRANSISTOR

The emitter of the NPN output section, I_{OUT} , of the AD693 is usually connected to common and the negative loop connection (Pins 7 to 6). Provision has been made to reconnect I_{OUT} to the base of a user supplied NPN transistor as shown in Figure 11. This permits the majority of the power dissipation to be moved off chip to enhance performance, improve reliability, and extend the operating temperature range. An internal hold-down resistor of about 3k is connected across the base emitter of the external transistor.

The external pass transistor selected should have a BV_{CEO} greater than the intended supply voltage with a sufficient power rating

3.5V of headroom with respect to V_{IN} at its input and about 2V of difference between I_X and the voltage to which V_X is required to swing.

The output stage of the Auxiliary Amplifier is actually a high gain Darlington transistor where I_X is the collector and V_X is the emitter. Thus, the Auxiliary Amplifier can be used as a V/I converter when configured as a follower and resistively loaded. I_X functions as a high-impedance current source whose current is equal to the voltage at V_X divided by the load resistance. For example, using the onboard 100 Ω resistor and the 75mV or 150mV application voltages, either a 750 μ A or 1.5mA current source can be set up for transducer excitation.

The I_X terminal has voltage compliance within 2V of V_X . If the Auxiliary Amplifier is not to be used, then Pin 2, the noninverting input, should be grounded.

REVERSE VOLTAGE PROTECTION FEATURE

In the event of a reverse voltage being applied to the AD693 through a current-limited loop (limited to 200mA), an internal shunt diode protects the device from damage. This protection mode avoids the compliance voltage penalty which results from a series diode that must be added if reversal protection is required in high-current loops.

for continuous operation with 25mA current at the supply voltage. Ft should be in the 10MHz to 100MHz range and β should be greater than 10 at a 20mA emitter current. Some transistors that meet this criteria are the 2N1711 and 2N2219A. Heat sinking the external pass transistor is suggested.

The pass transistor option may also be employed for other applications as well. For example, I_{OUT} can be used to drive an LED connected to Common, thus providing a local monitor of loop fault conditions without reducing the minimum compliance voltage.

ADJUSTING ZERO

In general, the desired zero offset value is obtained by connecting an appropriate tap of the precision reference/voltage divider network to the inverting terminal of the V/I converter. As shown in Figure 9, precalibrated taps at Pins 14, 13 and 11 result in zero offsets of 0mA, 4mA and 12mA, respectively, when connected to Pin 12. The voltages which set the 4mA and 12mA zero operating points are 15mV and 45mV negative with respect to

Figure 10. Minimal Connection for 0-30mV Unipolar Input, 4-20mA Output

Figure 11. Using an External Pass Transistor to Minimize Self-Heating Errors

6.2V, and they each have a nominal source resistance of 450Ω . While these voltages are laser trimmed to high accuracy, they may require some adjustment to accommodate variability between sensors or to provide additional ranges. You can adjust zero by pulling up or down on the selected zero tap, or by making a separate voltage divider to drive the zero pin.

The arrangement of Figure 12 will give an approximately linear adjustment of the precalibrated options with fixed limits. To find the proper resistor values, first select I_A , the desired range of adjustment of the output current from nominal. Substitute this value in the appropriate formula below for adjustment at the 4mA tap.

 $R_{Z1} = (1.6V/I_A) - 400\Omega$ and

 $R_{Z2} = R_{Z1} \times 3.1V/(15mV + I_A \times 3.75\Omega)$

Use a similar connection with the following resistances for adjustments at the 12mA tap.

 $R_{Z1} = (4.8V/I_A) - 400\Omega$ and

 $R_{Z2} = R_{Z1} \times 3.1 V / (45 mV + I_A \times 3.75 \Omega)$

These formulae take into account the $\pm 10\%$ tolerance of tap resistance and insure a minimum adjustment range of I_A . For example, choosing $I_A = 200\mu A$ will give a zero adjustment range of $\pm 1\%$ of the 20mA full-scale output. At the 4mA tap the maximum value of:

 R_{Z1} = 1.6V/200 μA – 400 Ω = 7.6k Ω and

Figure 12. Optional 4mA Zero Adjustment (12mA Trim Available Also)

These can be rounded down to more convenient values of $7.5k\Omega$ and $1.3M\Omega$, which will result in an adjustment range comfortably greater than $\pm 200\mu$ A.

ADJUSTING INPUT SPAN

Input Span is adjusted by changing the gain of the Signal Amplifier. This amplifier provides a 0-to-60mV signal to the V/I section to produce the 4-to-20mA output span (or a 0-to-75mV signal in the 0-to-20mA mode). The gain of this amplifier is trimmed to 2.00 so that an input signal ranging from 0-to-30mV will drive the V/I section to produce 4-to-20mA. Joining P1 and P2 (Pins 15 and 16) will reduce the Signal Amplifier gain to one, thereby requiring a 60mV signal to drive the V/I to a full 20mA span.

To produce spans less than 30mV, an external resistor, R_{S1} , can be connected between P1 and 6.2V. The nominal value is given by:

$$R_{S1} = \frac{400\Omega}{\frac{30mV}{S} - 1}$$

where S is the desired span. For example, to change the span to 6mV a value of:

$$R_{S1} = \frac{\frac{400\Omega}{30mV} - 1}{\frac{30mV}{6mV} - 1} = 100\Omega$$

is required. Since the internal, 800Ω gain setting resistors exhibit an absolute tolerance of 10%, R_{S1} should be provided with up to $\pm 10\%$ range of adjustment if the span must be well controlled.

For spans between 30mV and 60mV a resistor R_{S2} should be connected between P1 and P2. The nominal value is given by:

$$R_{S2} = \frac{400\Omega (1 - \underline{60mV})}{\underline{30mV} - 1}$$

For example, to change the span to 40mV, a value of:

$$R_{52} = \frac{\frac{400\Omega (1 - \underline{60mV})}{40mV}}{\frac{30mV - 1}{40mV}} = 800\Omega$$

is required. Remember that this is a nominal value and may require adjustment up to $\pm 10\%$. In many applications the span must be adjusted to accommodate *individual* variations in the sensor as well as the AD693. The span changing resistor should, therefore, include enough adjustment range to handle both the

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-25

sensor uncertainty and the absolute resistance tolerance of P1 and P2. Note that the temperature coefficient of the internal resistors is nominally -17ppm/°C, and that the external resistors should be comparably stable to insure good temperature performance.

An alternative arrangement, allowing wide range span adjustment between two set ranges, is shown in Figure 13. R_{S1} and R_{S2} are calculated to be 90% of the values determined from the previous formulae. The smallest value is then placed in series with the wiper of the 1.5k Ω potentiometer shown in the figure. For example, to adjust the span between 25mV and 40mV, R_{S1} and R_{S2} are calculated to be 2000 Ω and 800 Ω , respectively. The smaller value, 800 Ω , is then reduced by 10% to cover the possible ranges of resistance in the AD693 and that value is put in place.

Figure 13. Wide Range Span Adjustment

A number of other arrangements can be used to set the span as long as they are compatible with the pretrimmed noninverting gain of two. The span adjustment can even include thermistors or other sensitive elements to compensate the span of a sensor.

In devising your own adjustment scheme, remember that you should adjust the gain such that the desired span voltage at the Signal Amplifier input translates to 60mV at the output. Note also that the full differential voltage applied to the V/I converter is 75mV; in the 4-20mA mode, -15mV is applied to the inverting input (zero pin) by the Divider Network and +60mV is applied to the noninverting input by the Signal Amplifier. In the 0-to-20mA mode, the total 75mV must be applied by the Signal Amplifier. As a result, the total span voltage will be 25% larger than that calculated for a 4-20mA output.

Finally, the external resistance from P2 to 6.2V should not be made less than $1k\Omega$ unless the voltage reference is loaded to at least 1.0mA. (A simple load resistor can be used to meet this requirement if a low value potentiometer is desired.) In no case should the resistance from P2 to 6.2V be less than 200 Ω .

Input Spans Between 60 and 100mV

Input spans of up to 100mV can be obtained by adding an offset proportional to the output signal into the zero pin of the V/I converter. This can be accomplished with two resistors and adjusted via the optional trim scheme shown in Figure 14. The resistor divider formed by $R_{\rm E1}$ and $R_{\rm E2}$ from the output of the Signal Amplifier modifies the differential input voltage range applied to the V/I converter.

In order to determine the fixed resistor values, R_{E1} and R_{E2} , first measure the source resistance (R_D) of the internal divider network. This can be accomplished (power supply disconnected)

by measuring the resistance between the 4mA of offset (Pin 13) and common (Pin 6) with the 6.2V reference (Pin 14) connected to common. The measured value, R_D , is then used to calculate R_{E1} and R_{E2} via the following formula:

$$R_{E2} = R_D \left(\frac{S}{S - 60mV} - 1.0024 \right)$$

and
$$R_{E1} = 412R_{E2}$$

Figure 14. Adjusting for Spans between 60mV and 100mV (R_{E1} and R_{E2}) with Fine-Scale Adjust (R_{E3} and R_{E4})

Figure 14 shows a scheme for adjusting the modified span and 4mA offset via R_{E3} and R_{E4} . The trim procedure is to first connect both signal inputs to the 6.2V Reference, set R_{E4} to zero and then adjust R_{E3} so that 4mA flows in the current loop. This in effect, creates a divider with the same ratio as the internal divider that sets the 4mA zero level (--15mV with respect to 6.2V). As long as the input signal remains zero the voltage at Pin 12, the zero adjust, will remain at -15mV with respect to 6.2V.

After adjusting R_{E3} place the desired full scale (S) across the signal inputs and adjust R_{E4} so that 20mA flows in the current loop. An attenuated portion of the input signal is now added into the V/I zero to maintain the 75mV maximum differential. If there is some small offset at the input to the Signal Amplifier, it may be necessary to repeat the two adjustments.

LOCAL-POWERED OPERATION FOR 0-20mA OUTPUT

The AD693 is designed for local-powered, three-wire systems as well as two-wire loops. All its usual ranges are available in threewire operation, and in addition, the 0-to-20mA range can be used. The 0-20mA convention offers slightly more resolution and may simplify the loop receiver, two reasons why it is sometimes preferred.

The arrangement, illustrated in Figure 15, results in a 0-20mA transmitter where the precalibrated span is 37.5mV. Connecting P1 to P2 will double the span to 75mV. Sensor input and excitation is unchanged from the two-wire mode except for the 25% increase in span. Many sensors are ratiometric so that an increase in excitation can be used instead of a span adjustment.

In the local-powered mode, increases in excitation are made easier. Voltage compliance at the I_{IN} terminal is also improved; the loop voltage may be permitted to fall to 6 volts at the AD693, easing the trade-off between loop voltage and loop resistance. Note that the load resistor, R_L , should meter the current into Pin 10, I_{IN} , so as not to confuse the loop current with the local power supply current.

Figure 15. Local Powered Operation with 0-20mA Output

OPTIONAL INPUT FILTERING

Input filtering is recommended for all applications of the AD693 due to its low input signal range. An RC filter network at each input of the signal amplifier is sufficient, as shown in Figure 16. In the case of a resistive signal source it may be necessary only to add the capacitors, as shown in Figure 18. The capacitors should be placed as close to the AD693 as possible. The value of the filter resistors should be kept low to minimize errors due to input bias current. Choose the 3dB point of the filter high enough so as not to compromise the bandwidth of the desired signal. The RC time constant of the filter should be matched to preserve the ac common-mode rejection.

Figure 16. Optional Input Filtering

INTERFACING PLATINUM RTDs

The AD693 has been specially configured to accept inputs from 100Ω Platinum RTDs (Resistance Temperature Detectors). Referring to Figure 17, the RTD and the temperature stable 100Ω resistor form a feedback network around the Auxiliary Amplifier resulting in a noninverting gain of $(1 + R_T/100\Omega)$, where R_T is the temperature dependent resistance of the RTD. The noninverting input of the Auxiliary Amplifier (Pin 2) is then driven by the 75mV signal from the Voltage Divider (Pin 4). When the RTD is at 0, its 100 Ω resistance results in an amplifier gain of +2 causing V_X to be 150mV. The Signal Amplifier compares this voltage to the 150mV output (Pin 3) so that zero differential signal results. As the temperature (and therefore, the resistance) of the RTD increases, Vx will likewise increase according to the gain relationship. The difference between this voltage and the zero degree value of 150mV drives the Signal Amp to modulate the loop current. The AD693 is precalibrated such that the full 4-20mA output span corresponds to a 0 to 104°C range in the RTD. (This assumes the European Standard of $\alpha = 0.00385$.) A total of 6 precalibrated ranges for three-wire (or two-wire) RTDs are available using only the pin strapping options as shown in Table I.

A variety of other temperature ranges can be realized by using different application voltages. For example, loading the Voltage Divider with a $1.5k\Omega$ resistor from Pin 3 to Pin 6 (common) will approximately halve the original application voltages and

Figure 17. 0-to-104°C Direct Three-Wire 100Ω RTD Interface, 4-20ma Output

Temperature Range	Pin Connections
0 to + 104°C	12 to 13
0 to +211°C	12 to 13, and 15 to 16
+ 25°C to + 130°C	12 to 14
+ 51°C to + 266°C	12 to 14, and 15 to 16
- 50°C to + 51°C	12 to 11
- 100°C to + 104°C	12 to 11 and 15 to 16

Table I. Precalibrated Temperature Range Options Using a European Standard 100 Ω RTD and the AD693.

allow for a doubling of the range of resistance (and therefore, temperature) required to fill the two standard spans. Likewise, increasing the application voltages by adding resistance between Pins 14 and 3 will decrease the temperature span.

An external voltage divider may also be used in conjunction with the circuit shown to produce any range of temperature spans as well as providing zero output (4mA) for a non 0 temperature input. For example, measuring V_x with respect to a voltage 2.385 times the excitation (rather than 2 times) will result in zero input to the Signal Amplifier when the RTD is at 100°C (or 138.5 Ω).

As suggested in Table I, the temperature span may also be adjusted by changing the voltage span of the Signal Amplifier. Changing the gain from 2 to 4, for example, will halve the temperature span to about 52°C on the 4-20mA output configuration. (See section "Adjusting Input Span".)

The configuration for a three-wire RTD shown in Figure 17 can accommodate two-wire sensors by simply joining Pins 1 and 5 of the AD693.

INTERFACING LOAD CELLS AND METAL FOIL STRAIN GAGES

The availability of the on-chip Voltage Reference, Auxiliary Amplifier and 3mA of excitation current make it easy to adapt the AD693 to a variety of load cells and strain gages. The circuit shown in Figure 18 illustrates a generalized approach in which the full flexibility of the AD693 is required to interface to a low resistance bridge. For a high impedance transducer the bridge can be directly powered from the 6.2V Reference.

Component values in this example have been selected to match the popular standard of 2mV/V sensitivity and 350Ω bridge resistance. Load cells are generally made for either tension and compression, or compression only; use of the 12mA zero tap allows for operation in the tension and compression mode. An optional zero adjustment is provided with values selected for $\pm 2\%$ FS adjustment range.

Because of the low resistance of most foil bridges, the excitation voltage must be low so as not to exceed the available 4mA zero current. About 1V is derived from the 6.2V Reference and an external voltage divider; the Aux-Amp is then used as a follower to make a stiff drive for the bridge. Similar applications with higher resistance sensors can use proportionally higher voltage.

Finally, to accommodate the 2mV/V sensitivity of the bridge, the full-scale span of the Signal Amplifier must be reduced. Using the load cell in both tension and compression with 1V of excitation, therefore, dictates that the span be adjusted to 4mV. By substituting in the expression, $R_{S1} = 400\Omega/[(30mV/S) - 1]$, the nominal resistance required to achieve this span is found to be 61.54 Ω . Calculate the minimum resistance required by subtracting 10% from 61.54 Ω to allow for the internal resistor tolerance of the AD693, leaving 55.38 Ω (See "Adjusting Input Span".) The standard value of 54.9 Ω is used with a 20 Ω potentiometer for full-scale adjustment.

If a load cell with a precalibrated sensitivity constant is to be used, the resultant full-scale span applied to the Signal Amplifier is found by multiplying that sensitivity by the excitation voltage. (In Figure 18, the excitation voltage is actually $(10k\Omega/62.3k\Omega)$ (6.2V) = 0.995V).

THERMOCOUPLE MEASUREMENTS

The AD693 can be used with several types of thermocouple inputs to provide a 4-20mA current loop output corresponding to a variety of measurement temperature ranges. Cold junction compensation (CJC) can be implemented using an AD592 or AD590 and a few external resistors as shown in Figure 19.

Figure 18. Utilizing the Auxiliary Amplifier to Drive A Load Cell, $12mA \pm 8mA$ Output

Figure 19. Thermocouple Inputs with Cold Junction Compensation

POLARITY	MATERIAL	туре	AMBIENT TEMP	RCOMP	RZ	30mV TEMP RANGE	60mV TEMP RANGE
+	IRON	J	25°	51.7Ω	301K	546°C	1035°C
	CONSTANTAN		75°	53.6Ω	294K	540 0	1055 G
+	NICKEL-CHROME		25°	40.2Ω	392K	72190	
_	NICKEL-ALUMINUM	к	75°	42.2Ω	374K	/210	-
+	NICKEL-CHROME	F	25°	60.4Ω	261K	41290	707%
-	COPPER-NICKEL	Е	75°	64.9Ω	243K	413 C	787 C
+	COPPER	т	25°	40.2Ω	392K	LICEWITT	
_	COPPER-NICKEL	1	75°	45.3Ω	340K	USE WIT	

Table II. Thermocouple Application – Cold Junction Compensation Table

From Table II simply choose the type of thermocouple and the appropriate average reference junction temperature to select values for R_{COMP} and R_Z . The CJC voltage is developed across R_{COMP} as a result of the AD592 1µA/K output and is added to the thermocouple loop voltage. The 50Ω potentiometer is biased by R_Z to provide the correct zero adjustment range appropriate for the divider and also translates the Kelvin scale of the AD592 to °Celsius. To calibrate the circuit, put the thermocouple in an ice bath (or use a thermocouple simulator set to 0) and adjust the potentiometer for a 4mA loop current.

The span of the circuit in °C is determined by matching the signal amplifier input voltage range to it's temperature equivalent via a set of thermocouple tables referenced to °C. For example, the output of a properly referenced type J thermocouple is 60mV when the hot junction is at $1035^{\circ}C$. Table II lists the maximum measurement temperature for several thermocouple types using the preadjusted 30mV and 60mV input ranges.

More convenient temperature ranges can be selected by determining the full-scale input voltages via standard thermocouple tables and adjusting the AD693 span. For example, suppose only a 300°C span is to be measured with a type K thermocouple. From a standard table, the thermocouple output is 12.207mV; since 60mV at the signal amplifier corresponds to a 16mA span at the output a gain of 5, or more precisely 60mV/12.207mV = 4.915 will be needed. Using a 12.207mV span in the gain resistor formula given in "Adjusting Input Span" yields a value of about 270 Ω as the minimum from P1 to 6.2V. Adding a 50 Ω potentiometer will allow ample adjustment range. With the connection illustrated, the AD693 will give a full-scale indication with an open thermocouple.

ERROR BUDGET ANALYSIS

Loop-Powered Operation specifications refer to parameters tested with the AD693 operating as a loop-powered transmitter. The specifications are valid for the preset spans of 30mV, 60mV and those spans in between. The section, "Components of Error", refers to parameters tested on the individual functional blocks, (Signal Amplifier, V/I Converter, Voltage Reference, and Auxiliary Amplifier). These can be used to get an indication of device performance when the AD693 is used in local power mode or when it is adjusted to spans of less than 30mV.

Table III lists the expressions required to calculate the total error. The AD693 is tested with a 250Ω load, a 24V loop supply and an input common-mode voltage of 3.1V. The expressions below calculate errors due to deviations from these nominal conditions.

The total error at zero consists only of offset errors. The total error at full scale consists of the offset errors plus the span errors. Adding the above errors in this manner may result in an error as large as 0.8% of full scale, however, as a rule, the AD693 performs better as the span and offset errors do not tend to add worst case. The specification "Total Unadjusted Error", (TUE), reflects this and gives the maximum error as a % of full scale for any point in the transfer function when the device is operated in one of its preset spans, with no external trims. The TUE is less than the error you would get by adding the span and offset errors worst case.

Thus, an alternative way of calculating the total error is to start with the TUE and add to it those errors that result from operation of the AD693 with a load resistance, loop supply voltage, or common-mode input voltage different than specified. (See Example 1 below.)

ERROR BUDGET FOR SPANS LESS THAN 30mV

An accommodation must be made to include the input voltage offset of the signal amplifier when the span is adjusted to less than 30mV. The TUE and the Zero Current Error include the input offset voltage contribution of the signal amplifier in a gain of 2. As the input offset voltage is multiplied by the gain of the signal amplifier, one must include the additional error when the signal amplifier is set to gains greater than 2.

For example, the 300 °K span thermocouple application discussed previously requires a 12.207mV input span; the signal amplifier must be adjusted to a gain of approximately 5. The loop transconductance is now 1.333 A/V, (5×0.2666 A/V). Calculate the total error by substituting the new values for the transconductance and span into the equations in Table III as was done in Example I. The error contribution due to V_{OS} is $5 \times V_{OS}$, however, since $2 \times V_{OS}$ is already included in the TUE and the Zero Current Error it is necessary to add an error of only $(5-2) \times V_{OS}$ to the error budget. Note that span error may by reduced to zero with the span trim, leaving only the offset and nonlinearity of the AD693.

RTI Contributions to Offset Error

	Lifor Source
IZE	Zero Current Error
PSRR	Power Supply Rejection Ratio
CMRR	Common-Mode Rejection Ratio
IOS	Input Offset Current

RTI Contributions to Span Error

	Error Source
۲ _{SE}	Transconductance Error
(PSRR	Transconductance PSRR ¹
CMRR	Transconductance CMRR
(_{NL}	Nonlinearity
DIFF	Differential Input Current ²

Abbreviation

Iz	Zero Current (usually 4mA)
Is	Output span (usually 16mA)
Rs	Input source impedance
R ₁	Load resistance
VLOOP	Loop supply voltage
VCM	Input common-mode voltage
VSPAN	Input span
Xs	Nominal transconductance in A/V

 $\begin{array}{l} \overset{Z_{ZE} \rightarrow s}{||V_{LOOP} - 24V|} + [|R_L - 250\Omega| \times I_Z]) \times PSRR \\ |V_{CM} - 3.1V| \times CMRR \\ R_S \times IOS \end{array}$

Expression for RTI Error at Zero

IZE/XS

Expression for RTI Error at Full Scale

 $\begin{array}{l} V_{SPAN} \times X_{SE} \\ |R_L - 250\Omega| \times I_S \times PSRR \\ |V_{CM} - 3.1V| \times V_{SPAN} \times X_{CMRR} \\ V_{SPAN} \times X_{NL} \\ R_S \times I_{DIFF} \end{array}$

¹The 4-20mA signal, flowing through the metering resistor, modulates the power supply voltage seen by the AD693. The change in voltage causes a power supply rejection error that varies with the output current, thus it appears as a span error.

²The mput bias current of the unvertung input increases with input signal voltage. The differential input current, I_{DIFF} , equals the inverting input current muous the noninvertung input current; see Figure 2. DiFFF, flowing into an input source inpedance, will cause an input voltage error that varies with signal. If the change in differential input current with input signal is approximated as a linear function, then any error due to source impedance may be approximated as a span error. To calculate I_{DIFF} , refer to Figure 2 and find the value for I_{DIFF}/H in corresponding to the full-scale input voltage for your application. Multiply by + In max to get I_{DIFF} . Multiply I_{DIFF} by the source impedance to get the input voltage error at full scale.

Table III. RTI Contributions to Span and Offset Error

EXAMPLE I

The AD693 is configured as a 4-20mA loop powered transmitter with a 60mV FS input. The inputs are driven by a differential voltage at 2V common mode with a 300 Ω balanced source resistance. A 24V loop supply is used with a 500 Ω metering resistance. (See Table IV below.)

Trimming the offset and span for your application will remove all span and offset errors except the nonlinearity of the AD693.

OFFSET ERRORS

OLISE	I LARONS		
Iz	Already included in the TUE spec.	0.0μV	
PSRR	$\begin{array}{l} PSRR=5.6\mu V/V; (24V-24V +[500\Omega-250\Omega \times 4mA])\times 5.6\mu V/V=\\ V_{LOOP}=24V\\ R_{L}=500\OmegaI_{Z}=4mA \end{array}$	5.6μV	
CMRR	$\begin{array}{l} CMRR = 30 \mu V/V ; 2V-3.1V \times 30 \mu V/V = \\ V_{CM} = 2V \end{array}$	33.0µV	
IOS	$IOS = 3nA, R_S = 300\Omega; 300\Omega \times 3nA =$	0.9µV	
Total A	dditional Error at 4mA		39.5μV
As% of	full scale; $(39.5 \mu V \times 0.2666 \text{ A/V})/20 \text{mA} \times 100\% =$	0.053% of FS	
SPAN E	RRORS		
X _{SE}	Already included in the TUE spec.	0.0µV	
X _{PSRR}	$\begin{array}{l} PSRR=5.6\mu V/V;(J500\Omega-250\Omega \times16mA)\times5.6\mu V/V=\\ R_{L}=500\Omega,I_{S}=16mA \end{array}$	22.4µV	
X _{CMRR}	$X_{CMRR} = 0.06\%/V; 2V - 3.1V \times 60mV \times 0.06\%/V = V_{CM} = 2V, V_{SPAN} = 60mV$	39.6µV	
I _{DIFF}	$\begin{split} V_{SPAN} &= +60mV;300\Omega\times2\times20nA\\ I_{DIFF}/+In=2\\ fromFigure2) \end{split}$	12.0µV	
X _{NL}	Already included in the TUE	0.0µV	
Total A	dditional Span Error at Full Scale		74.0μV
Total Ad As%of	$ \begin{array}{l} \text{Iditional Error at Full Scale; } \varepsilon_{OFFSET} + \varepsilon_{SPAN} = 39.5 \mu V + 74.0 \mu V = \\ \text{Full Scale; } (113.5 \mu V \times 0.2666 \text{ A/V})/20 \text{mA} \times 100\% = \\ \end{array} $	113.5µV 0.151% of FS	
New To	tal Unadjusted Error @ FS; $\epsilon_{TUE} + \epsilon_{ADDITIONAL} = 0.5\% + 0.151\% =$		0.651% of FS

Table IV. Example 1

Isolated, Loop-Powered Voltage-to-Current Converter

1**B**21

FEATURES

Wide Input Range: 0-1V to 0-10V High CMV Isolation: 1500V rms Programmable Output Ranges: 4mA to 20mA 0 to 20mA Load Resistance Range: 0 to 1.35kΩ max High Accuracy Low Offset Tempco: ±300nA/°C Low Gain Tempco: ±50ppm/°C Low Nonlinearity: ±0.02% High CMR: 90dB min Small Package: 0.7" × 2.1" × 0.35" Meets IEEE Std. 472: Transient Protection (SWC)

APPLICATIONS

Multichannel Process Control D/A Converter – Current Loop Interface Analog Transmitters and Controllers Remote Data Acquisition Systems

GENERAL DESCRIPTION

The 1B21 is an isolated voltage-to-current converter that incorporates a unique circuit design utilizing transformer based isolation and automated surface mount manufacturing technology. It provides an unbeatable combination of versatility and performance in a compact plastic package. Designed for industrial applications, it is especially suited for harsh environments with extremely high common-mode interference.

Functionally, the V/I converter consists of four basic sections: input conditioning, modulator, demodulator and current source (1B21 Functional Block Diagram). The input is a resistor programmable gain stage that accepts a 0-1V to 0-10V voltage input. This maps into a 0 to 20mA output or can be offset by 20% using the internal reference for 4mA to 20mA operation. The high level signal is modulated and passed across the barrier which provides complete input to output galvanic isolation of 1500V rms continuous by the use of transformer coupling techniques. Nonlinearity is an excellent $\pm 0.05\%$ max.

1B21 FUNCTIONAL BLOCK DIAGRAM

Designed for multichannel applications, the 1B21 requires an external loop supply and can accept up to 30V max. This would provide a loop compliance of 27V, which is sufficient to drive a $1.35 \text{k}\Omega$ load resistance.

The 1B21 is fully specified over -25° C to $+85^{\circ}$ C and operates over the industrial (-40° C to $+85^{\circ}$ C) temperature range.

DESIGN FEATURES AND USER BENEFITS

High CMV Isolation: The 1B21 features high input to output galvanic isolation to eliminate ground loops and offer protection against damage from transients and fault voltages. The isolation barrier will withstand continuous CMV of 1500V rms and meets the IEEE Standard for Transient Voltage Protection (Std. 472-SWC).

Small Size: The 1B21 package size $(0.7" \times 2.1"$ DIP) makes it an excellent choice in multichannel systems for maximum channel density. The 0.35" height also facilitates applications with limited board clearance.

Ease of Use: Complete isolated voltage-to-current conversion with minimum external parts required to get a conditioned current signal. No external buffers or drivers are required.

SPECIFICATIONS (typical at $+25^{\circ}$ C and V_s = $\pm 15V$ unless otherwise noted)

Modei	1B21AN	OUTLINE DIMENSIONS
INPUT SPECIFICATIONS	······································	Dimensions shown in inches and (mm).
Input Range	0 to + 10V	0.15/2.82.1
Full-Scale Input	+ 1V min to + 10V max	
Input Bias Current	$\pm 30 \text{pA} (\pm 400 \text{pA max})$	
OUTPUT SPECIFICATIONS		
Current Output Range	4mA to20mA, 0 to 20mA	(12.5) BOTTOM MAX) VIEW
Load Compliance at $V_{LOOP} = 30V$	27V min	
Max Output Current @ Input Overload	25mA	01 - 0 35 -
Output Noise, 100Hz Bandwidth	1μA p-p	2 10 (2 54) - - - 0 01 × 0 30 (8 9) - - 0 01 × 0 30 (8 9) - 0 25×0 51) MAX
NONLINEARITY (% of Span)	$\pm 0.02\%(\pm 0.05\% \text{ max})$	-
ISOLATION		AC1060 MATING SOCKET
CMV, Input to Output Continuous	1500V rms	2 600 1 0 200 /7 51
CMR, @ 60Hz	90dB min	2 350 (65 0) MAX
Transient Protection	IEEE-STD 472 (SWC)	
ACCURACY		
Warm-Up Time to Rated Performance	5 min	- · · · · · · · · · · · · · · · · · · ·
Total Output Error $(w + 25^{\circ}C (Untrimmed))$		│
Offset $(V_{IN} = 0V)^1$	$\pm 100 \mu A$	\0 10(2 5) DIA + +
$\text{Span}(V_{IN} = +10V)$	$\pm 0.6\%$ FSR	801HENDS 0 125 (3 1) TYP
vs. Temperature (-25° C to $+85^{\circ}$ C)		
Offset ²	$\pm 300 nA/^{\circ}C$	DIN DEGLONIA DIONO
Span	± 50ppm/°C	PIN DESIGNATIONS
REFERENCE OUTPUT		PIN FUNCTION
Voltage	+6.4V dc	
Output Error	$\pm 1.5\%$ max	17 IN
Temperature Coefficient	± 20 ppm/°C max	18 FB
DYNAMICRESPONSE		- 19 REF
Settling Time to 0.1% of F.S. for 10V Step	9ms	20 + 15V
Small Signal Bandwidth	100Hz	21 COM
POWER SUPPLY		- 22 – 15V
Input Side		38 OUTLOW
Operating Voltage	$\pm 15V \pm 5\%$	
Ouiescent Current		
+ 15V Supply	10mA	
- 15V Supply	5mA	/
Power Supply Rejection	$\pm 0.01\%/V$	
Loop Side		
Operating Voltage	+15V to +30V	
Maximum Current	25mA	
ENVIRONMENTAL		-
Temperature Range		
Rated Performance	-25° C to $+85^{\circ}$ C	
Operating	-40° C to $+85^{\circ}$ C	
Storage	40°C to + 85°C	
Relative Humidity, Noncondensing	$0 \text{ to } 95\% (\alpha + 60^{\circ}\text{C})$	
CASESIZE	0.7"×2.1"×0.35"	-
	$(17.8 \times 53.3 \times 8.9)$ mm	

NOTES

 10 For 0-20mA mode. For 4-20mA mode an additional 60µA is contributed by the \pm 1.5% reference error on the 4mA output. 2For a complete discussion of the temperature effects of the offset resistor and reference refer to "Using the 1B21" section. Specifications subject to change without notice.

INSIDE THE 1B21

Referring to the functional block diagram, the $\pm 15V$ power inputs provide power to both the input side circuitry and the power oscillator. The 25kHz power oscillator provides both the timing information for the signal modulator and drives transformer T2 for the output side power supplies. The secondary winding of T2 is full wave rectified and filtered to create the output side power.

The input stage is configured as an inverting amplifier with three user supplied resistors for gain, offset and feedback. The conditioned signal is modulated to generate a square wave with a peak-to-peak amplitude proportional to V_{IN} . This signal drives the signal transformer T1. An internal reference with a nominal output voltage of +6.4V and tempco of $\pm 20ppm/^{\circ}C$ is provided to develop a 4mA offset for 4mA to 20mA current loop applications.

After passing through signal transformer T1, the amplitude modulated signal is demodulated and filtered by a single pole filter. Timing information for the output side is derived from the power transformer T2. The filtered output provides the control signal for the voltage-to-current converter stage. An external power supply is required in series with the load to complete the current loop.

USING THE 1B21

Input Configurations: The 1B21 has been designed with a flexible input stage for a variety of input and output ranges. The basic interconnection for setting gain and offset is shown in Figure 1. The output of the internal amplifier is constrained to 0 to -5V, which maps into 0 to 20mA across the isolation barrier. Thus to create a 4mA offset at the output, the input amplifier has to be offset by 1V.

For example, for 0 to 20mA operation the transfer function for the input stage is:

 $5/V_{IN} = R_F/R_I$

and no offset resistor is needed. For 4mA to 20mA operation we get:

$$4/V_{IN} = R_F/R_I$$

which maps the input voltage into a 4V span. To create a 1V offset at the output of the internal amplifier (4mA at the output of the 1B21) a current derived from the reference can be fed into the summing node. The offset resistor (for a 1V output offset) will be given by the equation: $R_O = 6.4R_F$. For most applications it is recommended that R_F be in the 25k $\Omega \pm 20\%$ range. Resistor values for typical input and output ranges are shown in Table I.

Figure 1. Basic Interconnections

Input Volts	Output mA	R _I kΩ	R _F kΩ	R _O kΩ
0-5	0-20	25	25	Open
0-10	0-20	50	25	Open
0-5	4-20	25	20	128
0-10	4-20	50	20	128
1-5	4-20	25	25	Open

Table I. Resistor Values for Typical Ranges

Adjustments: Figure 2 is an example of using potentiometers for trimming gain and offset for a 0-5V input and 0 to 20mA output. The network for offset adjustment keeps the resistors relatively small to minimize noise effects while giving a sensitivity of $\pm 1\%$ of span. For more adjustment range, resistors smaller than 274k can be used. Resistor values from Table I can be substituted for other input and output ranges.

In general, any bipolar voltage can be input to the 1B21 as long as it is offset to meet the 0 to -5V constraint of the modulator and the input signal range is 1V minimum.

Figure 2. Offset and Span Adjustment

TC Considerations of External Resistors: The specifications for gain and offset temperature coefficient (TC) for the 1B21 exclude the effects of external components. The total gain TC for the circuit in Figure 1 is:

Gain TC = 1B21 Gain TC + (Tracking TC of R_{IF} and R_{I})

The offset TC is also affected by the thermal stability of the internal voltage reference and its contribution is:

Ref TC =
$$(V_{REF})(R_F/R_O)(4mA/V)(TC \text{ of } V_{REF} + Tracking TC \text{ of } R_F \text{ and } R_O)/1 \times 10^6$$

Total Offset TC = 1B21 Offset TC + Ref TC

Specifically using R_F , R_I and R_O from Case 3 in Table I, with absolute TCs of ± 25 ppm/°C we get:

Gain TC =
$$50 + (25+25) = 100ppm^{\circ}C$$

Offset TC = $300 + (6.4V)(20k/128k)(4mA/V)(20+25+25)/$
 1×10^{6}
= $\pm 580nA^{\circ}C$

Similarly, when using a resistor network with a tracking spec of \pm 5ppm/°C, the total gain TC would be \pm 55ppm/°C and the total offset TC would be \pm 400nA/°C.

APPLICATIONS

Output Protection: In many industrial applications it may be necessary to protect the current output from accidental shorts to ac line voltages in addition to high common-mode voltages and short circuits to ground. The circuit shown in Figure 3 can be used for this purpose. The maximum permissible load resistance will be lowered by the fuse resistance (typically $\$\Omega$) when protection circuitry is utilized.

Figure 3. Output Protection Circuitry

Low Drift Input Network: Figure 4 shows a configuration suitable for applications where errors have to be minimized over a wide temperature range. A temperature tracking network such as a 50k Beckman (PN 698-3R50KD) can be used to implement both offset and gain for either 0 to 20mA or 4mA to 20mA current loops. For 0-10V signals either IN1 or IN2 can be used for input. For 0-5V signals, jumper IN1 to IN2. Similarly, for 4mA to 20mA operation the 4mA node should be jumpered to OFFSET, while for 0 to 20mA it should be tied to COM.

Figure 4. Low Tempco Resistor Network Configuration

Multiloop Isolation: Multiple 1B21s can be connected to a single loop supply in parallel as shown in Figure 5. The amperage of the loop supply should be sufficient to drive all the loops at full-scale output.

Figure 5. Multiple IB21s with Single Loop Supply

Programmable, Isolated Voltage-to-Current Converter

1**B**22

FEATURES

Internal Isolated Loop Supply Drives 1000Ω Load Pin Programmable Inputs: 0-5V or 0-10V Pin Programmable Outputs: 4-20mA or 0-20mA High CMV Isolation: 1500V rms Normal-Mode Output Protection: 240V rms Wide Input Range: 0-1V to 0-10V High Accuracy Low Input Offset Tempco: ±300nA/°C

Low Gain Tempco: ±50ppm/°C Low Nonlinearity: ±0.02% High CMR: 90dB min Small Package: 1.0" × 2.1" × 0.35" Meets IEEE Std 472: Transient Protection (SWC)

APPLICATIONS

Multichannel Process Control D/A Converter – Current Loop Interface Analog Transmitters and Controllers Remote Data Acquisition Systems

GENERAL DESCRIPTION

The 1B22 is an isolated voltage-to-current converter that incorporates transformer isolation to achieve high performance and automated surface mount manufacturing for lower cost and increased reliability. Designed for industrial applications, it is especially suited for harsh environments with extremely high common-mode interference. With programmable inputs and outputs, the 1B22 provides an unbeatable combination of versatility and performance in a compact plastic package.

Functionally, the V/I converter consists of four basic sections: input conditioning, modulator/demodulator, isolated loop supply and current source (Figure 1). The input is pin programmable for 0-5V or 0-10V inputs and 0-20mA or 4-20mA outputs using an internal resistor network. It can also be set by an external resistor to accept 0-1V to 0-10V voltage inputs. Transformer coupling provides 1500V rms galvanic isolation between the inputs and the current loop. Nonlinearity is an excellent $\pm 0.05\%$ max.

Loop power is generated internally through a dc/dc converter and is also isolated from the input side (1500V rms). Loop compliance voltage is dependent on the voltage supplied to the

1B22 FUNCTIONAL BLOCK DIAGRAM

.1B22, and with $V_{LOOP} = 28V$, it is sufficient to drive a 1000 Ω Toad.

The 1B22 is fully specified over -25° C to $+85^{\circ}$ C and operates over the industrial (-40° C to $+85^{\circ}$ C) temperature range.

DESIGN FEATURES AND USER BENEFITS

Evolated Doop Power: Internal loop supply completely isolates the loop from the input terminals (1500V rms) and provides the capability to drive 0 to 1000 Ω loads. This eliminates the need for an external dc/dc converter.

Ease of Use: The 1B22 offers complete isolated voltage-to-current conversion with minimum external parts required to get a conditioned current signal. No external buffers or drivers are required.

High CMV Isolation: The 1B22 features high input to output galvanic isolation to eliminate ground loops and offer protection against damage from transients and fault voltages. The isolation barrier will withstand continuous CMV of 1500V rms and meets the IEEE Standard for Transient Voltage Protection (Std. 472-SWC).

Small Size: The 1B22 package size $(1.0" \times 2.1"$ DIP) makes it an excellent choice in multichannel systems for maximum channel density. The 0.35" height also facilitates applications with limited board clearance.

SPECIFICATIONS (typical $@+25^{\circ}C$ and $V_s = \pm 15V$ unless otherwise noted)

.

Model	1B22AN	
INPUT SPECIFICATIONS		
Factory Calibrated, User Selectable	0 to + 5V, 0 to + 10V	Di
Input Impedance		
0-10V input range	50kΩ	
0-5V input range	25kΩ	16 -
OUTPUT SPECIFICATIONS	(3.8	31)
Current Output Range, User Selectable	4 to 20mA, 0 to 20mA	· X
Load Compliance Range, $V_{LOOP} = +15V$	8V min	
$V_{LOOP} = +28V$	22V min 0	3
Maximum Output Current @ Input Overload	25mA TY	52) (P
Output Noise, 100Hz Bandwidth	1μAp-p	
NONLINEARITY (% OF SPAN)	$\pm 0.02\% (0.05\% \mathrm{max})$	
ISOLATION		
CMV, Input to Output Continuous	1500V rms	
CMR, @ 60Hz	90dB min	
Normal-Mode Output Protection	240V rms continuous	
Transient Protection	IEEE - STD 472 (SWC)	
ACCURACY	2	
Warm-Up Time to Rated Performance	Smin (2)	.1 54)
Total Output Error @ +25°C		/P
Offset $(V_{IN} = 0V)$	🛓 100μΑ	
$\text{Span}(V_{IN} = +10V)$	± 0,6% Full Scale max	1
vs. Temperature (-25 °C to +85°C)	(2.5	54)
Offset	± 300nA/℃	P
Span	±50ppm/°C	
DYNAMIC RESPONSE		
Settling Time to 0.1% of F.S. for 10V Step	TBD	
Small Signal Bandwidth	400Hz	
POWER SUPPLY		
Bipolar Input Supplies	ar an	
Operating Voltage	$\pm 15V \pm 5\%$	-
Quiescent Current	± 7.5 mA	
Power Supply Rejection	±0.001%/V	\vdash
Loop Supply		
Operating Voltage	+ 14V to + 30V	
Operating Current, at Full-Scale Output	30mA	
ENVIRONMENTAL		
Temperature Range		1
Rated Performance	-25° C to $+85^{\circ}$ C	
Operating	-40° C to $+85^{\circ}$ C	1
Storage	-40° C to $+85^{\circ}$ C	
Relative Humidity, Noncondensing	0 to 95% @ 60°C	1
CASE SIZE	1.0"×2.1"×0.35"	
		1

OUTLINE DIMENSIONS

imensions shown in inches and (mm).

PIN DESIGNATIONS

PIN	FUNCTION
1	OUTHI
16	IN2
17	IN1
18	S. NODE
19	4mA OFFSET
20	+ 15V
21	ANA COM
22	- 15V
23	SYNC
24	VLOOP
25	POWER COM
38	OUTLOW

NOTE

Specifications subject to change without notice.

Wide Bandwidth Strain Gage Signal Conditioner

1**B**31

FEATURES

Low Cost Complete Signal-Conditioning Solution Small Package: 28-Pin Double DIP Internal Half-Bridge Completion Resistors Remote Sensing High Accuracy

Low Drift: $\pm 0.25 \mu$ V/°C Low Noise: 0.3μ V p-p Low Nonlinearity: $\pm 0.005\%$ max High CMR: 140dB min (60Hz, G = 1000V/V) Programmable Bridge Excitation: +4V to +15V Adjustable Low Pass Filter: $f_c = 10Hz$ to 20kHz

APPLICATIONS

Measurement of: Strain, Torque, Force, Pressure Instrumentation: Indicators, Recorders, Controllers Data Acquisition Systems Microcomputer Analog I/O

GENERAL DESCRIPTION

Model 1B31 is a high performance strain gage signal-conditioning component that offers the industry's best price/performance solution for applications involving high-accuracy interface to strain gage transducers and load cells. Packaged in a 28-pin double DIP using hybrid technology, the 1B31 is a compact and highly reliable product. Functionally, the signal conditioner consists of three sections: a precision instrumentation amplifier, a two-pole low pass filter, and an adjustable transducer excitation.

The instrumentation amplifier (IA) section features low input offset drift of $\pm 0.25 \mu V/^{\circ}C$ (RTI, G = 1000V/V) and excellent nonlinearity of $\pm 0.005\%$ max. In addition, the IA exhibits low noise of $0.3\mu V$ p-p typ (0.1Hz-10Hz), and outstanding 140dB min common-mode rejection (G = 1000V/V, 60Hz). The gain is programmable from 2V/V up to 5000V/V by one external resistor.

The two-pole low pass filter offers a 40dB/decade roll-off from lkHz to reduce high frequency noise and improve system signalto-noise ratio. The corner frequency is adjustable downwards by external capacitors and upwards to 20kHz by three resistors. The output voltage can also be offset by $\pm 10V$ with an external potentiometer to null out dead weight.

The 1B31's regulated transducer excitation stage features low output drift ($\pm 0.004\%$ /°C typ) and can drive 120 Ω or higher resistance load cells. The excitation is preset at +10V and is adjustable from +4V and +15V. This section also has remote sensing capability to allow for lead-wire compensation in 6-wire bridge configurations. For half-bridge strain gages, a matched

1B31 FUNCTIONAL BLOCK DIAGRAM

pair of thin-film $20k\Omega$ resistors is connected across the excitation outputs. This assures temperature tracking of $\pm 5ppm/^{\circ}C$ max and reduces part count.

The 1B31 is available in a plastic package specified over the industrial $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$ temperature range and will be available soon in a bottom-brazed ceramic package specified over the military $(-55^{\circ}\text{C to} + 125^{\circ}\text{C})$ temperature range.

DESIGN FEATURES AND USER BENEFITS

Ease of Use: Direct transducer interface with minimum external parts required, convenient offset and span adjustment capability.

Half-Bridge Completion: Matched resistor pair tracking to \pm 5ppm/°C max for half-bridge strain gage applications.

Remote Sensing: Voltage drops across the excitation lead-wires are compensated by the regulated supply, making 6-wire load-cell interfacing straightforward.

Programmable Transducer Excitation: Excitation source preset for +10V dc operation without external components. Userprogrammable from a +4V to +15V dc to optimize transducer performance.

Adjustable Low Pass Filter: The two-pole active filter ($f_c = 1kHz$) reduces noise bandwidth and aliasing errors with provisions for external adjustment of cutoff frequency (10Hz to 20kHz).

11

SPECIFICATIONS (typical $@ + 25^{\circ}$ and $V_s = \pm 15^{\circ}$ unless otherwise noted)

9

10

11

12

13

14

INPUT OFFSET ADJ.

INPUT OFFSET ADJ

BANDWIDTH ADJ 1

BANDWIDTH AD.I 2

VOUT (FILTERED)

OUTPUT OFFSET ADJ

20 REFIN

EXCITATION ADJ.

SENSELOW

SENSE HIGH

V_{EXC}OUT

HALF-BRIDGE COMP.

21

25

26

27

28

Model	1B31AN	1B31SD†
BRIDGE EXCITATION		
Regulator Input Voltage Range	+9.5V to +28V	*
Output Voltage Range	+ 4V to + 15V	*
Regulator Input/Output Voltage Differential	+ 3V to + 24V	*
Output Current ⁵	100mA max	*
Regulation, Output Voltage vs. Supply	±0 05%/V	*
Load Regulation, $I_1 = 1mA$ to 50mA	±0.1%	*
Output Voltage vs. Temperature	±0.004%/°C	*
Output Noise, 10Hz to 1kHz6	200µV p-p	*
Reference Voltage (Internal)	$+6.8V \pm 5\%$	*
Internal Half-Bridge Completion		
Nominal Resistor Value	$20k\Omega \pm 1\%$	*
Temperature Tracking	± 5ppm/°C max	*
POWER SUPPLY		
Voltage, Rated Performance	± 15V dc	*
Voltage, Operating	± 12V to ± 18V dc	*
Current, Quiescent ⁷	+ 10mA	*
ENVIRONMENTAL		
Temperature Range		
Rated Performance	- 40°C to + 85°C	- 55°C to + 125°C
Operating	- 40°C to + 85°C	- 55°C to + 125°C
Storage	- 40°C to + 100°C	- 65°C to + 150°C
Relative Humidity	0 to 95% @ +60°C	*
CASESIZE	0 83"×1.64"×0.25"	0.81"×1 57"×0.23"
	(21 1×41.7×6 350mm) max	$(20.6 \times 40.0 \times 5.72 \text{mm})$

NOTES

Specifications same as 1B31AN

SD grade available in Spring 1988

Specifications referred to the filtered output at Pin 14 ²Exclusive of external gain settling resiste

³Unadjusted filter setting

⁴Filter cutoff frequency set with external capacitors

⁵Derate from + 50°C as shown in Figure 14

4 7μF capacitor from VREF IN (Pin 20) to COMM ⁷Excluding bridge excitation's current, and with no loading on the output

Specifications subject to change without notice

AC1222 MOUNTING CARD

AC1222 CONNECTOR DESIGNATION

PIN	FUNCTION	PIN	FUNCTION
PIN 1 2 3 4 5 6 7 8 9 10 11 12 10 11 12 10 11 12 10 11 12 10 11 12 10 11 12 10 10 10 10 10 10 10 10 10 10	+ INPUT - I	S T U V X Y Z	FUNCTION V_{Exc} OUT SENSE HIGH SENSE LOW MALF-BRIDGE COMP REFOUT REFIN REFIN EXC ADJ

The AC1222 mounting card is available for the 1B31. The AC1222 is an edge connector card with a 28-pin socket for plugging in the 1B31. In addition, it has provisions for installing the gain resistor and adjusting the bridge excitation voltage and cutoff frequency. Adjustment potentiometers for offset, fine gain and excitation are also provided. The AC1222 comes with a Cinch 251-22-30-160 (or equivalent) edge connector

APPLICATIONS

The 1B31 can be interfaced easily and directly to a wide variety of transducers for precise measurement of strain, torque, force and pressure. For applications in harsh industrial environments, such characteristics as high CMR, low noise and excellent temperature stability make the 1B31 unsurpassed for use in indicators, recorders and controllers.

The combination of low cost, small size and high performance of the 1B31 allows the system designer to use one conditioner per channel. The advantages include significantly lower system noise and high resolution, and elimination of crosstalk and aliasing errors.

FUNCTIONAL DESCRIPTION

Model 1B31 is based on a two-stage amplifier design and an adjustable voltage regulator section, as shown in Figure 1. The front end is a low noise, low drift, instrumentation amplifier (IA) that is optimized to amplify low level transducer signals (from 2mV full scale) riding on high common-mode voltage $(\pm 9.5V)$. The gain of the IA is programmed by a single resistor (1V/V to 2500V/V) and the input offset nulled out by an external potentiometer across the offset adjust Pins 9 and 10. The inverted signal $(V_{-INPUT} - V_{+INPUT})$ is brought out to Pin 8 for applications such as vibration and torque testing where the unfiltered output is required.

The signal is also fed to an inverting Butterworth filter with a fixed gain of -2V/V. This two-pole filter is preset with a 1kHz

Figure 1. Block Diagram and Pinout

corner frequency which can be adjusted downwards to 10Hz by using two external capacitors or upwards to 20kHz by three resistors. This stage also provides a convenient means of adjusting output offset voltage ($\pm\,10V)$ by connecting a $50k\Omega$ potentiometer to Pin 11.

The bridge excitation section is an adjustable output, regulated supply with an internally provided reference voltage (+6.8V). It is configured as a gain stage with the output preset at +10V. The excitation voltage is increased by connecting a resistor between Pins 21 and 26, and decreased by connecting a resistor between Pins 19 and 20. Sense lines are provided to compensate for lead-wire resistance by effectively bringing the leads into the feedback loop.

For half-bridge applications, two tracking thin-film resistors (20k Ω), \pm 5ppm/°C max) are connected from V_{EXC} OUT (Pin 28) to SENSE LOW (Pin 26).

OPERATING INSTRUCTIONS

Gain Setting: The differential gain, G, is determined by the equation:

$$G = 2 + \frac{80k\Omega}{R_G}$$

where R_G is connected between the GAIN terminals (Pins 3 and 4) of the IB31, as shown in Figure 2. For best performance, a low temperature coefficient (5ppm/°C) R_G is recommended. For fine span adjustment, a 50 Ω potentiometer may be connected in series with R_G .

Figure 2. Typical Application

Input Offset Adjustment: To null input offset voltage, an optional $10k\Omega$ potentiometer may be connected across the INPUT OFFSET ADJ. terminals (Pins 9 and 10 in Figure 2). With gain set at the desired value, connect both inputs (Pins 1 and 2) to COMMON (Pin 16), and adjust the $10k\Omega$ potentiometer for zero volts at Pin 14. For applications using software nulling, Pins 9 and 10 should be left unconnected.

Output Offset Adjustment: The output can be offset over the $\pm 10V$ range to compensate for dead load or bridge imbalance by using a $50k\Omega$ potentiometer connected to Pin 11 as shown in Figure 2. Pin 11 is normally grounded if output offsetting is not desired.

Filter Cutoff Frequency Programming: The low pass filter cutoff frequency is internally set at 1kHz. It may be decreased from 1kHz by the addition of two external capacitors connected as shown in Figure 3 (from Pin 12 to common and between Pins 13 and 14). The values of capacitors required for a desired cutoff frequency, f_C, below 1kHz are obtained by the equations below:

$$\begin{split} C_{SEL1} &= 0.015 \mu F \left[\frac{lkHz}{f_C} - l \right] \\ C_{SEL2} &= 0.0022 \mu F \left[\frac{lkHz}{f_C} - l \right] \end{split}$$

C_{SEL1} can be polarized for large values.

NOTE
USE 5ppm/°C GAIN RESISTOR FOR LOW GAIN TEMPCO

Figure 3. Narrow Bandwidth Application

The cutoff frequency may also be increased from 1kHz to 20kHz by the addition of three external resistors, connected as shown in Figure 4. The equations for determining the resistor values are:

$$\begin{split} R_{SEL1} &= 20 k \Omega / \left[\frac{f_C}{1 k H z} - 1 \right] \\ R_{SEL2} &= 16 k \Omega / \left[\frac{f_C}{1 k H z} - 1 \right] \\ R_{SEL3} &= 40 k \Omega / \left[\frac{f_C}{1 k H z} - 1 \right] \end{split}$$

NOTE • USE 5ppm/°C GAIN RESISTOR FOR LOW GAIN TEMPCO

Figure 4. Wide Bandwidth Application

Table I gives the nearest resistor and capacitor values for several common filter cutoff frequencies.

f _C (Hz)	C _{SELI} (µF)	$C_{SEL2}(\mu F)$	
10	1.5	0.2	
50	0.27	0.039	
100	0.15	0.02	
200	0.056	0.0082	
500	0.015	0.0022	
	$R_{SEL1}(k\Omega)$	$\mathbf{R}_{SEL2}(\mathbf{k}\Omega)$	$\mathbf{R}_{SEL3}(\mathbf{k}\Omega)$
2000	20	16.2	40.2
5000	4.99	4.12	10.0
10000	2.21	1.78	4.42
20000	1.05	0.866	2.21

Table I. Filter Cutoff Frequency vs. R_{SEL} and C_{SEL}

Note: The 25MHz gain bandwidth product of the IA should be considered in high-gain, wide bandwidth configurations.

Voltage Excitation Programming: The excitation voltage is preset to +10V. To increase V_{EXC} up to +15V a resistor must be connected between EXC. ADJ. and SENSE LOW (Pins 21 and 26) as shown in Figure 5. For a desired V_{EXC} the resistor value, R_{EXT}, is determined by the following equations:

$$\begin{split} R_{T} &= \frac{10k\Omega \times V_{REF \ OUT}}{V_{EXC} - V_{REF \ OUT}} \quad ; \quad V_{REF \ OUT} = +6.8V \\ R_{EXT} &= \frac{20k\Omega \times R_{T}}{20k\Omega - R_{T}} \end{split}$$

The +10V to +15V range can be covered by a 20k Ω potentiometer between the reference terminals.

Figure 5. Constant Voltage Excitation: +10V to +15V Range

To decrease V_{EXC} down to +4V, a resistor has to be connected between REF IN and REF OUT (Pins 19 and 20) as shown in Figure 6. The equations to determine the value of R_{EXT} are:

 $V_{REF IN} = 0.68 V_{EXC}$

$$R_{EXT} = 10k\Omega \left[\frac{V_{REF OUT}}{V_{REF IN}} - 1 \right]; V_{REF OUT} = +6.8V$$

A 20k Ω potentiometer between the REF IN and REF OUT pins will span the +4V to +10V excitation range. A $4.7\mu F$ tantalum capacitor from REF IN (Pin 20) to COMMON (Pin 16) is recommended in all cases to lower the voltage noise at the reference input.

Figure 6. Constant Voltage Excitation: +4V to +10V Range

The remote sensing inputs should be connected to the transducer separately from the excitation leads or jumpered as shown in Figure 2.

Power Supply Decoupling: The power supplies should be decoupled with 1µF tantalum and 1000pF ceramic capacitors as close to the 1B31 as possible (Figure 2).

Input Protection: The differential inputs of the 1B31 can be protected from accidental shorts to power line voltages (115V rms) by the circuit shown in Figure 7. The back-to-back diodes clamp the inputs to a maximum of $\pm 12.5V$ and were selected for low leakage current. The $15k\Omega$ resistors in series with the inputs will degrade the noise performance of the 1B31 to 4.2µV p-p in a bandwidth of 0.1Hz to 1kHz. For six-wire load cells in harsh environments the additional protection for the sense inputs shown in Figure 7 is recommended.

*30k 2W RESISTORS FOR 240V INPUT PROTECTION

Figure 7. 115V Input Protection for 1B31

PERFORMANCE CHARACTERISTICS

Input Offset Voltage Drift: Total offset voltage drift is composed of input and output drifts and is a function of gain. The 1B31 typically exhibits $\pm 0.25 \mu V/^{\circ}C$ RTI drift at a gain of 1000V/V over the full temperature range. The RTI voltage offset drift vs. gain is graphed in Figure 8.

Figure 8. Total Input Offset Drift vs. Gain

Low Pass Filter: The two pole Butterworth filter is a multiple feedback design with a gain of -2V/V. It is preset at a cutoff frequency of 1kHz (-3dB) with a 40dB/decade roll-off. The step response at 1kHz is 1.5ms settling time to 0.1% of final value with less than 5% overshoot. The frequency response of the filter is shown graphically in Figure 9.

Figure 9. Filter Amplitude Response vs. Frequency

Gain Nonlinearity and Noise: Gain Nonlinearity is specified as a percent of full-scale output, and for the 1B31 it is $\pm 0.005\%$ maximum over the full-gain range. The IA design also offers exceptionally quiet performance with typical input noise of $0.3\mu V$ p-p for a 10Hz bandwidth (Figure 10a) and $1\mu V$ p-p for a 1kHz bandwidth (Figure 10b).

a. Bandwidth = 0.1Hz to 10Hz

b. Bandwidth = 0.1Hz to 1kHz

Common-Mode Rejection: CMR as a function of gain and frequency is shown in Figure 11. The best results (140dB @ 60Hz) are obtained by programming the low pass filter with a 10Hz cutoff frequency, which contributes an additional 30dB to the 1kHz specification where 60Hz noise is not attenuated by the filter.

Figure 11. Common-Mode Rejection vs. Frequency and Gain

Turn On Drift: The input offset of the 1B31 stabilizes to within $1\mu V$ of final value in 5 minutes (Figure 12). The test conditions are: 350Ω bridge with +10V excitation and ambient temperature of $+25^{\circ}$ C.

Figure 12. Offset Voltage, RTI, Turn-On Drift

Bridge Excitation: The adjustable bridge excitation is specified over a wide regulator input voltage range (+9.5V to +28V). Maximum load current I_L as a function of regulator input-output differential voltage is shown in Figure 13. The maximum output current also depends on ambient temperature and above 50°C a derating factor should be derived from Figure 14.

Figure 13. Excitation Source Input – Output Voltage Differential vs. Load Current; Ambient Temperature ≤25°C.

APPLYING THE 1B31

Strain Measurement: The 1B31 is shown in a strain measurement system in Figure 15. A single active gage $(120\Omega, Gage Factor = 2)$ is used in a bridge configuration to detect fractional changes in gage resistance caused by strain. An equivalent resistance

Figure 14. Excitation Source Internal Power Dissipation vs. Temperature

dummy gage mounted adjacent to the active gage provides temperature compensation. The rest of the bridge is completed by the 1B31 internal half-bridge network which consists of two 20k Ω , 1% thin-film resistors tracking to within \pm 5ppm/°C max. Bridge excitation is set at +4V to avoid self-heating errors from the strain gage. System calibration produces a + 1V output for an input of 1000 microstrains. The filter cutoff frequency is set at approximately 100Hz.

Figure 15. Strain Gage Application Using Internal Half-Bridge

Pressure Transducer Inferface: A strain gage type pressure transducer (Dynisco 800 series) is interfaced to a 1B31 in Figure 16. Regulated excitation of +10V dc is provided for a 30mV full-scale output. The gain is sett at 333.3 to achieve a 0-10V output for a 0-10,000 psi range of the transducer. A shunt calibration resistor is built into the transducer for easy verification of the 80% point of its full-scale output. A typical shielding scheme to preserve the excellent performance characteristics of the 1B31 is also shown. To avoid ground loops, signal return or cable shield should be grounded only at one point.

Figure 16. Pressure Transducer Application

Multiple Load-Cells: For transducer configurations where the maximum load current of 100mA of the 1B31 is not sufficient, a buffer and a power transistor such as a TIP31 can be used as shown in Figure 17. This design can supply 300mA at +10V excitation over the full industrial temperature range ($-25^{\circ}C$ to $+85^{\circ}C$). In a multiple 1B31 system an added advantage is that ratiometric operation can be preserved by using one excitation source which also serves as the reference voltage for the system A/D converter.

Figure 17. Multiple Load-Cell Application

Mobile Transducer Application: The small size and reliability of the 1B31 make it an ideal choice for mobile applications. Since the 1B31 requires a negative supply, one possible solution for its generation is shown in Figure 18. The positive voltage of a + 12V battery is used to drive a CMOS TLC555 oscillator with a typical supply current of 360µA. The output is a square wave that is rectified by the diodes and filtered to provide a -9V supply. Excitation voltage should be equal to or less than +9V for adequate headroom for the 1B31 voltage regulator.

Pressure Transducer Data Acquisition System: Figure 19 shows a two module solution for microcomputer based data acquisition using a 1B31 and an AD1170 18-bit A/D converter. A 3mV/V pressure transducer (e.g. Dynisco 800 series) is interfaced to a 1B31 set up with a gain of 333.3 to give a 0 – 5V output. The regulated excitation is +5V, and for ratiometric operation it is also used as the voltage reference input for the AD1170. An initial ECAL command establishes the voltage excitation as the full-scale input of the AD1170 and periodic calibration cycles keep the converter tracking the reference input. This configuration yields very high CMR (168dB @ 60Hz) enhanced by the 1B31 low pass filter and the integrating conversion scheme of the

Figure 18. Negative Supply Generation for 1B31

AD1170. In addition, fixed offsets caused by bridge imbalance can be nulled out by the AD1170 with a power-up initialization command from the microcomputer. This eliminates a potentiometer or software overhead which might otherwise be needed.

Figure 19. Pressure Transducer Data Acquisition Using 1B31 and AD1170

Isolated Current Loop Interface: The output of the 1B31 can be interfaced to a process loop as shown in Figure 20. The 2B23 module produces an isolated 4-to-20mA output current which is proportional to the input voltage and independent of the output load resistance. Common-mode input/output isolation is \pm 1500V pk continuous.

Figure 20. Isolated 4-20mA Transmitter

Bridge Transducer Signal Conditioner

1**B**32

FEATURES

Low Cost Complete Signal-Conditioning Solution Small Package: 28-Pin Double DIP Internal Thin-Film Gain Network High Accuracy Low Input Offset Tempco: ±0.07µV/°C Low Gain Tempco: ±2ppm/°C Low Nonlinearity: ±0.005% max High CMR: 140dB min (60Hz, G = 1000V/V) Programmable Bridge Excitation: +4V to +15V Remote Sensing Low Pass Filter (f_c=4Hz)

APPLICATIONS

Weigh Scales Instrumentation: Indicators, Recorders, Controllers Data Acquisition Systems Microcomputer Analog I/O

GENERAL DESCRIPTION

Model 1B32 is a precision, chopper-based, signal-conditioning component ideally suited for high-accuracy applications of load cells and bridge transducers. Packaged in a compact 28-pin plastic double DIP, the 1B32 takes advantage of hybrid technology for high reliability as well as higher channel density. Functionally, the signal conditioner consists of three basic parts: a high performance chopper-based amplifier, a low-pass filter and an adjustable transducer excitation source.

The chopper-based amplifier features extremely low input offset tempco of $\pm 0.07 \mu V/^{\circ}C$ (RTI, G = 500V/V) and excellent nonlinearity of $\pm 0.005\%$ max over its full gain range of 100 to 5000V/V. The 1B32 has a thin-film resistor network for pinstrapping the gain to 500V/V or 333.3V/V (for 2mV/V and 3mV/V load cells). The gain tempco for these fixed gains is a highly stable $\pm 2ppm/^{\circ}C$. Additionally, the gain can be set to any value in the gain range with two external resistors. The amplifier also has a wide-range input referred zero suppression capability ($\pm 10V$), which can easily be interfaced to a D/A converter. The bandwidth of the chopper is 4Hz at G = 100V/V.

The integral three-pole, low-pass filter offers a 60dB/decade rolloff from 4Hz to reduce common-mode noise and improve system signal-to-noise ratio.

The 1B32's regulated transducer excitation stage features low output drift (\pm 40ppm/°C typ) and can drive 120 Ω or higher resistance load cells. The excitation is preset at + 10V with other voltages between +4V and + 15V programmable with external resistors. This section also has remote sensing capability to allow for lead-wire compensation in 6-wire load cells and other bridge configurations.

1B32 FUNCTIONAL BLOCK DIAGRAM

The 1B32 is fully specified over the industrial $(-25^{\circ}C \text{ to } + 85^{\circ}C)$ temperature range.

DESIGN FEATURES AND USER BENEFITS

Pin-Strappable Gain: The internal resistor network can be pinstrapped for gains of 500V/V and 333.3V/V for 2mV/V and 3mV/V load cells. The tracking network guarantees a gain tempco of ± 6 ppm/°C max.

Custom Trimmable Network: For volume applications, the 1B32 can be supplied with a custom laser trimmed gain network. Contact factory for further information.

Wide Range Zero Suppression: The output can be offset by $\pm 10V$ for nulling out a dead load or to do a tare adjustment.

Remote Sensing: Voltage drops across the excitation lead-wires are compensated by the regulated supply, making 6-wire load-cell interfacing straightforward.

Programmable Transducer Excitation: The excitation source is preset for +10V dc operation without external components. It is user-programmable for a +4V to +15V dc range (@ 100mA) to optimize transducer performance.

Low-Pass Filter: The three-pole active filter ($f_C=4Hz$) reduces 60Hz line noise and improves system signal-to-noise ratio.

$\label{eq:specifications} SPECIFICATIONS \mbox{(typical @ +25 \mbox{ cm} and V_s = \pm 15 \mbox{ unless otherwise noted)}}$

Model	1B32AN
GAIN	
Gain Range	100V/V to 5000V/V
Internal Gain Setting	333.3V/V and 500V/V
Gain Equation	$1 \pm \frac{R_F}{R_F}$
Gam Equation	R _I
Gain Equation Accuracy ¹	±0.1%
Gain Temperature Coefficient ²	$\pm 2ppm/^{\circ}C(\pm 6ppm/^{\circ}Cmax)$
Gain Nonlinearity	$\pm 0.005\%$ max
OFFSET VOLTAGES	
Total Offset Voltage, RTI	
Initial, $@ + 25^{\circ}C, G = 1000V/V$	$\pm 40 \mu V$
Warm-Up Drift, G = 1000V/V, 10 min	Within $\pm 1\mu V$
vs. Temperature $(-25^{\circ}C \text{ to } + 85^{\circ}C)$	
$\mathbf{G} = 1000 \mathrm{V/V}$	$\pm 0.07 \mu V/^{\circ}C(\pm 0.2 \mu V/^{\circ}C \max)$
At Other Caine	+(0.06+15)
At Other Gains	$\pm (0.06 \pm \overline{G}) \mu V \approx C$
Output Offset Adjust Range	± 10V
INPUT BIAS CURRENT	
Initial @25°C	± 3nA
vs. Temperature $(-25^{\circ}C \text{ to } + 85^{\circ}C)$	± 50pA/°C
INPUT DIFFERENCE CURRENT	
Initial @ +25°C	±3nA
vs. Temperature (-25° C to $+85^{\circ}$ C)	±10pA/°C
INPUT RESISTANCE	
Differential	100ΜΩ
Common Mode	100ΜΩ
INPUT VOL TAGE RANGE	······································
Linear Differential Input	+0.1V
Maximum Differential Input	± 0.1 V + 5V
CMV Input Range	0 to ± 7.5 V
CMR, $1k\Omega$ Source Imbalance ³	
G = 100V/V to $5000V/V$ @ dc	86dB
G = 100V/V, @ 60Hz	120dB
G = 1000V/V, @ 60Hz	140dB min
INPUT NOISE	
Voltage $G = 1000 V/V$	
0.1Hz to 10 Hz	luVp-p
Current, $G = 1000V/V$	1#4.5.5
0.1Hz to 10Hz	ЗрАр-р
RATEDOUTPUT	
Voltage, 2kQL oad, min	+ 10V
Current	± 5mA
Impedance, dc to $2Hz$, G = $100V/V$	0.60
Load Capacitance	500pF
Output Short Circuit Duration (to Ground)	Indefinite
DYNAMIC RESPONSE	
Small Signal Bandwidth	x
-3dB Gain Accuracy, G = 100V/V	4Hz
G = 1000 V/V	3.5Hz
Slew Rate	20V/sec
Full Power	0.5Hz
Settling Time, $G = 100V/V$, $\pm 10V$ Output	2sec
Step to $\pm 0.1\%$	
LOW PASS FILTER	
Number of Poles	3
Cutoff Frequency (- 3dB Point)	4Hz
Roll-Off	60dB/decade

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

PIN DESIGNATIONS

PIN	FUNCTION	PIN	FUNCTION
1	+INPUT	15	-Vs
2	- INPUT	16	COMM
3	INPUT OFFSET ADJ	17	+Vs
4	NC	18	+ V _S REG
5	NC	19	REFOUT
6	NC	20	REFIN
7	NC	21	EXC ADJ
8	SIGNAL COMM	22	NC
9	EXT GAIN SET	23	NC
10	333.3 GAIN	24	NC
11	500 GAIN	25	NC
12	GAIN SENSE	26	SENSE LOW
13	GAIN COMM	27	SENSE HIGH
14	Vout	28	V _{EXC} OUT

(Continued on next page)

BRIDGE EXCITATION	
Regulator Input Voltage Range	+ 9.5V to + 28V
Output Voltage Range	+ 4V to + 15V
Regulator Input/Output Voltage Differential	+ 3V to + 24V
Output Current ⁴	100mA max
Regulation, Output Voltage vs. Supply	±0.05%/V
Load Regulation, $I_L = 1mA$ to 50mA	±0.1%
Output Voltage vs. Temperature (-25°C to +85°C)	±40ppm/°C
Output Noise, 0.1Hz to 10Hz ⁵	300µV p-p
Reference Voltage (Internal)	$+6.8V \pm 5\%$
Sense & Excitation Lead Resistance	$10\Omega \max$
POWER SUPPLY	
Voltage, Rated Performance	± 15V dc
Voltage, Operating	$\pm 12V$ to $\pm 18V$ dc
Current, Quiescent ⁶	+4mA, -1mA
ENVIRONMENTAL	
Temperature Range	
Rated Performance	- 25°C to + 85°C
Operating	-40°C to +85°C
Storage	-40°C to +100°C
Relative Humidity	0 to 95%, Noncondensing, @ +60°C
CASESIZE	0.83"×1.64"×0.25"
	(21.1×41.7×6.35mm) max

1**B**32AN

Model

NOTES ¹Using internal network for gain.

²For pin-strapped gain. The tempco of the individual thin-film resistors is ± 50ppm/°C max.

³3V p-p 60Hz common-mode signal used in test setup.

⁴Derate 2mA/°C from + 50°C.

⁵4.7µF capacitor from REF IN (Pin 20) to COMM.

⁶Excluding bridge excitation current and with no loading on the output.

Specifications subject to change without notice.

AC1224 Connector Designation

PIN	FUNCTION	PIN	FUNCTION
Т	V _{EXC} OUT	1	+INPUT
U	SENSE HIGH	2	-INPUT
v	SENSELOW	12	Vout
x	REFOUT	19	-Vs
Y	REFIN	20	COMM
z	EXC ADJ	21	+Vs
		22	+V _s REG
			-

The AC1224 mounting card is available for the 1B32. The AC1224 is an edge connector card with a socket for plugging in the 1B32. In addition it has provisions for switch selecting internal gains as well as installing gain resistors. Adjustment pots for offset, fine gain and excitation are also provided. The AC1224 comes with a Cinch 251-22-30-160 (or equivalent) edge connector.

FUNCTIONAL DESCRIPTION

Model 1B32 is based on a switched capacitor, chopper stabilized amplifier followed by an active filter and an adjustable voltage regulator section for excitation. The ultralow drift chopper samples the difference between the + INPUT and -INPUT at 190Hz. The signal is modulated, amplified and then demodulated. This stage introduces a pole with a 20dB/decade rolloff from 4Hz. The high-level signal is then filtered by a two-pole active filter with a 4Hz cutoff frequency to give a \pm 10V output. The clock signal for the chopper is generated by an on-board oscillator.

As shown in Figure 1, the gain can be pin-strapped by an internal resistor network. Standard gains of 333.3 and 500 can be achieved by this method with gain tempco of $\pm 6ppm/^{\circ}C$ max. Finally, the offset adjust of the amplifier is input referred, and requires a voltage input similar to the differential input voltage to implement wide range suppression.

The bridge excitation section is an adjustable ouput, regulated supply with an internally provided reference voltage (+6.8V). It is configured as a gain stage with the output preset at +10V. The excitation voltage is increased by connecting a resistor between Pins 19 and 20. Sense lines are provided to compensate for lead-wire resistance by bringing the leads into the feedback loop.

Figure 1. 1B32 Block Diagram and Pinout

OPERATING INSTRUCTIONS

Gain Setting: The differential gain of the 1B32 can be either pin-strapped or programmed externally with two resistors. The internal thin-film gain network (Figure 1) provides gains of 500 and 333.3 for standard load-cell sensitivities of 2mV/V and 3mV/V. This is achieved by connecting GAIN SENSE (Pin 12) to GAIN COMM (Pin 13) and grounding Pin 10 or Pin 11 (Figure 2). The gain tempco using the internal network is an excellent $\pm 2ppm/^{\circ}C$ typ ($\pm 6ppm/^{\circ}C$ max).

To program the gain externally, two resistors are connected as shown in Figure 3. The gain equation is:

$$G = 1 + \frac{R_F}{R_I}$$

The gain-strapping Pins (11 and 12) and GAIN SENSE (Pin 12) are left unconnected, effectively floating the internal network.

Figure 2. Internal Gain Strapping

Figure 3. External Gain Setting

Offset Adjustment: The input-referred offset adjust has the same sensitivity as the inputs of the 1B32. The voltage level at INPUT OFFSET ADJ (Pin 3) is gained by the same factor as the input signal to provide a $\pm 10V$ output adjust. Figure 2 shows an external network and potentiometer set up for a ± 7.5 mV span at the input, which gives a $\pm 2.5V$ (7.5mV $\times 333.3$) output adjust capability. Wider ranges can be chosen with the appropriate resistor and potentiometer values.

Note: If offset adjustment is not required, Pin 3 must be grounded.

Voltage Excitation Programming: The excitation voltage is preset to +10V. To increase V_{EXC} up to +15V a resistor must be connected between EXC ADJ and SENSE LOW (Pins 21 and 26) as shown in Figure 4.

The V_S (REG) input (Pin 18) must be raised to +18V to satisfy the +3V min input-output voltage differential of the regulator. Consult the Performance Characteristics section for safe operating conditions of the regulator. For a desired V_{EXC} the resistor value, R_{EXT} , is determined by the following equations:

$$R_{T} = \frac{10k\Omega \times V_{REF OUT}}{V_{EXC} - V_{REF OUT}} ; V_{REF OUT} = +6.8V$$
$$R_{EXT} = \frac{20k\Omega \times R_{T}}{20k\Omega - R_{T}}$$

The +10V to +15V range can be covered by a 20k Ω potentiometer between REF IN (Pin 20) and REF OUT (Pin 19). R_{EXT} of

Figure 4. Constant Voltage Excitation: +10V to +15V Range.

 $200k\Omega$ is recommended for fine adjustment at +10V excitation voltage.

Similarly to decrease V_{EXC} down to +4V, connect a 200k Ω resistor and a 20k Ω potentiometer between Pins 19 and 20, between SENSE LOW and EXC ADJ (Pins 26 and 21), as shown in Figure 5.

Figure 5. Constant Voltage Excitation: +4 to +10V Range

A 4.7μ F tantalum capacitor from REF IN (Pin 20) to COMMON (16) is recommended in all cases to lower the voltage noise at the reference input.

The remote sensing inputs should be connected to the transducer separately from the excitation leads or jumpered as shown in Figure 2. The resistance of the excitation and sense lines should not exceed 10Ω .

Power Supply: The V_S REG input (Pin 18) should be connected to $+V_S$ (Pin 17) even if the bridge excitation section is not used. Also the power supplies should be decoupled with 1µF tantalum and 1000pF ceramic capacitors as close to the 1B32 as possible (Figure 2).

Input Protection: The 1B32 differential inputs can be protected from accidental shorts to power line voltages (115V rms) by the circuit shown in Figure 6. The back-to-back diodes clamp the inputs to a maximum of $\pm 12.5V$ and were selected for low leakage current. The 15k Ω resistors in series with the inputs will degrade the noise performance of the 1B32 to $4\mu V$ p-p (0.1Hz to 10Hz). When interfacing with six-wire load cells in harsh environments, input protection for the sense inputs is also recommended (Figure 6).

Figure 6. 115V Input Protection

PERFORMANCE CHARACTERISTICS

Input Offset Voltage Drift: The chopper front end of the 1B32 gives it excellent input offset stability. As shown in Figure 7, it typically exhibits drift of $\pm 0.07 \mu$ V/°C RTI at a gain of 1000V/V ($\pm 75 \mu$ V/°C RTO). The measurement is two-point, and is taken at -25° C and $+85^{\circ}$ C, which covers the specified temperature range of the 1B32.

Figure 7. Total Output Offset Drift vs. Gain

Figure 8. Common-Mode Rejection vs. Frequency

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-49

Figure 9. Voltage Noise, 0.1Hz to 10Hz, G = 1000

Common-Mode Rejection: CMR as a function of frequency is shown in Figure 8. Test conditions are a 3V p-p common-mode signal and $1k\Omega$ source imbalance. The CMR improves with increasing gain. Note that the 4Hz filter enhances the CMR performance above the corner frequency by attenuating the normal-mode signal at 60dB/decade.

Gain Nonlinearity and Noise: Gain Nonlinearity is specified as a percent of full-scale output, and for the 1B32 it is $\pm 0.005\%$ max over the full span. The chopper design also offers exceptional low-noise performance, with typical input noise of $1\mu V$ p-p in the 0.1Hz to 10Hz bandwidth (Figure 9).

Low-Pass Filter: The 1B32 has three poles at 4Hz in its design. One is introduced in the amplifier, while the other two are provided by an active Butterworth filter following the amplifier. Total roll-off is 60dB/decade from 4Hz. The frequency response of the filter is shown in Figure 10.

Figure 10. Filter Amplitude Response vs. Frequency, G = 500

Turn-On Drift: The 1B32 offset voltage stabilizes to within $1\mu V$ of its final value in 10 minutes (Figure 11). The test conditions are: 350Ω bridge with a + 10V excitation and ambient temperature of + 25°C.

Figure 11. Offset voltage RTI, Turn-On Drift

Bridge Excitation: The adjustable bridge excitation is specified over a wide regulator input voltage range (+9.5V to +28V). Maximum load current I_L as a function of regulator input-output differential voltage is shown in Figure 12. The maximum output current also depends on ambient temperature, and above +50°C a derating factor of 2mA/°C must be applied. The safe operating region for internal power dissipation vs. temperature is graphed in Figure 13.

Figure 12. Excitation Source Load Current vs. Input-Output Voltage Differential, $\leq 25^{\circ}C$

Figure 13. Excitation Source Internal Power Dissipation vs. Temperature

APPLYING THE 1B32

Pressure Transducer Interface: A strain gage type pressure transducer (Dynisco 800 series) is interfaced to a 1B32 in Figure 14. Regulated excitation of +10V dc is provided for a 30mV full-scale output for a 0-10,000 psi range of the transducer. A shunt calibration resistor is built into the transducer for easy verification of the 80% point of its full-scale output. A typical shielding scheme to preserve the excellent performance characteristics of the 1B32 is also shown. To avoid ground loops, signal return and cable shield should be grounded only at one point.

Figure 14. Pressure Transducer Interface

Pressure Transducer Data Acquisition System: A two module solution for microcomputer based data acquisition using a 1B32 and an AD1170 18-bit A/D converter is shown in Figure 15. A 3mV/V pressure transducer (e.g. Dynisco 800 series) is interfaced to a 1B32 configured with a gain of 333.3, to provide a 0 to 5V output. The regulated excitation is +5V, and is used as the reference input for the AD1170 to produce ratiometric operation.

This configuration yields very high CMR enhanced by the 1B32 low pass filter and the integrating conversion scheme of the AD1170.

Figure 15. Auto-Calibrating Data Acquisition Using 1832 and AD1170

In addition, fixed offsets caused by bridge imbalance can be nulled out by the AD1170 with a power-up initialization command from the microcomputer. The full-scale output of the 1B32 and transducer can be normalized to the AD1170 full scale through the electronic calibration command ECAL. Both the offset and full-scale correction data will then be stored in nonvolatile memory to eliminate the need for the trim process after each power-up. The AD1170 eliminates a potentiometer or software overhead which might otherwise be needed for these functions.

Multiple Load-Cells: For transducer configurations where the maximum load current of the 1B32 is not sufficient, a buffer and a power transistor such as a TIP31 can be used as shown in Figure 16. This approach will supply 300mA at +10V excitation over $-25^{\circ}C$ to $+85^{\circ}C$ temperature range. In a multiple 1B32 system an added advantage is that ratiometric operation can be preserved by using the excitation voltage as the reference for the system A/D converter.

Figure 16. Multiple Load-Cell Application

Mobile Transducer Applications: The small size and reliability of the 1B32 make it an excellent choice for mobile applications. Since the 1B32 requires bipolar supplies, a possible circuit to provide the negative voltage is shown in Figure 17. The CMOS TLC555 is powered by a + 12V battery, and typically draws 360µA. The output is a square wave that is rectified by the diodes and filtered to provide a -9V supply. Excitation voltage should be equal to or less than +9V for adequate headroom for the 1B32 voltage regulator. Note that the 1B32 will operate with \pm 9V supplies as long as the excitation voltage and the output range are less than 5V.

Figure 17. Negative Supply Generation for 1B32

1B32 as shown in Figure 18. The DAC is configured for unipolar
operation with an AD OP-07 generating a voltage output. This
0-10V output is attenuated by R1 and RSEL and superposed on
another fixed voltage derived from V _{EXC} . Thus the voltage at
Pin 3 (INPUT OFFSET ADJUST) is insensitive to the tempco
of the excitation voltage since it is also used as the reference of
the DAC. For best performance R_1 and R_2 should track to
\pm 5ppm/°C. As an example, a \pm 5V output adjustment can be
obtained by using $R_{SEL} = 200\Omega$ for G = 500 and $V_{EXC} =$
10V.

Digital Output Offset Adjust: A 10-bit multiplying DAC such

as the AD7533 can be used to control the output offset of the

Figure 18. Output Offset Adjust Using a 10-Bit DAC

DIGITAL MSB	. INPUT LSB	ANALOG OUTPUT (E _O as shown in Figure 18)
111111	11111	$-\mathbf{V_{REF}}\left(\frac{1023}{1024}\right)$
100000	0001	$-\mathbf{V}_{\mathbf{REF}}\left(\frac{513}{1024}\right)$
100000	0000	$-\mathbf{V}_{\mathbf{REF}}\left(\frac{512}{1024}\right) = \frac{\mathbf{V}_{\mathbf{REF}}}{2}$
011111	1111	$-\mathbf{V}_{\mathbf{REF}}\left(\frac{511}{1024}\right)$
000000	0001	$-\mathbf{V}_{\mathbf{REF}}\left(\frac{1}{1024}\right)$
000000	0000	$-\mathbf{V}_{\mathbf{REF}}\left(\frac{0}{1024}\right) = 0$

Table I. Unipolar Binary Code Table

Isolated RTD Signal Conditioner

1**B**41

FEATURES

Complete RTD Signal Conditioning Solution Resistor Programmable Linearization High CMV Isolation: 1500V rms Continuous High Accuracy Low Input Offset Tempco: ±1V/C Low Gain Tempco: ±50ppm/°C Low Nonlinearity: ±0.01% High CMR: 160dB (60Hz, G = 1000V/V)

Small Package: $1.0'' \times 2.1'' \times 0.35''$ DIP Low Pass Filter ($f_c = 3Hz$)

Pin Compatible with 1B51 Isolated mV/Thermocouple Conditioner

APPLICATIONS

Multichannel RTD Temperature Measurement Industrial Measurement and Control Systems Data Acquisition Systems

GENERAL DESCRIPTION

The 1B41 is a precision, isolated, RTD signal conditioner that incorporates a circuit design utilizing transformer based isolation and automated surface mount manufacturing rechnology. It provides an unbeatable combination of versatility and performance in a compact plastic package. Designed for measurement and control applications, it is especially suited for harsh environments with extremely high common-mode interference. Unlike expensive solutions that require separate dc/dc converters, each 1B41 generates its own floating current excitation, providing true fowcost channel-to-channel isolation.

Functionally, the signal conditioner consists of five basic sections: chopper stabilized amplifier, dc/dc converter, signal isolation, RTD current excitation and output filter. The amplifier section features user selectable gains from 10 to 1000 with a gain tempco of \pm 50ppm/°C. Wide-range zero suppression and low input offset drift of 1µV/°C are accomplished by chopper stabilization.

The isolation section has complete input to output galvanic isolation of 1500V rms continuous by the use of transformer coupling techniques. Nonlinearity is an excellent $\pm 0.01\%$ which meets the demands of 12-bit systems.

A stable sensor excitation provides 0.25mA for most RTD applications. For nickel and platinum RTDs the excitation is compensated to provide an output that is linear with temperature.

The linearizing curvature can be set positive or negative by pinstrapping the 1B41. Filtering at 3Hz is implemented by a passive anti-attasing filter at the input and a two-pole active filter at the output. Overall NMR is 60dB and CMR is 160dB min @ 60Hz.

The 1B4 to fully specified over -25° C to $+85^{\circ}$ C and operates over the industrial (-40° C to $+85^{\circ}$ C) temperature range.

DESIGN FEATURES AND USER BENEFITS

Ease of Use: The IB41 has direct RTD interface with minimum external parts required to get a high-level, conditioned signal.

High Noise Rejection: The combination of a chopper stabilized front end with a low pass filter provides high system accuracy in harsh industrial environments as well as good rejection of 50/60Hz noise.

Small Size: The 1B41 package size $(1.0'' \times 2.1'' \times 0.35'')$ and functional completeness makes it an excellent choice in systems with limited board space and clearance.

Wide Range Zero Suppression: This input referred function is a convenient way to null large input offsets.

Low Pass Filter: The three-pole active filter ($f_C = 3Hz$) reduces 50/60Hz noise and aliasing errors.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $+15^{\circ}$ V unless otherwise noted)

Model	1B41AN	OUTLINE DIMENSIONS
GAIN Gain Equation	$\left(1 + \frac{\mathbf{R}_{FB}}{\mathbf{R}_{G}}\right) \times 4$	Dimensions shown in inches and (mm).
Gain Error Gain Temperature Coefficient Gain Nonlinearity	± 1% ± 50ppm/°C ± 0.01% max	0.15 (3.81) (3.81) (3.81) (3.81)
OFFSET VOLTAGES Total Offset Voltage, Referred to Input Initial, (w + 25°C (Adjustable to Zero) vs. Temperature vs. Time, Noncumulative	± 500 μV max ± 1 μV/°C ± 1 μV/month max	$\begin{array}{c c} MAX & & & & & & & & & & & & & & & & & & &$
INPUT IMPEDANCE Power On Power Off	± 20μ γ/°C 5MΩ 39kΩ	
INPUT VOLTAGE RANGE Linear Differential Input Max CMV, Input to Output ac, 60Hz, Continuous Continuous, dc CMR, (α 60Hz, 1kΩ Source Imbalance NMR (α 60Hz Transient Protection	± 5mV to ± 0.5V 1500V rms ± 2000V peak 160dB min IEEE-STD 472 SWC	BOTTOM VIEW 0.1 (2.56) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
INPUT NOISE Voltage, 0. 1Hz to 10Hz, 1kΩ Source Imbalance INPUT BIAS CURRENT Initial (α + 25°C vs. Temperature	lµV p-p Sna 25pA/Q	
RATED OUTPUT Voltage, 2kΩ Load, min ¹ Current Output Noise, dc to 100kHz Impedance, dc	± 5V ± 5mA TBD 0.1Ω	PIN DESIGNATIONS
DYNAMIC RESPONSE Bandwidth, - 3dB	dc to 3Hz	PIN DESIGNATION
LINEARIZATION Temperature Measurement Range Linearizing Accuracy 0 to 100°C, Pt 100Ω, a α = 0.00385	User Programmable ± 0.05°C max	1 HI 2 PROTHI 3 RTD EXC 4 COM 5 LO 6 B ₂ EXC
CURRENT EXCITATION Excitation Level vs. Temperature	0.25mA ± 70ppm/°C	15 GND 16 - 15V 17 + 15V 22 Vo
Voltage, Rated Performance Voltage, Operating Current, Quiescent	± 15V dc + 12V to + 18V 10mA	23 FILTER 33 PT 34 CONC 35 NI 36 LIN
ENVIRONMENTAL Temperature Range Rated Performance Operating Storage Relative Humidity	- 25°C to + 85°C - 40°C to + 85°C - 40°C to + 85°C 0 to 95% ((t + 60°C	37 G 38 FB
CASE SIZE	$\frac{1.0'' \times 2.1'' \times 0.35''}{(25.4 \times 53.3 \times 8.9)mm}$	

NOTES $^{1} \pm 10V$ output can be obtained by doubling the gain of the output stage.

Specifications subject to change without notice.

Isolated mV/Thermocouple Signal Conditioner

1B51

FEATURES

Functionally Complete Precision Conditioner High Accuracy Low Input Offset Tempco: ±1µV/°C Low Gain Tempco: ±50ppm/°C Low Nonlinearity: ±0.01% High CMR: 160dB (60Hz, G = 1000V/V) High CMV Isolation: 1500V rms Continuous Small Package: 1.0"×2.1"×0.35" DIP **Isolated Power** Low Pass Filter ($f_c = 3Hz$) Pin Compatible with 1B41 Isolated RTD Conditioner

APPLICATIONS

Multichannel Thermocouple Temperature Measurement Low Level Data Acquisition Systems Industrial Measurement & Control Systems

GENERAL DESCRIPTION

The 1B51 is a precision, mV/thermocouple signal conditioner that incorporates a circuit design utilizing transformer based isolation and automated surface mount manufacturing technology. It provides an unbeatable combination of versatility and performance in a compact plastic package. Designed for measurement and control applications, it is especially suited for harsh environments with extremely high common-mode interference. Unlike costlier solutions that require separate dc/dc converters, each 1B51 generates its own input side power, providing true low-cost channel-to-channel isolation.

Functionally, the signal conditioner consists of three basic sections: chopper stabilized amplifier, isolation and output filter. The chopper amplifier features a highly stable offset tempco of $\pm 1\mu$ V/°C and resistor programmable gains from 10 to 1000. Wide range zero suppression can be implemented at this stage.

The isolation section has complete input to output galvanic isolation of 1500V rms continuous using transformer coupling techniques. Nonlinearity is an excellent ±0.01% which meets the demands of 12-bit systems. Isolated power of 2mA at ±4.5V is provided for ancillary circuits such as zero suppression and open-input alarm. Filtering at 3Hz is implemented by a passive anti-aliasing filter at the front end and a two pole active filter at the output. Overall NMR is 60dB and CMR is 160dB min @ 60Hz.

1B51 FUNCTIONAL BLOCK DIAGRAM

The 1B51 is specified over -25° C to $+85^{\circ}$ C and operates over the industrial $(-40^{\circ}C \text{ to } + 85^{\circ}C)$ temperature range. 1. And Party

DESIGN FEATURES AND USER BENEFITS

High Noise Rejection: The combination of a chopper stabilized front end with a low pass filter provides high system accuracy in harsh industrial environments as well as good rejection of 50/60Hz noise.

Low Cost: The 1B51 offers a very low cost per channel for high performance, isolated, low-level signal conditioners.

Small Size: The 1B51 package size $(1.0'' \times 2.1'' \times 0.35'')$ and functional completeness makes it an excellent choice in systems with limited board space and clearance.

Wide Range Zero Suppression: This input referred function is a convenient way to null large input offsets.

Low Pass Filter: The three pole active filter $(f_C = 3Hz)$ reduces 60Hz noise and aliasing errors.
SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $\pm 15V$ unless otherwise noted)

Model	1B51AN		OUTLIN	E DIMENSION	6
GAIN		D	imensions s	hown in inches and (m	m).
Gain Equation	$\left[1 + \frac{R_{FB}}{R_G}\right] \times 4$				0 35
Gain Error	1%	1			(8.9) MAX
Gain Temperature Coefficient	± 50ppm/°C	0.15	_ L	J	
Gain Nonlinearity	$\pm 0.01\%$ max	(3.81) MAX — 1	_ U		- 0.1
OFFSET VOLTAGES		Ī	- o).80 (20.3) TYP —	TYP
Total Offset Voltage, Referred to Input					
Initial, $@ + 25^{\circ}C$ (Adjustable to Zero)	200μV max	0.3			1
vs. Temperature	±1µV/°C	(7 62) TYP			
vs. Time, Noncumulative	$\pm 1 \mu V/month max$		- 017	22 🛛	
Output Offset			U 15	23 U	
vs. Temperature	±20μV/°C		0 15		
INPUT IMPEDANCE					
Power On	5ΜΩ	hir.			
Power Off	39kΩ	where the		воттом	2.10
INPUT VOL TAGE RANGE				VIEW	(53.3) MAX
Linear Differential Input	+ 5mV to + $0\times5V^{\frac{3}{10}}$	W. A			
Max CMV. Input to Output	addee the first	18			
ac. 60Hz. Continuous	1500V mis	stin the at			
Continuous, dc	/# 2000V neak	(2.54)	- 06	33 🛛	
CMR @ 60Hz, $1k\Omega$ Source Imbalance	160dB min	ТҮР Т	-!!	u	
NMR@60Hz	60dB min	ê l			
Transient Protection	IEEE-STD 472 (SWC)	. I		a	
INPUT NOISE	and the first of the	0.1 <u>1</u> (2.54)	- 01	38 🏼	1
Voltage, 0 1Hz to 10Hz, 1kO Source Impalance	la Vo-n	TYP T	-		0.1
INDUT DIACOUDDENT		<u> </u>	-1	00 (2.54) MAX	(2.54)
INPUT BIAS CURRENT			1		TYP
Vo Temperature	25- N/201				
	25pm	-	PIN D	ESIGNATIONS	
RATEDOUTPUT		1			-
Voltage, 2k12 Load, min ²	±5V		PIN	DESIGNATION	
Current	± 5mA	. 1	1	HI	
Junpadanaa da			2	PROTHI	
	0.112		5	LO	
FREQUENCY RESPONSE			15	GND	
Bandwidth, – 3dB	dc to 3Hz		16	- 15V	
ISOLATED POWER			22		
Voltage, No Load	±4.5V		23	FILTER	
Current	2mA		34	-V _{ISS}	
Regulation, No Load to Full Load	5%		35		
Ripple	100mV p-p		38	FB	
POWER SUPPLY					
Voltage, Rated Performance	$\pm 15 V dc$				
Voltage, Operating	$\pm 12V$ to $\pm 18V$				
Current, Quiescent	10mA				
ENVIRONMENTAL					
Temperature Range					
Rated Performance	-25° C to $+85^{\circ}$ C				
Operating	-40° C to $+85^{\circ}$ C				
Storage	-40° C to $+85^{\circ}$ C				
Relative Humidity	0 to 95% @ +60°C				
CASE SIZE	1.00"×2.10"×0.35"				
	(25.4×53.3×8.9)mm				

.

NOTES $^1\pm 10V$ output can be obtained by doubling the gain of the output stage.

Specifications subject to change without notice.

INSIDE THE 1B51

Referring to the functional block diagram, the $\pm 15V$ power inputs provide power to both the output side circuitry and the power oscillator. The 10kHz power oscillator provides both the timing information for the signal demodulator and drives transformer T2 for the input side power supplies. The secondary winding of T2 is full wave rectified and filtered to create the input side power.

The signal input (HI) is single pole filtered for noise rejection and anti-aliasing. PROT HI is the output node of the filter, and is used only for special input applications, as described in the applications section of this data sheet. Timing information derived from transformer T2 controls a precision input switch which alternates between HI and LO input pins. The output of the switch is a square wave with a peak-to-peak amplitude equal to the difference between the HI and LO input voltages. A wide bandwidth ac amplifier, whose gain is set by an external feedback/ gain resistor pair, amplifies the signal and drives the signal transformer T1.

The amplitude modulated signal is demodulated after passing through signal transformer T1. The demodulator output is then passed through an active two pole filter, completing a three pole 3Hz low pass filter with the input anti-aliasing filter stage. The output of the filter (V_O) is brought out separately from the filter node (FILTER) to facilitate output side gain.

USING THE 1B51

Gain Setting: The gain of the 1B51 is controlled on the input side by a pair of user provided resistors (see Figure 1). A feedback resistor of $20k\Omega \pm 20\%$ is required between the feedback pin (FB) and the gain pin. The gain setting resistor is connected between the gain pin and input side common (COM). The gain equation is

$$G = \left[1 + \frac{R_{FG}}{R_G}\right] \times 4$$

Gains of 10-1000 can be achieved by adjusting this ratio.

The accuracy of the resistor values must be taken into account when calculating the initial gain accuracy of an application. The initial accuracy of the 1B51 must then be added to the resistor errors to predict the total accuracy. Likewise, the ratiometric temperature coefficient of the gain and feedback resistors must be added to the temperature coefficient of the 1B51 to predict the total resulting thermal drift.

Figure 1. Input Gain Setting and Zero Suppression

It is possible to use a trimpot to correct for initial gain and system gain errors. The feedback resistor can be comprised of a resistor in series with a trimpot, as long as the total resistance remains within $\pm 20\%$ of $20k\Omega$. Alternatively, the gain resistor can also be an adjustable resistor.

Output Gain Setting: On the output side, FILTER is normally connected to V_0 for $\pm 5V$. These pins can be used to provide a $\pm 10V$ output swing, or to increase the maximum gain of the unit. This is described in the applications examples below.

Zero Suppression: Since the 1B51 is a differential input device, true input referred zero suppression can be accomplished (see Figure 1). A voltage reference powered by the input side power supplies is applied to the LO terminal. Since the transfer function is

$$V_{O} = (V(HI) - V(LO)) \times GAIN$$

the input voltage for which the desired output is zero should be applied to the LO pin. The equation is

$$V_Z = 1.25(R_{Z_{*}}/(R_{Z_{1}} + R_{Z_{2}}))$$

Any drift of this input zero suppression voltage appears as offset drift, so a temperature stable reference should be used. If the source impedance seen by the LO input exceeds 100Ω , a 1μ F bypass capacitor should be connected between LO and COM.

APPLICATION EXAMPLES

Input Protection: Although the 1B51 provides $\pm 1500V$ of common-mode protection, it is sometimes desirable to have some level of normal-mode protection as well. The signal input of the 1B51 is normally less than $\pm 500mV$ (5V out at a gain of 10) but could be very large under a fault condition.

The circuit shown in Figure 2 illustrates how to use the PROT HI pin to protect the 1B51 against accidental application of up to 220V ac. Under normal operation, one of the diode connected transistors is forward biased, while the other is reverse biased.

Figure 2. Input Protection

When the input voltage exceeds the reverse base-emitter breakdown voltage plus the forward bias voltage drop of the other transistor (totaling about 8 volts for the PN3906), current flows through the input resistor and transistor pair to input side common. The PN3906 also exhibits a very low base-emitter reverse leakage current, so as not to affect normal operation of the device. The fault voltage appears mostly across the input resistor, which must be $39k\Omega \pm 10\%$ because it is part of the input filter. This resistor must be capable of dissipating the power supplied by the fault source. For 130V ac, this is 0.43W, and for 220V ac, it must be able to dissipate 1.24W.

Output Gain: The 1B51 can be configured to provide gain at the output to produce an output range of $\pm 10V$ or to increase its maximum gain capability to 10,000. By connecting two resistors as shown in Figure 3, the output gain is (R1 + R2)/R1. This ratio can be as high as 10. The gain of the 1B51 is multiplied by this output gain to get the overall gain. The thermal drift of the resistor ratio is added to the thermal drift of the 1B51 and input side gain resistors.

Open Input Detection: This can be accomplished by putting a resistor from the HI input terminal to $+V_{ISS}$ or $-V_{ISS}$ when a low impedance input such as a thermocouple is used. For example,

a $1M\Omega$ resistor from $-V_{ISS}$ to HI will cause the output voltage to go below the minus full-scale output if the input is opened, like a broken thermocouple.

Figure 3. Increasing Output Range

High Performance, 4-20mA Output Voltage-to-Current Converter

2B20

FEATURES

Complete, No External Components Needed Small Size: 1.1" x 1.1" x 0.4" Module Input: 0 to +10V; Output: 4 to 20mA Low Drift: 0.005%/°C max; Nonlinearity: 0.005% max (2B20B) Wide Temperature Range: -25°C to +85°C Single Supply: +10V to +32V Meets ISA Std 50.1 for Type 3, Class L and U, Nonisolated Current Loop Transmitters Economical APPLICATIONS Industrial Instrumentation and Control Systems D/A Converter – Current Loop Interface Analog Transmitters and Controllers

Remote Data Acquisition Systems

GENERAL DESCRIPTION

Model 2B20 is a complete, modular voltage-to-current converter providing the user with a convenient way to produce a current output signal which is proportional to the voltage input. The nominal input voltage range is 0 to +10V. The output current range is 4 to 20mA into a grounded load.

Featuring low drift $(0.005\%)^{\circ}$ C max, 2B20B) over the -25°C to +85°C temperature range and single supply operation (+10V to +32V), model 2B20 is available in two accuracy grades. The 2B20B offers precision performance with nonlinearity error of 0.005% (max) and guaranteed low offset error of ±0.1% max and span error of ±0.2% max, without external trims. The 2B20A is an economical solution for applications with lesser accuracy requirements, featuring nonlinearity error of 0.025% (max), offset error of ±0.4% (max), span error of ±0.6% (max), and span stability of 0.01%/°C max.

The 2B20 is contained in a small $(1.1'' \times 1.1'' \times 0.4'')$, rugged, epoxy encapsulated package. For maximum versatility, two signal input (V_{IN1} and V_{IN2}) and two reference input (REF_{IN1} and REF_{IN2}) terminals are provided. Utilizing terminals V_{IN1} and REF_{IN1} eliminates the need for any external components, since offset and span are internally calibrated. If higher accuracy (up to $\pm 0.01\%$) is required, inputs V_{IN2} and REF_{IN2} with series trim potentiometers may be utilized.

APPLICATIONS

Model 2B20 has been designed for applications in process control and monitoring systems to transmit information between subsystems or separated system elements. The 2B20 can serve as a transmission link between such elements of process con-

2B20 FUNCTIONAL BLOCK DIAGRAM

trol system as transmitters, indicators, controllers, recorders, computers, actuators and signal conditioners.

In a typical application, model 2B20 may act as an interface between the D/A converter output of a microcomputer based system and a process control device such as a variable position valve. Another typical application of the 2B20 may be as a current output stage of a proportional controller to interface devices such as current-to-position converters and current-topneumatic transducers.

DESIGN FEATURES AND USER BENEFITS

Process Signal Compatibility: To provide output signal compatibility, the 2B20 meets the requirements of the Instrument Society of America Standard S50.1, "Compatibility of Analog Signals for Electronic Industrial Process Instruments" for Type 3, Class L and U, nonisolated current loop transmitters.

External Reference Use: For increased flexibility, when ratiometric operation is desired, the 2B20 offers a capability of connecting an external reference (i.e., from multiplying D/A converter) to the REF_{IN2} terminal.

Wide Power Supply Range: A wide power supply range (+10V to +32V dc) allows for operation with either a +12V battery, a +15V powered data acquisition system, or a +24V powered process control instrumentation.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = +15V unless otherwise noted)

Model	2B20A	2B20B
INPUT SPECIFICATIONS		
Voltage Signal Range	0 to +10V	*
Input Impedance	10kΩ	*
OUTPUT SPECIFICATIONS		
Current Output Range ¹	4 to 20mA	*
Load Resistance Range ²		
$V_S = +12V$	0 to 350 Ω max	*
$V_{S} = +15V$	0 to 500 Ω max	*
$V_{S} = +24V$	0 to 950Ω max	*
NONLINEARITY (% of Span)	±0.025% max	±0.005% max
ACCURACY ³		
Warm-Up Time to Rated Specs	1 minute	*
Total Output Error @ +25°C ^{3,4}		
Offset $(V_{IN} = 0 \text{ volts})$	±0.4% max	±0.1% max
Span ($V_{IN} = +10$ volts)	±0.6% max	±0.2% max
vs. Temperature (-25°C to +85°C)		
Offset (V _{IN} =0 volts)	±0.01%/°C max	±0.005%/°C max
Span (V_{IN} = +10 volts)	±0.01%/°C max	±0.005%/°C max
DYNAMIC RESPONSE		
Settling Time – to 0.1% of F.S.		
for 10V Step	25µs	*
Slew Rate	2.5mA/µs	*
REFERENCE INPUT ⁵		
Voltage	+2.5V dc	*
Input Impedance	10kΩ	*
POWER SUPPLY		
Voltage, Rated Performance	+15V dc	•
Voltage, Operating	+10V to +32V dc max	*
Supply Change Effect (% of Span) ⁶		
on Offset	±0.005%/V	•
on Span	±0.005%/V	*
Supply Current	6mA + I _{LOAD}	*
TEMPERATURE RANGE		
Rated Performance	-25°C to +85°C	*
Storage	-55°C to +125°C	•
CASE SIZE	1.125" × 1.125"	
	X 0.4″	•

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

MATING SOCKET: AC1016

LOAD RESISTANCE RANGE

The load resistance is the sum of the resistances of all connected receivers and the connection lines. The 2B20 operating load resistance is power supply dependent and will decrease by 50 ohms for each 1 volt reduction in the power supply. Similarly, it will increase by 50 ohms per volt increase in the power supply, but must not exceed the safe voltage capability of the unit.

Figure 1. Maximum Load Resistance vs. Power Supply

NOTES

*Specifications same as 2B20A.

¹ Current output sourced into a grounded load over a supply voltage range of +10V to +32V.

²See Figure 1 for the maximum load resistance value over the power supply range.

³Accuracy is guaranteed with no external trim adjustments when REF_{IN} is connected to REF_{OUT}. ⁴All accuracy is specified as % of output span where output span is 16mA (±0.1%=±0.016mA

output error).

⁵ Reference input is normally connected to the reference output (+2.5V dc).

⁶ Optional trim pots may be used for calibration at each supply voltage.

Specifications subject to change without notice.

Applying the 2B20

PRINCIPLE OF OPERATION

The design of the 2B20 is comprised of high performance op amps, precision resistors and a high stability voltage reference to develop biasing and output drive capability. The 2B20 is designed to operate from a single positive power supply over a wide range of +10V to +32V dc and accepts a single ended, 0 to +10V voltage input. The internal reference has nominal output voltage of +2.5V (REF_{OUT}) and is used to develop 4mA output current for a zero volts input when REF_{IN} is connected to REF_{OUT}.

The output stage of the 2B20 utilizes a sensing resistor in the feedback loop, so the output current is linearly related to the voltage input and independent of the load resistance. There is no minimum resistance for the loads driven by the 2B20; it can drive even a short circuit with no damage to the unit. The maximum resistance of the load as seen by the unit (resistance of the load plus the resistance of the connecting wire) is limited. The maximum external loop resistance, R_{L} , is given by:

$$R_L(\Omega) \max = \left(\frac{+V_S - 5V}{20mA}\right)$$

Figure 1 shows the operating region of the 2B20. The load must be returned to power supply common. The voltage appearing between I_{OUT} (pin 5) and COM (pin 2) should not exceed $V_{max} = +V_S - 5V$. Exceeding this value (up to +32V dc) will not damage the unit, but it will result in a loss of linearity.

The basic connections of the 2B20 are shown in Figure 2.

Figure 2. Basic Connections Diagram

OPTIONAL CALIBRATION AND TRIM PROCEDURE Model 2B20's factory trimmed offset error is ±0.1% max and span error is ±0.2% max (2B20B). In most applications, further trimming will not be required. If it is necessary to obtain calibrated accuracy of up to ±0.01%, or, if a high signal source resistance (with respect to 10kΩ) introduces calibration error, inputs V_{IN2} and REF_{IN2} and optional trim pots should be used with V_{IN1} and REF_{IN1} open. To perform external trims, connect 500Ω potentiometers in series with V_{IN2} (span trim) and REF_{IN2} (offset trim) as shown in Figure 3. Adjust span pot, monitoring voltage drop across R_{LOAD}, to obtain an output voltage of 5.000V (I_{OUT}=20mA) for a +10V input. Next, with 0 volts input, adjust offset pot to obtain 1.000V output (I_{OUT}=4mA). Check both offset and span and retrim if necessary after each adjustment.

Figure 3. Model 2B20 Connections Using Optional Offset and Span Trims

CONNECTING THE 2B20 FOR 0 TO 10mA OUTPUT

The 2B20 may be utilized in applications requiring 0 to 10mA current output for a 0 to +10V input voltage range as shown in Figure 4a. To obtain 0mA output for 0V input, adjust the offset potentiometer until there is no current flowing in the output. The 2B20 span calibration may be adjusted by a $2k\Omega$ gain potentiometer in series with the V_{SIG} input.

Figure 4a. 2B20 Configuration for 0 to 10mA Operation

CONNECTING THE 2B20 FOR 0 TO 20mA OUTPUT The 2B20 may also be configured for use in applications requiring 0 to 20mA output for a 0 to +10V input range as

shown in Figure 4b. To obtain 0mA output for 0V input, adjust the offset potentiometer. The 2B20 span calibration may be adjusted by a $2k\Omega$ gain potentiometer in series with the V_{SIG} input.

Figure 4b. 2B20 Configuration for 0-to-20mA Operation

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-61

OUTPUT PROTECTION

In many industrial applications, it may be necessary to protect the 4 to 20mA output from accidental shorts to ac line voltages. The circuit shown in Figure 5 can be used for this purpose. The maximum permissible load resistance will be lowered by a fuse resistance value when protection circuitry is utilized.

Figure 5. Output Protection Circuitry Connections

APPLICATIONS

Interfacing Voltage Output D/A Converters: The 2B20 is well suited in applications requiring 4 to 20mA output from D/A converters. The voltage necessary to power the current loop can be derived from the same +15V supply that is used to power the converter. The D/A converter, such as the 12-bit AD DAC80, should be connected for operation on the unipolar 0 to +10V output range. This is shown in Figure 6. After the load resistor connection has been made, the current loop can be calibrated using the offset and span adjustment potentiometers associated with the 2B20 (or the AD DAC80). First, a digital input code of all ones is loaded into the D/A, and the offset adjustment potentiometer is adjusted for a current output of exactly 4mA. Then, a digital code of all 0s is loaded into the D/A, and the span adjustment potentiometer is adjusted for a voltage across the load that corresponds to a current of 20mA -1LSB = 19.9961mA.

Figure 6. AD DAC80 - 4 to 20mA Current Loop Interface

Interfacing Current Output D/A Converters: To interface current output D/A converters, such as the AD562, a circuit configuration illustrated in Figure 7 should be used. Since the AD562 is designed to operate with an external +10V reference, the same external reference may be utilized by the 2B20 for ratiometric operation. The output of the AD562 is used to drive the summing junction of an operational amplifier to produce an output voltage. Using the internal feedback resistor of the AD562 provides a 0 to +10V output voltage range suitable to drive the 2B20.

Figure 7. 12-Bit – 4 to 20mA Current Loop Interface

Microcomputer – Current Loop Interface: Figure 8 shows a typical application of the 2B20 in a multichannel microcomputer analog output system. When a microcomputer is to control a final control element, such as a valve positioner, servo-mechanism or motor, an analog output board with 4 to 20mA outputs is often necessary. The output boards typically have from one to eight channels, each with its own D/A converter. The 2B20, in a compact package, allows for an easy installation without any additional components and offers a 12-bit system compatible performance.

Figure 8. Microcomputer Analog Output Subsystem

Pressure Control System: In Figure 9, model 2B20 is used in a proportional pressure control system. The 3-15psi working pressure of a system is monitored with a pressure transducer interfaced by the model 2B31 signal conditioner. The high level voltage output of the 2B31 is converted to a 4 to 20mA to provide signal to the limit alarm and proportional control circuitry. A current-to-position converter controlling a motorized valve completes the pressure-control loop.

Figure 9. Proportional Pressure Control System

Isolated 4 to 20mA Output: For applications requiring up to ±1500V dc input to output isolation, consider using Analog Devices' model 2B22 isolated voltage-to-current converter.

High Performance, Isolated Voltage-to-Current Converter

2B22

FEATURES

Wide Input Range: 0 to +1V to 0 to +10V Standard Output Range: 4 to 20mA High CMV Input/Output Isolation: 1500V dc Continuous Low Nonlinearity: 0.05% max, 2B22L Low Span Drift: 0.005%/°C max, 2B22L Single Supply: +14V to +32V Meets IEEE Std 472: Transient Protection (SWC) Meets ISA Std 50.1: Isolated Current Loop Transmitters APPLICATIONS Industrial Instrumentation and Process Control Ground Loop Elimination

High Voltage Transient Protection D/A Converter – Current Loop Interface Analog Transmitters and Controllers Remote Data Acquisition Systems

GENERAL DESCRIPTION

Model 2B22 is a high performance, compact voltage-to-current converter offering 1500V dc input to output isolation in interfacing standard process signals. The input stage of the model 2B22 is single resistor programmable to accept voltage ranges from 0 to +1V to 0 to +10V. The isolated output current range is 4 to 20mA, and the 2B22 can be operated with 0 to 1000 Ω grounded or floating loads.

Using modulation techniques with transformer isolation for reliable performance, the 2B22 is available in three accuracy selections offering guaranteed nonlinearity error (2B22L: $\pm 0.05\%$ max, 2B22K: $\pm 0.1\%$ max, and 2B22J: $\pm 0.2\%$ max) and guaranteed low span drift: $\pm 0.005\%$ °C max, $\pm 0.01\%$ °C max, and $\pm 0.015\%$ °C max, respectively. The internally trimmed span and offset errors are $\pm 0.1\%$ max for the 2B22L and $\pm 0.25\%$ max for the 2B22J/2B22K. Both span and offset are adjustable by the optional external potentiometers.

Featuring a wide range, single supply operation (+14V to +32V), the 2B22 provides isolated +28V loop power and is capable of delivering rated current into an external 0 to 1000 Ω load resistance. The unique output stage configuration also allows the user to utilize an optional external loop power supply to interface systems designed for a two-wire operation.

APPLICATIONS

Model 2B22 has been specifically designed for high accuracy applications in process control and monitoring systems to offer complete galvanic isolation and protection against damage from transients and fault voltages in transmitting information between subsystems or separated system elements. The 2B22

2B22 FUNCTIONAL BLOCK DIAGRAM

meets the requirements of the Instrument Society of America Std. 50.1 "Compatibility of Analog Signals for Electronic Industrial Process Instruments" for Type 4, Class U isolated current loop transmitters.

In the industrial environment, model 2B22 can serve as a transmission link between such system elements as transmitters, indicators, controllers, recorders, computers, actuators and signal conditioners. In data acquisition and control systems, the 2B22 may act as an isolated interface between the D/A converter output of a microcomputer and standard 4 to 20mA analog loops.

DESIGN FEATURES AND USER BENEFITS

High Reliability: Model 2B22 is a conservatively designed, compact module capable of reliable operation in harsh environments. To assure high reliability, the 2B22 has a calculated MTBF of over 270,000 hours and has been designed to meet the IEEE Standard for Transient Voltage Protection (472-1974: Surge Withstand Capability).

Process Signal Compatibility: The versatile input stage design with a single resistor gain adjustment enables the 2B22 to accept any one of the standard inputs—0-1V, 0-10V, 1-5V; or 1-5mA, 4-20mA, 10-50mA; and provide standard, isolated 4-20mA output.

Isolated Loop Power: Internal 28V de loop supply, completely isolated from the input power terminals ($\pm 1500V$ dc isolation), provides the capability to drive 0 to 1000Ω loads and eliminates the need for an external dc/dc converter.

SPECIFICATIONS (typical $@ +25^{\circ}C$ and $V_s = +15V$ unless otherwise noted)

Model	2R22I	2B22K	2R22I
INPUT SPECIFICATIONS		2000	
Voltage Signal Range, G = 1.6mA/V	0 to +10V	•	•
G = 16 mA/V	0 to +1V	•	•
Gain Range	1.6 to 16mA/V	•	•
Maximum Safe Input	+15V	•	•
Input Impedance	10ΜΩ	•	*
OUTPUT SPECIFICATIONS			
Current Output Range	4 to 20mA	•	•
Load Resistance Range, $V_S = +14V$ to $+32V$,	0 10000		
Internal Loop Power Maximum Output Current	0 to 100012 max		
@ Input Overload	25mA	•	•
Output Ripple, 100Hz Bandwidth			
G = 1.6 mA/V	60µA pk-pk	•	•
NONLINEARITY (% of Span)	±0.2% max	±0.1% max	±0.05% max
CMV, INPUT TO OUTPUT			
ac, 60Hz, 1 Minute Duration	1500V rms	•	+
Continuous, ac or dc	±1500V pk max	•	•
CMR, INPUT TO OUTPUT			
60Hz, 1kΩ Source Imbalance	90dB	•	•
ACCURACY ¹			
Warm Up Time to Rated Performance 5 Minut	es		
Total Output Error @ +25°C ^{1,2}			
Offset $(V_{IN} = 0V)$	±0.25% max	±0.25% max	±0 1% max
Span ($V_{IN} = +10V$)	±0.25% max	±0 25% max	±0.1% max
vs. Temperature (0 to $+70^{\circ}$ C, G = 1.6mA/V)	+0.01% /°C may	+0.005% /°C may	+0.0025%/°C max
Span $(V_{IN} = 0V)$	$\pm 0.01\%$ C max	$\pm 0.005\%$ C max	$\pm 0.0025\%/^{\circ}C$ max
vs. Temperature (0 to $+70^{\circ}$ C)	-0.015 %/ C max	-0.01 %/ C max	-0.009707 0 11121
Offset ($V_{IN} = 0V$, G = 1.6mA/V to			
16mA/V)	±0.01%/°C	±0 005%/°C	±0.0025%/°C
Span (G = 1.6 mA/V to 16 mA/V) ³	±0.015%/°C	±0 01%/°C	±0 005%/°C
DYNAMIC RESPONSE			
Settling Time - to 0.1% of F.S. for 10V Step	300µs	•	•
Slew Rate	0.06mA/µs	•	•
REFERENCE INPUT			
Voltage	+2.5V dc	*	*
Input Impedance	6kΩ	*	*
OSCILLATOR			
Frequency, Internal Oscillator	100kHz ± 10%	•	•
External Sync Input	100111 + 100		
Waveform	Square wave	•	
waveronn	50% duty cycle		
Voltage	20V p-p	•	•
POWER SUPPLY			
Voltage, Rated Performance	+15V dc	•	•
Voltage, Operating	+14V to +32V dc	•	•
Supply Current (at Full Scale Output)			
Using Internal Loop Power	100mA	•	*
Using External Loop Power	50mA	•	•
Supply Change Effect (% of Span)	+0.00069//3/		
on Oriset $(V_{IN} = 0V)$	±0.0005%/V	•	•
IEMPERATURE KANGE	$0 + 0 + 70^{\circ}C$		•
Onerating	-25°C to +75°C	•	•
Storage	-55°C to +85°C	•	•
CASE SIZE	2 2" X 3" X 0 6"	*	*
	2.2 / 3 / 0.0		

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

INTERCONNECTION DIAGRAM

Model 2B22 can be applied directly to achieve rated performance as shown in Figure 1 below. The input stage gain of 1.6mA/V, to convert a 0 to +10V signal into a 4 to 20mA output current, is obtained with the values shown. A single polarity power supply (+14V to +32V dc) should be connected to pin 8. To eliminate ground loops, the user should ensure that the signal return (common) lead does not carry the power supply current. Power common (pin 7) and signal common (pin 6) should be tied at the power supply common terminal. The voltage difference between pins 6 and 7 should not exceed 0.2V. An internal dc-dc converter provides isolated output loop power (pins 13 and 14), which is connected externally to the current output terminals (pins 11 and 12) and a load resistance. The standard 4 to 20mA current output signal is delivered into any external load between zero and 1000Ω.

Resistors Ro and Rg are 1%, 50ppm/°C Metal Film Type Values shown are for G = 1 6mA/V For G = 16mA/V, use 10ppm/°C Rg and 50nnm/°C R -

Figure 1. Basic Connections

NOTES ¹ Accuracy is guaranteed at G = 1 6mA/V with no external trim adjustments when connected as shown in Figure 1. ¹ All accuracy is % of span where span is 16mA (±0.1% = ±0.016mA error). ¹ Span T.C. for gains higher than 1.6mA/V is R_G dependent – a low T.C. (±10pm/C) R_G is recommended for best performance

*Specifications same as 2B221

Specifications subject to change without notice.

Applying the Isolated Voltage-to-Current Converter

FUNCTIONAL DESCRIPTION

The high performance of model 2B22 is derived from the carrier isolation technique which is used to transfer both signal and power between the V/I converter's input circuitry and the output stage. High CMV isolation is achieved by the transformer coupling between the input amplifier, modulator section and the current output circuitry. The block diagram for model 2B22 is shown in Figure 2 below.

The 2B22 produces an isolated 4 to 20mA output current which is proportional to the voltage input and independent of the load resistance. The input amplifier operates single-ended and accepts a positive voltage within 0 to +10V range. Gain can be set from 1.6mA/V to 16mA/V by changing the gain resistor R_G to accommodate input ranges from 0 to +1V (G = 16mA/V) to 0 to +10V (G = 1.6mA/V). The transfer function is $I_{OUT} = (4mA + G \times V_{IN})$.

An internal, high stability reference has nominal output voltage of +2.5V (REF OUT) and is used to develop a 4mA output current for a 0 volts input. The terminals REF OUT (pin 1) and REF IN (pin 2) should be connected via the offset setting resistor R_0 . For ratiometric operation, an external reference voltage can be connected to the REF IN terminal.

The 2B22 is designed to operate from a single positive power supply over a wide range of +14V to +32V dc. An internal dc-dc converter provides isolated +28V loop power which is independent of +V_S. The maximum resistance of the load R_L (resistance of the receivers plus the resistance of the connecting wire) is 1000 Ω . Since the loop power is derived from the input side, the current capability of the power supply (+V_S) must be 100mA min to supply full output signal current.

Figure 2. Block Diagram – Model 2B22

OPTIONAL TRIM ADJUSTMENTS

Model 2B22 is factory calibrated for a 0 to +10V input range (G = 1.6mA/V). As shipped, the 2B22 meets its listed specifications without use of any external trim potentiometers. Additional trim adjustment capability, to reduce span and offset errors to $\pm 0.05\%$ max, is easily provided as shown in Figure 3. The span and offset trim pots are adjusted while monitoring the voltage drop across a precision (or known) load resistor. The following trim procedure is recommended:

1. Connect model 2B22 as shown in Figure 3.

2. Apply $V_{IN} = 0$ volts and adjust R_O (Offset Adjust) for $V_{OUT} = +2V \pm 4mV$.

3. Apply V_{IN} = +10.00V and adjust R_G (Span Adjust) for V_{OUT} = +10V \pm 4mV.

GAIN AND OFFSET SETTING

The gain of the 2B22 is a scale factor setting that establishes the nominal conversion relationship to accommodate +1V to +10V full scale inputs (V_{IN}). The value of the gain setting resistor R_G is determined by: R_G(k Ω) = 6.314SF/(10.1 - SF) where SF is a scale factor equal to the value of V_{IN} F.S. Example: to convert a 0 to +1V input to the 4 to 20mA output, SF = 1 and R_G = 693 Ω . Due to device tolerances, allowance should be made to vary R_G by ±5% using the potentiometer.

The value of the offset resistor R_0 is independent from the gain setting and given by the relationship: R_0 ($k\Omega$) = 2.5 ($V_{REF} - 2.4$) where V_{REF} is the reference voltage applied. For example, the reference provided by the 2B22 is +2.5V and therefore $R_0 = 250\Omega$. The accuracy of the R_0 calculation from from the above formula is ±5%. When an external reference operation is desired (i.e. for ratiometric operation), connect the reference voltage via R_0 to pin 2 and leave pin 1 open.

EXTERNAL LOOP POWER OPERATION

For maximum versatility, the 2B22's output stage is designed to operate from the optional, isolated external loop power supply. This feature allows the user to interface systems wired for a two-wire operation. As shown in Figure 4, the same wiring is used for loop power and output. The load resistance is connected in series with an external dc power supply (+6V to +32V), and the current drawn from the supply is the 4 to 20mA output signal. The input stage of the 2B22 still requires +V_S power, but the current drain from +V_S is limited to 50mA. Use of an external loop power may require gain and offset trimming to obtain specified accuracy. The maximum series load resistance depends on the loop supply voltage as shown in Figure 4.

Figure 4. Optional External Loop Power Operation

SYNCHRONIZING MULTIPLE 2B22'S

In applications where multiple 2B22's are used in close proximity, radiated individual oscillator frequencies may cause "beat frequency" related output errors. These errors can be eliminated by synchronizing multiple units by connecting the SYNC OUT (pin 10) terminal to the SYNC IN (pin 9) terminal of the adjacent 2B22. The SYNC OUT terminal of this "slaved" unit can be used to drive another adjacent 2B22 (Figure 5). For best accuracy, each 2B22 should be retrimmed when synchronizing connections are used.

Figure 5. Multiple 2B22's Synchronization

OUTPUT PROTECTION

The current output terminals (pins 11 and 12) are protected from shorts up to +32V dc but in many industrial applications, it may be necessary to protect the 4 to 20mA output from accidental shorts to ac line voltages in addition to back EMF induced from long output connections. The circuit shown in Figure 6 can be used for this purpose. The maximum permissible load resistance will be lowered by a fuse resistance value when protection circuitry is utilized.

Figure 6. Output Protection Circuitry Connections

APPLICATIONS IN INDUSTRIAL MEASUREMENT AND CONTROL SYSTEMS

Process Signal Isolator: In process control applications, model 2B22 can be applied to interface standard process signals (e.g. 1 to 5mA, 4 to 20mA, 10 to 50mA, 1 to 5V) and convert them to isolated 4 to 20mA output. A typical hook-up of model 2B22 is illustrated in Figure 7, showing input resistor

*Rg EQUATION ACCURACY IS ±5%

Figure 7. Process Signal Current Isolator

 R_C converting the current from a remote loop to a voltage input, and a span adjustment resistor R_G . A value of R_C should be selected to develop a minimum of +1V signal with full scale input current applied. For example, a 50 Ω resistor converts the 4 to 20mA current input to a 200mV to 1V voltage input, which the 2B22 isolates and converts to a 4 to 20mA output. The reference input (pin 2) is not connected since the process signal provides a desired offset.

Isolated D/A Converter: Model 2B22 offers total ground isolation and protection from high voltage transients in interfacing D/A converters to standard 4 to 20mA current loops. This requirement is common in a microcomputer-based control system. The voltage necessary to power the current loop can be derived from the same +15V supply that is used to power the D/A converter. The D/A converter, such as the 12-bit AD DAC80, should be connected for operation on the unipolar 0 to +10V output range. This is shown in Figure 8. After the load resistor connection has been made, the current loop can be calibrated using the offset and span adjustment potentiometers associated with the 2B22. First, a digital input code of all one's is loaded into the D/A, and the offset adjustment potentiometer is adjusted for a current output of exactly 4mA. Then, a digital code of all zero's is loaded into the D/A, and the span adjustment potentiometer is adjusted for a voltage across the load that corresponds to a current of 20mA less 1LSB (19.9961mA).

Figure 8. D/A Converter - Isolated 4 to 20mA Interface

Pressure Transmitter: In Figure 9, model 2B22 is used in a pressure transmitter application to provide complete inputoutput isolation and avoid signal errors due to ground loop currents. The process pressure is monitored with a strain gage type pressure transducer interfaced by the Analog Devices' model 2B30 transducer conditioner. The bridge excitation and system power is provided by the model 2B35 triple output power supply. The high level voltage output of the 2B30 is converted to the isolated 4 to 20mA current for transmission to a remote recorder or indicator.

Figure 9. Isolated Pressure Transmitter

Programmable Output, Isolated Voltage-to-Current Converter

2B23

FEATURES

Wide Input Range, Resistor Programmable Pin Programmable Output: 4 to 20mA or 0 to 20mA High CMV Input/Output Isolation: ±1500V pk Continuous Low Nonlinearity: ±0.05% max (2B23K) Low Span Drift: ±0.005%/°C max (2B23K) Single Supply Operation: +14V to +28V Small Size: 1.8" × 2.4" × 0.6" Meets IEEE Std. 472: Transient Protection (SWC) Meets ISA Std. 50.1: Isolated Current Loop Transmitters APPLICATIONS Industrial Instrumentation and Process Control Ground Loop Elimination **Transient Voltage Protection Analog Transmitters and Controllers Remote Data Acquisition Systems**

GENERAL DESCRIPTION

The model 2B23 is a high performance, low cost voltage to current converter featuring $\pm 1500V$ pk input to output isolation for interfacing with standard process signals. The input stage of the 2B23 may be single resistor programmed to accept voltages within a 0 to +10V range (+0.1V to +10V full scale). The isolated output is pin programmable to provide current in the range of 4 to 20mA or 0 to 20mA and can be operated with 0 to 800\Omega grounded or floating loads.

The 2B23 uses reliable transformer isolation techniques and is available in two accuracy selections offering guaranteed nonlinearity error (2B23K: $\pm 0.05\%$ max, 2B23J: $\pm 0.1\%$ max) and guaranteed low span drift (2B23K: $\pm 0.005\%$ °C max, 2B23J: $\pm 0.01\%$ °C max). The internally trimmed span and offset errors are $\pm 0.1\%$ for the 2B23K and $\pm 0.25\%$ for the 2B23J. Both span and offset may be adjusted using optional external potentiometers.

Featuring wide range, single supply operation (+14V to +28V dc), the 2B23 provides isolated loop power, thus eliminating the need for an external dc/dc converter.

APPLICATIONS

Model 2B23 has been designed to provide high accuracy, versatility and low cost in industrial and laboratory system applications requiring isolated current transmission. The 2B23 meets the requirements of the Instrument Society of America Std. 50.1 "Compatibility of Analog Signals for Electronic Industrial Process Instruments" and may serve as a transmission link between such system elements as computers, controllers, actuators, recorders and indicators.

2B23 FUNCTIONAL BLOCK DIAGRAM

In data acquisition and control systems, the 2B23 may act as an isolated interface between the D/A converter output of a microcomputer analog I/O and standard 4 to 20mA or 0 to 20mA analog loops. In process control systems, the 2B23 may be used as a current output stage of a proportional controller to interface devices such as current-to-position converters and current-to-pneumatic transducers.

DESIGN FEATURES AND USER BENEFITS

High CMV Isolation: The 2B23 features high input to output galvanic isolation to eliminate ground loops and offer protection against damage from transients and fault voltages. Its isolation barrier will withstand continuous CMV of $\pm 1500V$ pk and 1500V rms @ 60Hz for 60 seconds.

High Reliability: To assure high reliability in harsh industrial environments, reliable magnetic isolation is used. The 2B23 meets the IEEE Standard for Transient Voltage Protection (472– 1974: Surge Withstand Capability) and offers reliable operation over -25° C to $+85^{\circ}$ C temperature range.

Versatility: The 2B23 can be easily tailored to the user's application, accommodating a wide range of input voltages, providing pin programmable, standard current outputs and offering wide range, single supply operation.

Small Size: To conserve board space, the 2B23 is packaged in a compact, $1.8'' \times 2.4'' \times 0.6''$ module.

SPECIFICATIONS

(typical @ $+25^{\circ}$ C and V_s = +15V unless otherwise noted)

NOTES

Accuracy is guaranteed @ TF = 1.6mA/V with no external trim adjustments when connected in the basic configuration.

²All accuracy is % of span where span is $16mA(1.e., \pm 0.1\% = 0.016mA \text{ error})$.

 3 Span T.C. for transfer functions higher than 1.6mA/V is R_G dependent – low T.C. (±10ppm/°C)

R_G recommended for best performance

*Specifications same as 2B23J.

Specifications subject to change without notice.

Applying the Isolated Voltage-to-Current Converter

FUNCTIONAL DESCRIPTION

The high performance of model 2B23 is derived from the carrier isolation technique which is used to transfer both signal and power between the V/I converter's input circuitry and the output stage. High CMV isolation is achieved by the transformer coupling between the input amplifier stage, modulator, and current output circuitry. A block diagram of the 2B23 is shown in Figure 1.

Figure 1. 2B23 Functional Block Diagram

The model 2B23 produces an isolated 4 to 20mA or 0 to 20mA output current which is proportional to the input voltage and independent of the output load resistance. The input amplifier accepts a positive voltage within the range of 0 to + 10V. The transfer function of the input stage may be set from 1.6mA/V to 200mA/V (dependent upon the output current range desired) by changing the gain resistor $R_{\rm G}$ connected between pins 5 and 7.

An internal, high stability reference having a nominal output voltage of +5V (REF OUT) is used to develop a 4mA output current for a 0 volts input. REF OUT (Pin 3) and REF IN (Pin 4) should be connected via the offset scaling resistor R_0 . An output current bypass section allows scaling of the nominal 4 to 20mA output current to a range of 0 to 20mA. This is accomplished by connecting the output range select pin (Pin 12) to the I_{OUT} pin (Pin 10) thereby providing a bypass for the 4mA. For 4-20mA operation, the bypass pin is connected to I_{OUT} COMMON (Pin 11).

The 2B23 is designed to operate from a single positive power supply $(+V_S)$ over a range of +14V to +28V dc. The power supply section consists of an input voltage regulator, a dc/dc converter, plus associated rectifying and filtering circuitry. The dc/dc converter generates isolated loop power which is independent of V_S and capable of driving the maximum load resistance (resistance of receivers plus the resistance of connecting wire) of 800 Ω . The current capability of the power supply $(+V_S)$ must be 75mA minimum to supply full output signal current.

BASIC INTERCONNECTIONS

The 2B23 may be applied to achieve rated performance as shown in Figure 2. The transfer function of 1.6mA/V, for conversion of the 0 to +10V input signal into a 4 to 20mA output current, is obtained using the values shown ($R_O = 10k\Omega$, $R_{SC} = 301\Omega$, R_G open). For best performance, R_{SC} should be a metal film, $\pm 0.1\%$ tolerance, 25ppm/°C resistor and R_O should be $\pm 1\%$, 100ppm/°C.

Figure 2. Basic Interconnections

A power supply $(+V_S)$ is connected to Pin 1. To avoid ground loops, the user should ensure that the input signal return (SIG COM) does not carry the power supply return current. Power common (Pin 2) and signal common (Pin 5) should be tied at the power supply common terminal.

OPTIONAL TRIM ADJUSTMENTS

Model 2B23 is factory calibrated for a 0 to +10V input range and an output of 4 to 20mA, meeting its listed specifications without use of any external trim potentiometers. If desired, optional span and zero trim adjustments may be easily accomplished as described in the following sections.

Input Gain Adjustment: The input gain of the 2B23 is a scale factor setting that establishes the nominal conversion relationship to accommodate + 1V to + 10V full scale inputs (V_{IN}). In addition, full scale inputs as low as 100mV may be accommodated.

The value of the gain setting resistor R_G is determined by: R_G ($k\Omega$) = $10k\Omega/(G-1)$ where G represents a ratio of $10V/V_{IN}(V)$ F.S. For example, to convert a 0 to + 1V input to 4 to 20mA output, V_{IN} F.S. = +1V and G = 10V/1V = 10, therefore R_G = $10k\Omega/9 = 1.1k\Omega$. Due to resistor tolerances, allowance should be made to vary R_G by using a series cermet type potentiometer (Figure 3). For best performance, R_G should be a metal film, 1% tolerance, 25ppm/°C resistor.

Figure 3. Input Gain Adjustment

Offset and Output Scaling Adjustments: After selecting the required input stage gain, the 2B23 must then be configured for either 4 to 20mA or 0 to 20mA output current range. Figures 4a and 4b illustrate the respective methods for each. The value of the offset resistor R_O is independent from the gain setting and may be adjusted by a series cermet pot.

For fine adjustment of the output current, R_{SC} value should be trimmed as shown in Figure 3.

4b. 0-20mA Output Connections Figure 4. 4-20mA/0-20mA Scaling Connections

USING MULTIPLE 2B23s

Unlike other transformer-based isolators, the 2B23 does not require any synchronizing circuits to eliminate beat frequency related output errors in multichannel applications. This is due to the use of pulse-width modulation technique in the 2B23. Radiated individual oscillator frequencies will have no effect upon performance, even in situations requiring multiple 2B23s to be located in close proximity to one another. For this reason, no provisions for external synchronization are necessary.

OUTPUT PROTECTION

The current output terminals (Pins 10 and 11) are protected for reverse voltage and shorts up to +32V dc but in many industrial applications it may be necessary to protect the 4 to 20mA from accidental shorts to ac line voltages. The circuit shown in Figure 5 may be employed for this purpose. The maximum permissible load resistance will be lowered by a fuse resistance value when protection circuitry is utilized.

Figure 5. Output Protection Circuitry

APPLICATIONS

In Figure 6, model 2B23 is used in multiloop application of the data acquisition and control system to provide isolated current interface to a recorder, indicator and a valve positioner.

Figure 6. Multiloop Isolation

In applications requiring current to voltage conversion, the 2B23 may be used as shown in Figure 7. An external -10V reference is used to provide necessary input offset. This circuit will provide $\pm 1500V$ isolation in converting 4-20mA into a 0 to +10V output. The output measurement device must have a high input impedance to avoid loading errors.

Figure 7. 4-20mA to 0 to + 10V Isolated Converter

High Performance, Economy Strain Gage/RTD Conditioners

FEATURES

Low Cost Complete Signal Conditioning Function Low Drift: $0.5\mu V/^{\circ}C \max ("L")$; Low Noise: $1\mu V p \cdot p \max$ Wide Gain Range: 1 to 2000V/V Low Nonlinearity: $0.0025\% \max ("L")$ High CMR: 140dB min (60Hz, G = 1000V/V) Input Protected to 130V rms Adjustable Low Pass Filter: 60dB/Decade Roll-Off (from 2Hz) Programmable Transducer Excitation: Voltage (4V to 15V @ 100mA) or Current (100 μ A to 10mA) APPLICATIONS Measurement and Control of:

Pressure, Temperature, Strain/Stress, Force, Torque Instrumentation: Indicators, Recorders, Controllers Data Acquisition Systems Microcomputer Analog I/O

GENERAL DESCRIPTION

Models 2B30 and 2B31 are high performance, low cost, compact signal conditioning modules designed specifically for high accuracy interface to strain gage-type transducers and RTD's (resistance temperature detectors). The 2B31 consists of three basic sections: a high quality instrumentation amplifier; a three-pole low pass filter, and an adjustable transducer excitation. The 2B30 has the same amplifier and filter as the 2B31, but no excitation capability.

Available with low offset drift of $0.5\mu V/^{\circ}C \max (RTI, G = 1000V/V)$ and excellent linearity of $0.0025\% \max$, both models feature guaranteed low noise performance $(1\mu V p-p \max)$ and outstanding 140dB common mode rejection (60Hz, CMV = ±10V, G = 1000V/V) enabling the 2B30/2B31 to maintain total amplifier errors below 0.1% over a 20°C temperature range. The low pass filter offers 60dB/decade roll-off from 2Hz to reduce normal-mode noise bandwidth and improve system signal-to-noise ratio. The 2B31's regulated transducer excitation stage features a low output drift (0.015%/^oC max) and a capability of either constant voltage or constant current operation.

Gain, filter cutoff frequency, output offset level and bridge excitation (2B31) are all adjustable, making the 2B30/2B31 the industry's most versatile high-accuracy transducer-interface modules. Both models are offered in three accuracy selections, J/K/L, differing only in maximum nonlinearity and offset drift specifications.

APPLICATIONS

The 2B30/2B31 may be easily and directly interfaced to a wide variety of transducers for precise measurement and control of pressure, temperature, stress, force and torque. For ap-

2B31 FUNCTIONAL BLOCK DIAGRAM

2B30/2B31

plications in harsh industrial environments, such characteristics as high CMR, input protection, low noise, and excellent temperature stability make 2B30/2B31 ideally suited for use in indicators, recorders, and controllers.

The combination of low cost, small size and high performance of the 2B30/2B31 offers also exceptional quality and value to the data acquisition system designer, allowing him to assign a conditioner to each transducer channel. The advantages of this approach over low level multiplexers include significant improvements in system noise and resolution, and elimination of crosstalk and aliasing errors.

DESIGN FEATURES AND USER BENEFITS

High Noise Rejection: The true differential input circuitry with high CMR (140dB) eliminating common-mode noise pickup errors, input filtering minimizing RFI/EMI effects, output low pass filtering ($f_c=2Hz$) rejecting 50/60Hz line frequency pickup and series-mode noise.

Input and Output Protection: Input protected for shorts to power lines (130V rms), output protected for shorts to ground and either supply.

Ease of Use: Direct transducer interface with minimum external parts required, convenient offset and span adjustment capability.

Programmable Transducer Excitation: User-programmable adjustable excitation source-constant voltage (4V to 15V @ 100mA) or constant current (100µA to 10mA) to optimize transducer performance.

Adjustable Low Pass Filter: The three-pole active filter $(f_c=2Hz)$ reducing noise bandwidth and aliasing errors with provisions for external adjustment of cutoff frequency.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $\pm 15V$ unless otherwise noted)

	28301	2B30K	2B30L
MODEL	2B31J	2B31K	2B31L
GAIN ¹			
Gain Range	1 to $2000V/V$	•	•
Gam Equation	(1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 +	•	•
Gain Equation Accuracy	±2%	•	•
Fine Gain (Span) Adjust Range	$\pm 20\%$ $\pm 25 - \pi m^{0}C max (\pm 10 - \pi m^{0}C turn)$	•	•
Gain Nonlinearity,	±0.01% max	±0.005% max	±0 0025% max
OFFSET VOLTAGES ¹		المحج ومستخطرين ويستحك والمحمد المرومين المتحالي	وفالمالا مربعين فالرع ومعامله والمعام والمساملان والمست
Total Offset Voltage, Referred to			
Input	Adverable to Zero (±0 EmV tup)		
Warm-Up Drift, 10 Min , $G = 1000$	Within $\pm 5\mu V$ (RTI) of Final Value	•	•
vs Temperature			
G = 1V/V	$\pm 150 \mu V/^{\circ} C max$	±75µV/°C max	±50µV/°C max
G = 1000 V/V At Other Gains	$\pm 3\mu V/C max$ $\pm (3 \pm 150/G)\mu V/^{\circ}C max$	$\pm 1\mu V/C max$ $\pm (1 \pm 75/G)\mu V/^{\circ}C max$	$\pm (0.5 \pm 50/G)\mu V/^{\circ}C max$
vs. Supply, $G = 1000V/V^5$	±25µV/V	*	*
vs. Time, $G = 1000V/V$	±5µV/month	:	:
Output Offset Adjust Range	±10V	-	·
INPUT BIAS CURRENT Initial @ +25°C	+200nA max (100nA typ)		•
vs Temperature (0 to +70°C)	-0 6nA/°C	•	•
INPUT DIFFERENCE CURRENT	······································		
Initial @ +25°C	±5nA	•	•
vs Temperature (0 to +70°C)	±40pA/°C	*	•
INPUT IMPEDANCE			
Differential Common Mode	100MΩ 47pF	•	•
	100//22/147/01		
INPUT VOLTAGE RANGE	+10V	•	•
Maximum Differential or CMV Input	100		
Without Damage	130V rms	:	:
Common Mode Voltage	±10V	•	•
$G = 1V/V$, dc to $60Hz^1$	90dB	•	•
G = 100V/V to 2000V/V, 60Hz ¹	140dB min	•	•
dc ²	90dB min (112 typ)	•	•
INPUT NOISE			
Voltage, G = 1000V/V	1//V p-p max	•	
$10Hz$ to $100Hz^2$	1μV p-p max 1μV p-p	•	•
Current, G = 1000			
0 01Hz to 2Hz	70pA p-p 30pA rms		•
	SopA mis		
Voltage 2kΩ Load ³	±10V mm		•
Current	±5mA min	•	•
Impedance, dc to 2Hz, G = 100V/V	0 1Ω		:
Load Capacitance	0.01µF max	·	· · · · · · · · · · · · · · · · · · ·
DYNAMIC RESPONSE (Unfiltered) ²			
-3dB Gain Accuracy, G = 100V/V	30kHz	•	•
G = 1000V/V	/ 5kHz	•	•
Slew Rate	1V/μs	•	•
Settling Time G = 100 ±10V Output	IJKHZ		
Step to ±0 1%	30µs	•	•
LOW PASS FILTER (Bessel)			
Number of Poles	3	•	•
Gain (Pass Band) Cutoff Frequency (=3dB Point)	+1	:	*
Roll-Off	60dB/decade	•	•
Offset (at 25°C)	±5mV	•	•
Settling Time, $G = 100V/V$, $\pm 10V$	(00		
Output Step to ±0 1%	600ms	-	-
BRIDGE EXCITATION (See Table 1)			
POWER SUPPLY ⁴	41637 J.		
voltage, Rated Performance	±15V dc ±(12 to 18)V dc	•	•
Current, Quiescent ⁶	±15mA	•	•
TEMPERATURE RANGE			· · · · · · · · · · · · · · · · · · ·
Rated Performance	0 to +70°C	•	•
Operating	-25°C to +85°C	•	•
storage	-55 C t0 +125 C	-	•
CASE SIZE	2" x 2" x 0 4" (51 x 51 x 10 2mm)	•	-

NOTES

Specifications same as 2B30J/2B31J

*Specifications same as 2830/2831J
*Specifications referred to utput at pin 7 with 3 75k, 1%, 25ppm/°C
fine span resistor installed and internally set 2Hz faiter cutoff
frequency
*Specifications referred to the unfiltered output at pin 1
*Protected for shorts to ground and/or enther supply voltage
*Recommended power supply ADI model 902-2 or model 2835
*Techen power supply:

⁵ Tracking power supplies ⁶ Does not include bridge excitation and load currents

Specifications subject to change without notice

OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 0 41 (10 41) MAX MODELS 2B30/31 1 0 02 (0 5) DIA -T 0 20 (5 08) MIN 0 25 (6 35) MAX 2 01 (50 8) BOTTOM VIEW WEIGHT 39 G - 0 1 (2 54) GRID

PIN DESIGNATIONS

PIN	FUNCTION	PIN	FUNCTION
	OUTPUT 1 (UNFILTERED)	16	EXC SEL 1
2	FINE GAIN (SPAN) ADJ	17	ISEL
3	FINE GAIN (SPAN) ADJ.	18	VEXC OUT
4	FILTER OFFSET TRIM	19	LEXC OUT
5	FILTER OFFSET TRIM	20	SENSE HIGH (+)
6	BANDWIDTH ADJ 3	21	EXC SEL 2
7	OUTPUT 2 (FILTERED)	22	REF OUT
8	BANDWIDTH ADJ, 2	23	SENSE LOW (-)
9	BANDWIDTH ADJ 1	24	REGULATOR +VR IN
10	RGAIN	25	REF IN
11	RGAIN	26	-Vs
12	-INPUT	27	+Vs
13	INPUT OFFSET TRIM	28	COMMON
14	INPUT OFFSET TRIM	29	OUTPUT OFFSET TRIM
15	+ INPUT		

Note Pins 16 thru 25 are not connected in Model 2B30

AC1211/AC1213 MOUNTING CARDS

AC1211/AC1213 CONNECTOR DESIGNATIONS

PIN	FUNCTION	PIN	FUNCTION
A	REGULATOR +VR IN	1	EXC SEL 1
в	SENSE LOW (-)	2	I SEL
с	REF OUT	3	VEXC OUT
D	REF IN	4	FXC OUT
E		5	SENSE HIGH (+)
F		6	EXC SEL 2
н		7	OUTPUT OFFSET TRIM
J		8	
к	-Vs	9	-Vs
L	+Vs	10	+Ve
M		11	
N	COMMON	12	COMMON
Р		13	
R	FINE GAIN ADJ	14	
s	FINE GAIN ADJ.	15	
Ť	FILTER OFFSET TRIM	16	
U	FILTER OFFSET TRIM	17	BGAIN
v	OUTPUT 2 (FILTERED)	18	BGAIN
w	- INPUT	19	OUTPUT 1 (UNFILTERED)
x	INPUT OFFSET TRIM	20	BANDWIDTH ADJ 1
Ŷ	INPUT OFFSET TRIM	21	BANDWIDTH ADJ 3
ż	+ INPUT	22	BANDWIDTH ADJ 2

The AC1211/AC1213 mounting card is available for the 2B30/2B31. The AC1211/AC1213 is an edge connector card with pin receptacles for plugging in the 2B30/2B31 In addition, it has provisions for installing the gain resistors and the bridge excitation, offset adjustment and filter cutoff programming components. The AC1211/ AC1213 is provided with a Cinch 251-22-30-160 (or equivalent) edge connector. The AC1213 includes the adjustment pots; no pots are provided with the AC1211.

FUNCTIONAL DESCRIPTION

Models 2B30 and 2B31 accept inputs from a variety of full bridge strain gage-type transducers or RTD sensors and convert the inputs to conditioned high level analog outputs. The primary transducers providing direct inputs may be 60Ω to 1000Ω strain gage bridges, four-wire RTD's or two- or threewire RTD's in the bridge configuration.

The 2B30 and 2B31 employ a multi-stage design, shown in Figure 1, to provide excellent performance and maximum versatility. The input stage is a high input impedance $(10^8 \Omega)$, low offset and drift, low noise differential instrumentation amplifier. The design is optimized to accurately amplify low level (mV) transducer signals riding on high common mode voltages (±10V), with wide (1-2000V/V), single resistor (R_G), programmable gain to accommodate 0.5mV/V to 36mV/V transducer spans and 5 Ω to 2000 Ω RTD spans. The input stage contains protection circuitry for accidental shorts to power line voltage (130V rms) and RFI filtering circuitry.

The inverting buffer amplifier stage provides a convenient means of fine gain trim (0.8 to 1.2) by using a $10k\Omega$ potentiometer (R_F); the buffer also allows the output to be offset by up to $\pm 10V$ by applying a voltage to the noninverting input (pin 29). For dynamic, high bandwidth measurements—the buffer output (pin 1) should be used.

The three-pole active filter uses a unity-gain configuration and provides low-pass Bessel-type characteristics-minimum overshoot response to step inputs and a fast rise time. The cutoff frequency (-3dB) is factory set at 2Hz, but may be increased up to 5kHz by addition of three external resistors ($R_{SEL_1} - R_{SEL_3}$).

INTERCONNECTION DIAGRAM AND SHIELDING TECHNIQUES

Figure 1 illustrates the 2B31 wiring configuration when used in a typical bridge transducer signal conditioning application. A recommended shielding and grounding technique for preserving the excellent performance characteristics of the 2B30/ 2B31 is shown.

Because models 2B30/2B31 are direct coupled, a ground return path for amplifier bias currents must be provided either by direct connection (as shown) or by an implicit ground path having up to $1M\Omega$ resistance between signal ground and conditioner common (pin 28). The sensitive input and gain setting terminals should be shielded from noise sources for best performance, especially at high gains. To avoid ground loops, signal return or cable shield should never be grounded at more than one point.

The power supplies should be decoupled with 1μ F tantalum and 1000pF ceramic capacitors as close to the amplifier as possible.

TYPICAL APPLICATION AND ERROR BUDGET ANALYSIS

Models 2B30/2B31 have been conservatively specified using min-max values as well as typicals to allow the designer to develop accurate error budgets for predictable performance. The error calculations for a typical transducer application, shown in Figure 1 (350Ω bridge, 1mV/V F.S., 10V excitation), are illustrated below.

Assumptions: 2B31L is used, G = 1000, $\Delta T = \pm 10^{\circ}$ C, source imbalance is 100 Ω , common mode noise is 0.25V (60Hz) on the ground return.

Absolute gain and offset errors can be trimmed to zero. The remaining error sources and their effect on system accuracy (worst case) as a % of Full Scale (10V) are listed:

Error Source	Effect on Absolute Accuracy % of F.S.	Effect on Resolution % of F.S.
Gain Nonlinearity	±0 0025	±0.0025
Gain Drift	±0.025	
Voltage Offset Drift	±0 05	
Offset Current Drift	±0.004	
CMR	±0.00025	±0.00025
Noise (0 01 to 2Hz)	±0 01	±0.01
Total Amplifier Error	±0 09175 max	±0.01275 max
Excitation Drift	±0.15 (±0.03 typ)	
Total Output Error (Worst Case)	±0.24175 max (±0.1 typ)	±0.0127 max

The total worst case effect on absolute accuracy over $\pm 10^{\circ}$ C is less than $\pm 0.25\%$ and the 2B31 is capable of 1/2 LSB resolution in a 12 bit, low input level system. Since the 2B31 is conservatively specified, a typical overall accuracy error would be lower than $\pm 0.1\%$ of F.S.

In a computer or microprocessor based system, automatic recalibration can nullify gain and offset drifts leaving noise, nonlinearity and CMR as the only error sources. A transducer excitation drift error is frequently eliminated by a ratiometric operation with the system's A/D converter.

Figure 1. Typical Bridge Transducer Application Using 2B31

BRIDGE EXCITATION (2B31)

The bridge excitation stage of the model 2B31 is an adjustable output, short circuit protected, regulated supply with internally provided reference voltage (+7.15V). The remote sensing inputs are used in the voltage output mode to compensate for the voltage drop variations in long leads to the transducer. The regulator circuitry input (pin 24) may be connected to $+V_S$ or some other positive dc voltage (pin 28 referenced) within specified voltage level and load current range. Userprogrammable constant voltage or constant current excitation mode may be used. Specifications are listed below in Table I.

MODEL	2B31J	2B31K	2B31
Constant Voltage Output Mode			
Regulator Input Voltage Range	+9.5V to +28V	•	•
Output Voltage Range	+4V to +15V	•	٠
Regulator input/Output Voltage			
Differential	3V to 24V	•	•
Output Current ¹	0 to 100mA max	•	•
Regulation, Output Voltage			
vs Supply	0 05%/V	•	•
Load Regulation, lr = 1mA to			
$I_T = 50 m A$	0 1%	•	
Output Voltage vs Temperature	0 015%/°C max	•	•
(0 to +70°C)	0 003%/°C typ	•	•
Output Noise	1mV rms	•	•
Reference Voltage (Internal)	7 15V ±3%	•	•
Constant Current Output Mode			
Regulator Input Voltage Range	+9 5V to +28V	•	•
Output Current Range	100µA to 10mA	•	•
Compliance Voltage	0 to 10V	•	•
Load Regulation	01%	•	•
Temperature Coefficient			
(0 to +70°C)	0 003%/°C	•	•
Output Noise	1µA rms	•	•

Output Current derated to 33mA max for 24V regulator input/output voltage differential

Table I. Bridge Excitation Specifications

OPERATING INSTRUCTIONS

Gain Setting: The differential gain, G, is determined according to the equation:

 $G = (1 + 94k\Omega/R_G) \left[\frac{20k\Omega}{(R_F + 16.2k\Omega)} \right]$

where R_G is the input stage resistor shown in Figure 1 and R_F is the variable $10k\Omega$ resistor in the output stage. For best performance, the input stage gain should be made as large as. possible, using a low temperature coefficient $(10ppm/^{\circ}C) R_G$, and the output stage gain can then be used to make a $\pm 20\%$ linear gain adjustment by varying R_F .

Input Offset Adjustment: To null input offset voltage, an optional 100k Ω potentiometer connected between pins 13 and 14 (Figure 1) can be used. With gain set at the desired value, connect both inputs (pins 12 and 15) to the system common (pin 28), and adjust the 100k Ω potentiometer for zero volts at pin 3. The purpose of this adjustment is to null the internal amplifier offset and it is not intended to compensate for the transducer bridge unbalance.

Output Offset Adjustment: The output of the 2B30/2B31 can be intentionally offset from zero over the $\pm 10V$ range by applying a voltage to pin 29, e.g., by using an external potentiometer or a fixed resistor. Pin 29 is normally grounded if output offsetting is not desired. The optional filter amplifier offset null capability is also provided as illustrated in Figure 1.

Filter Cutoff Frequency Programming: The low pass filter cutoff frequency may be increased from the internally set 2Hz by the addition of three external resistors connected as shown in Figure 1. The values of resistors required for a desired cutoff frequency, f_c , above 5Hz are obtained by the equation below:

$$\begin{split} &R_{SEL_1} = 11.6 \times 10^6 / (2.67 f_c - 4.34); \\ &R_{SEL_2} = 27.6 \times 10^6 / (4.12 f_c - 7) \\ &R_{SEL_3} = 1.05 \times 10^6 / (0.806 f_c - 1.3) \end{split}$$

where R_{SEL} is in ohms and f_c in Hz. Table II gives the nearest

1% R_{SEL} for several common filter cutoff (-3dB) frequencies.

ł	f _c (Hz)	R _{SEL1} (kΩ) (Pin 1 to 9)	R _{SEL2} (kΩ) (Pin 9 to 8)	R _{SEL3} (kΩ) (Pin 8 to 6)
	2	Open	Open	Open
	5	1270.000	2050 00	383 000
	10	523 000	806 00	154.000
	50	90 000	137.00	26.700
	100	44.200	68.10	13 300
	500	8 660	13 30	2.610
	1000	4.320	665	1.300
	5000	0.866	1 3 3	0.261
		- ilan Out	# F	

Table II. Filter Cutoff Frequency vs. RSEL

Voltage Excitation Programming: Pin connections for a constant voltage output operation are shown in Figure 2. The bridge excitation voltage, V_{EXC} , is adjusted between +4V to +15V by the 20k Ω (50ppm/°C) R_{VSEL} potentiometer. For ratiometric operation, the bridge excitation can be adjusted by applying an external positive reference to pin 25 of the 2B31. The output voltage is given by: $V_{EXC OUT} = 3.265 V_{REF}$ IN. The remote sensing leads should be externally connected to the excitation leads at the transducer or jumpered as shown in Figure 2 if sensing is not required.

Figure 2. Constant Voltage Excitation Connections

Current Excitation Programming: The constant current excitation output can be adjusted between 100μ A to 10mA by two methods with the 2B31. Figure 3 shows circuit configuration for a current output with the maximum voltage developed across the sensor (compliance voltage) constrained to +5V. The value of programming resistor R_{ISEL} may be calculated from the relationship: $R_{ISEL} = (V_{REG IN} - V_{REF IN})/I_{EXC OUT}$. This application requires a stable power supply because any variation of the input supply voltage will result in a change in the excitation current output.

Figure 3. Constant Current Excitation Connections (V_{COMPL} = 0 to +5V)

A compliance voltage range of 0 to +10V can be obtained by connecting the 2B31 as shown in Figure 4. The $2k\Omega$ potentiometer R_{ISEL} is adjusted for desired constant current excitation output.

Figure 4. Constant Current Excitation Connections (VCOMPL = 0 to +10V)

APPLICATIONS

Strain Measurement: The 2B30 is shown in Figure 5 in a strain measurement system. A single active gage $(120\Omega, GF = 2)$ is used in a bridge configuration to detect small changes in gage resistance caused by strain. The temperature compensation is provided by an equivalent dummy gage and two high precision 120Ω resistors complete the bridge. The 2B35 adjustable power supply is set to a low +3V excitation voltage to avoid the self-heating error effects of the gage and bridge elements. System calibration produces a 1V output for an input of 1000 microstrains. The filter cutoff frequency is set at 100Hz.

Figure 5. Interfacing Half-Bridge Strain Gage Circuit Pressure Transducer Interface: A strain gage type pressure transducer (BLH Electronics, DHF Series) is interfaced by the 2B31 in Figure 6. The 2B31 supplies regulated excitation (+10V) to the transducer and operates at a gain of 333.3 to achieve 0-10V output for 0-10,000 p.s.i. at the pressure transducer. Bridge Balance potentiometer is used to cancel out any offset which may be present and the Fine Span potentiometer adjustment accurately sets the full scale output. Depressing the calibration check pushbutton switch shunts a system calibration resistor (R_{CAL}) across the transducer bridge to give an instant check on system calibration.

Platinum RTD Temperature Measurement: In Figure 7 model 2B31 provides complete convenient signal conditioning in a

wide range $(-100^{\circ}\text{C} \text{ to } +600^{\circ}\text{C})$ RTD temperature measurement system. YSI - Sostman four-wire, 100Ω platinum RTD (PT139AX) is used. The four wire sensor configuration, combined with a constant current excitation and a high input impedance offered by the 2B31, eliminates measurement errors resulting from voltage drops in the lead wires. Offsetting may be provided via the 2B31's offset terminal. The gain is set by the gain resistor for a +10V output at +600°C. This application requires a stable power supply.

Figure 7. Platinum RTD Temperature Measurement

Interfacing Three-Wire Sensors: A bridge configuration is particularly useful to provide offset in interfacing to a platinum RTD and to detect small, fractional sensor resistance changes. Lead compensation is employed, as shown in Figure 8, to maintain high measurement accuracy when the lead lengths are so long that thermal gradients along the RTD leg may cause changes in line resistance. The two completion resistors (R1, R2) in the bridge should have a good ratio tracking (\pm 5ppm/°C) to eliminate bridge error due to drift. The single resistor (R3) in series with the platinum sensor must, however, be of very high absolute stability. The adjustable excitation in the 2B31 controls the power dissipated by the RTD itself to avoid self-heating errors.

Figure 8. Three-Wire RTD Interface

Linearizing Transducer Output: To maximize overall system linearity and accuracy, some strain gage-type and RTD transducer analog outputs may require linearization. A simple circuit may be used with the 2B31 to correct for the curvature in the input signal as shown in Figure 9. The addition of feedback in the excitation stage will allow for the correction of

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-75

nonlinearity by the addition of two components. The sense of the feedback is determined by whether the nonlinearity is concave upward or concave downward (jumper A to pin 21, or to pin 25). The magnitude of the correction is determined by the resistor, $R_{\rm SEL}$, and the *linearity adjust* pot provides a fine trim.

If an RTD is to be used, the adjustment can be made efficiently, without actually changing the temperature, by simulating the RTD with a precision resistance decade. The offset is adjusted at the low end of the resistance range, the fine span is adjusted at about one third of the range, and the linearity is adjusted at a resistance corresponding to full-scale temperature. One or two iterations of the adjustments will probably be found necessary because of the interaction of linearity error and scale-factor error. This circuit's applications are not restricted to RTD's; it will work in most cases where bridges are used - e.g., load cells and pressure transducers.

Figure 9. Transducer Nonlinearity Correction

PERFORMANCE CHARACTERISTICS

Input Offset Voltage Drift: Models 2B30/2B31 are available in three drift selections: ± 0.5 , ± 1 and $\pm 3\mu V/^{\circ}C$ (max, RTI, G = 1000V/V). Total input drift is composed of two sources (input and output stage drifts) and is gain dependent. Figure 10 is a graph of the worst case total voltage offset drift vs. gain for all versions.

Figure 10. Total Input Offset Drift (Worst Case) vs. Gain

Gain Nonlinearity and Noise: Nonlinearity is specified as a percent of full scale (10V), e.g. 0.25mV RTO for 0.0025%. Three maximum nonlinearity selections offered are: ± 0.0025 %, ± 0.005 % and ± 0.01 % (G = 1 to 2000V/V). Models 2B30/2B31 offer also an excellent voltage noise performance by guaranteeing maximum RTI noise of 1 μ V p-p (G = 1000V/V, R_S \leq 5k Ω) with noise bandwidth reduced to 2Hz by the LPF.

Common Mode Rejection: CMR is rated at ±10V CMV and 1k Ω source imbalance. The CMR improves with increasing gain. As a function of frequency, the CMR performance is enhanced by the incorporation of low pass filtering, adding to the 90dB minimum rejection ratio of the instrumentation amplifier. The effective CMR at 60Hz at the output of the filter ($f_c = 2Hz$) is 140dB min. Figure 11 illustrates a typical CMR vs. Frequency and Gain.

Figure 11. Common-Mode Rejection vs. Frequency and Gain

Low Pass Filter: The three pole Bessel-type active filter attenuates unwanted high-frequency components of the input signal above its cutoff frequency (-3dB) with 60dB/decade rolloff. With a 2Hz filter, attenuation of 70dB at 60Hz is obtained, settling time is 600ms to 0.1% of final value with less than 1% overshoot response to step inputs. Figure 12 shows the filter response.

Figure 12. Filter Amplitude Response vs. Frequency

Figure 13. Maximum Load Current vs. Regulator Input-Output Voltage Differential

Bridge Excitation (2B31): The adjustable bridge excitation is specified to operate over a wide regulator input voltage range (+9.5V to +28V). However, the maximum load current is a function of the regulator circuit input-output differential voltage, as shown in Figure 13. Voltage output is short circuit protected and its temperature coefficient is $\pm 0.015\% \text{ V}_{OUT}$ /°C max ($\pm 0.003\%$ /°C typ). Output temperature stability is directly dependent on a temperature coefficient of a reference and for higher stability requirements, a precision external reference may be used.

Isolated, Thermocouple Signal Conditioner

2B50

FEATURES

Accepts J, K, T, E, R, S or B Thermocouple Types Internally Provided Cold Junction Compensation High CMV Isolation: $\pm 1500V \text{ pk}$ High CMR: 160dB min @ 60Hz Low Drift: $\pm 1\mu V/^{\circ}$ C max (2B50B) High Linearity: $\pm 0.01\%$ max (2B50B) Input Protection and Filtering Screw Terminal Input Connections

APPLICATIONS

Precision Thermocouple Signal Conditioning For: Process Control and Monitoring Industrial Automation Energy Management Data Acquisition Systems

GENERAL DESCRIPTION

The model 2B50 is a high performance thermocouple signal conditioner providing input protection, isolation and common mode rejection, amplification, filtering and integral cold junction compensation in a single, compact package.

The 2B50 has been designed to condition low level analog signals, such as those produced by thermocouples, in the presence of high common mode voltages. Featuring direct thermocouple connection via screw terminals and internally provided reference junction temperature sensor, the 2B50 may be jumper programmed to provide cold junction compensation for thermocouple types J, K, T, and B, or resistor programmed for types E, R, and S.

The high performance of the 2B50 is accomplished by the use of reliable transformer isolation techniques. This assures complete input to output galvanic isolation ($\pm 1500V$ pk) and excellent common mode rejection (160dB @ 60Hz).

Other key features include: input protection (220V rms), filtering (NMR of 70dB @ 60Hz), low drift amplification $(\pm 1\mu V)^{\circ}$ C max - 2B50B), and high linearity ($\pm 0.01\%$ max - 2B50B).

APPLICATIONS

The 2B50 has been designed to provide thermocouple signal conditioning in data acquisition systems, computer interface systems, and temperature measurement and control instrumentation.

2B50 FUNCTIONAL BLOCK DIAGRAM

In thermocouple temperature measurement applications, outstanding features such as low drift, high noise rejection, and 1500V isolation make the 2B50 an ideal choice for systems used in harsh industrial environments.

DESIGN FEATURES AND USER BENEFITS

High Reliability: To assure high reliability and provide isolation protection to electronic instrumentation, the 2B50 has been conservatively designed to meet the IEEE Standard for transient voltage protection (472-1974: SWC) and provide 220V rms differential input protection.

High Noise Rejection: The 2B50 features internal filtering circuitry for elimination of errors caused by RFI/EMI, series mode noise, and 50Hz/60Hz pickup.

Ease of Use: Internal compensation enables the 2B50 to be used with seven different thermocouple types. Unique circuitry offers a choice of internal or remote reference junction temperature sensing. Thermocouple connections may be made either by screw terminals or, in applications requiring PC Board connections, by terminal pins.

Small Package: $1.5'' \times 2.5'' \times 0.6''$ size conserves board space.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $\pm 15^{\circ}$ V unless otherwise noted)

MODEL	2B50A	2B50B	OUTLINE DIMENSIONS
INPUT SPECIFICATIONS			Dimensions shown in inches and (mm).
Thermocouple Types			-
Jumper Configurable Compensation	J, K, T, or B	*	
Resistor Configurable Compensation	R, S, or E	*	DEVICES
Input Span Range	±5mV to ±100mV	*	H – (
Gain Range	50V/V to 1000V/V	*	1.51 (38 35) 7RGAA
Gain Equation	$1 + (200 \mathrm{k}\Omega/\mathrm{R_G})$	*	
Gain Error	±0.25%	*	ISOLATED THERMOCOUPLE
Gain Temperature Coefficient	±35ppm/°C max	±25ppm/°C max	MADE IN US A
Gain Nonlinearity ¹	±0.025% max	±0.01% max	
Offset Voltage			2 51(63.75)
Input Offset (Adjustable to Zero)	±50uV	÷	
vs. Temperature	$\pm 2.5 \mu V/^{\circ} C max$	$\pm 1 \mu V / C max$	0 20 (5.08)
vs. Time	$\pm 1.5\mu V/month$	*	
Output Offset (Adjustable to Zero)	+10mV	*	
vs. Temperature	$+30 \mu V/^{\circ}C$	*	
Tatal Office Drift	(30)	(. 30)	6-32
Total Offset Drift	$\pm (2.5 + \frac{30}{G}) \mu V/C$	$\pm (1 + \frac{50}{G}) \mu V/C$	SCREWS
Input Noise Voltage	· - ·		
0.01 Hz to 100Hz. Rs = 1k Ω	1µV p-p	*	0.020 (0.508)
Maximum Safe Differential Input Voltage	220V rms. Continuous	*	DIA
CMV. Input to Output	· · · ·		
Continuous, ac or dc	±1500V pk max	•	0.605
Common Mode Rejection	F		(15.36)
@ 60Hz, $1k\Omega$ Source Unbalance	160dB min	*	
Normal Mode Rejection @ 60Hz	70dB min	*	
Bandwidth	dc to 2 5Hz (-3dB)	*	н 🗗
Input Impedance	100MQ	*	
Input Bias Current ²	+5nA	*	
Open Input Detection	Downscale	*	
Response Time ³ $G = 250$	1 Asec		
Cold Innetion Componention	1.4300		
Initial A sum and	+0.5°C	*	BOTTOM VIEW 0 100 (2.54) GRIE
Initial Accuracy $5(15^{\circ}C t_{2} + 45^{\circ}C)$	±0.5 C	*	WEIGHT 45 G TYP
vs. remperature (+5 C to +45 C)	±0.01 C/ C		SHADED HOLE LOCATIONS
OUTPUT SPECIFICATIONS			
Output Voltage Range ⁶	±5V @ ±2mA	*	PIN DESIGNATIONS
Output Resistance	0.1Ω	*	
Output Protection	Continuous Short to Ground	*	PIN FUNCTION PIN FUNCTION
POWER SUPPLY			1 INPUT LO 23 2 INPUT HI 24
Voltage			3 R _G 25 4 26
Output +Vo (Rated Performance)	+15V dc +10% @ +0 5mA	*	5 Rg/COM 27
(Operating)	+12V to +18V dc max	*	7 29 OSC COM
Oscillator +Vasa (Pated Performance)	$\pm 13V$ to $\pm 18V \otimes 15mA$	*	8 +V ISO OUT 30 9 -V ISO OUT 31
Oscillator + VOSC (Rated refformance)	1157 10 1107 @ 15884		10 32 11 33
ENVIRONMENTAL	â		12 34 13
Temperature Range, Rated Performance	0 to +70°C	•	
Operating	-25°C to +85°C	*	ADJUST 38
Storage Temperature Range	–55°C to +85°C	*	16 OUTPUT SCALE 39 OPEN INPUT DET 17 OUTPUT 40 X) TYPE
RFI Effect (5W @ 470MHz @ 3ft)			18 41 K, T PROGRAMMING
Error	±0.5% of Span	*	20 +Vs 43 CJC SENSOR IN 21 -VG 44 CIC SENSOR OUT
DHVSICAL			22 44 CSC SENSOR OUT
	1 5" × 2 5" × 0 4"	*	MATING COCKET
Case Size	1.3 ~ 2.3 ~ 0.0		MATING SUCKET:
NOTES			AC1218

NOTES

*Specifications same as 2B50A.

Specifications same as 2B50A.
Gain nonlinearity is specified as a percentage of output signal span representing peak deviation from the best straight line; e.g., nonlinearity at an output span of 10V pk-pk (±5V) is ±0.01% or ±1mV.
Does not include open circuit detection current of 20nA (optional by jumper connection).
Open input response time is dependent upon gain.
When used with internally provided CJC sensor.
Compensation error contributed by ambient temperature changes at the module.
Output swing of ±10V may be obtained through output scaling (Figure 5).

Specifications subject to change without notice.

FUNCTIONAL DESCRIPTION

The internal structure of the 2B50 is shown in Figure 1. An input filtering and protection network precedes a low drift, high performance amplifier whose gain is set by a user supplied resistor (R_G) for gains of 50 to 1000V/V. Isolated power is brought out to permit convenient adjustment of the input offset voltage, if desired.

Figure 1. 2B50 Functional Block Diagram

Internal circuitry provides reference junction compensation. An integral reference junction sensor is provided for direct thermocouple connections, or an external reference sensor (2N2222 transistor) may be used in applications having remote thermocouple termination. Compensating networks for thermocouple types J, K, and T are built into the 2B50. A fourth compensation (X) may be programmed with a single resistor for any other thermocouple type. The 2B50 can be programmed for uncompensated output when used with inputs other than thermocouples.

Transformer coupling is used to achieve stable, reliable input to output galvanic isolation, as well as elimination of ground loop error effects.

Normally, the full scale output of the 2B50 is $\pm 5V$. However, with the addition of an external resistive divider, the output buffer amplifier may be scaled for a gain of up to 2, providing a full scale output swing of $\pm 10V$.

OPERATING INSTRUCTIONS

The connections shown in Figure 2 are common to most applications using the 2B50, and, in many cases, will be all that is required.

Figure 2. Basic 2B50 Application

Applying the 2B50

Two sets of parallel thermocouple input connections are provided. The thermocouple input may be connected by screw terminals (input +, Input -) or to terminal Pins 1 (-) and 2 (+) in cases where thermocouples are to be remotely terminated. The following sections describe a basic thermocouple application, as well as detail some optional connections to enhance performance in more demanding applications. Jumper A (Figure 2) is used to disconnect cold junction compensation circuitry during offset adjustments.

INTERCONNECTION GUIDELINES

All power supply inputs should be decoupled with 1μ F capacitors as close to the unit as possible. Any jumpers installed for programming purposes should also be installed as close as possible to minimize noise pickup effects.

Since the oscillator section of the 2B50 accounts for most of the power consumption but can accept a wide range of voltages (+13V to +18V), it may be desirable to power this section from a convenient source of unregulated power.

If the same supply is to be used for both amplifier and oscillator circuitry, the power supply returns should be brought out separately so that oscillator power supply currents do not flow in the low lead of the signal output. In either case, a 1μ F capacitor must be connected from +V_{OSC} (Pin 28) to Oscillator COM (Pin 29).

The oscillator and amplifier sections are completely isolated; therefore, a dc power return path is not required between the two power supply commons.

GAIN SETTING

The gain of the 2B50 is set by a user-supplied resistor (R_G) connected as shown in Figure 2. Gain will normally be selected so that the maximum output of the signal source will result in a plus full scale output swing. The resistor value required is determined by the equation: $R_G = 200 k \Omega/(G-1)$.

A series trim on the gain setting resistor can be used to trim out the resistor tolerance and module gain error (Figure 3). Since addition of a series resistance will always decrease gain, the value of the gain-setting resistor should be selected to provide a gain somewhat higher than the desired trimmed gain. A good quality (e.g., $10ppm/^{\circ}C$), metal-film resistor should be used for R_G, since drift of R_G will add to the overall gain drift of the 2B50. A cermet pot is suitable for the trim. Note that a minimum gain of 50 is required for guaranteed operation.

Figure 3. Gain Adjustment

INPUT AND OUTPUT OFFSET ADJUSTMENTS

The 2B50 has provisions for adjusting input and output offset errors of the module. None of the offset adjustments will affect drift performance, and adjustments need not be used unless the particular application calls for lower offsets than those specified.

Connections for offset adjustments are shown in Figure 4. Isolated supply voltages are brought out for input trimming convenience only and are not for use as a power supply for external components.

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-79

Figure 4. (A) Input and (B) Output Offset Adjustment

OFFSET CALIBRATION

- 1. Short Input + and Input together.
- 2. Disconnect cold junction compensation circuitry by removing Jumper "A" (Figure 2).
- 3. Adjust input offset trim pot (±250µV range, RTI) to zero output while operating at the desired gain. In most applications, adjustment of the input offset alone will be sufficient. Output offset adjustment (±30mV range) may be performed if it is desired to adjust output offset on the nonisolated side.

OPEN INPUT DETECTION

Connecting the open input detection pin (Pin 39) to Input High (Pin 2) creates a 20nA bias current which will provide a negative overscale response if the input is opened, or in case of thermocouple "burn out". The speed at which this occurs is dependent on gain, with a typical response time of 1.4sec @ G = 250. For positive upscale response, connect a 500M\Omega resistor between +V_{ISO} (Pin 8) and Input Hi (Pin 2).

OUTPUT SCALING

With the output scale (Pin 16) connected to the output (Pin 17), the full scale output range is $\pm 5V$ and the total gain is equal to the gain set by R_G. For applications requiring a full scale output of $\pm 10V$, a resistive divider may be connected to provide a gain of 2 at the output amplifier (see Figure 5). In this configuration, total gain will be twice the gain set by R_G. Output gains greater than 2 cannot be used.

Figure 5. Output Scaling Connections

COLD JUNCTION COMPENSATION

The 2B50 may be programmed to provide cold junction compensation for types J, K and T thermocouples by connecting a jumper from Input Low (Pin 1) to the appropriate programming points (Pin 42 for J, Pin 41 for K or T). To compensate other themocouple types, a resistor (R_X) is connected from the "X" programming point (Pin 40) to Input Low (Pin 1). Table I shows the appropriate R_X values for types E, R, and S. R_X should be a 50ppm/°C, 1% tolerance resistor. Type B thermocouples are unique, in that they have almost no output in the $+5^{\circ}$ C to $+45^{\circ}$ C range, and, therefore, do not require cold junction compensation at all. To accommodate a type B thermocouple, resistor R_X must be left open. Error due to cold junction temperature will be less than $\pm 1^{\circ}$ C for any measurement above 260°C. In the measurement range above 1000°C (where type B thermocouples are normally used) the error will be less than $\pm 0.3^{\circ}$ C.

Т Туре	$\mathbf{R}_{\mathbf{X}}$ (k Ω)
Е	1.87
R,S	19.6
В	Open

Table I. Compensation Values for Thermocouple Types E, R, S and B

REMOTE REFERENCE SENSING

In applications requiring termination of thermocouple leads at a point located remotely from the 2B50, with connections brought to the 2B50 (Pins 1, 2) by copper wires, reference temperature sensing at the remote location will be necessary. The 2B50 has provisions for connection of a 2N2222 transistor (metal can version) for use as a reference junction sensor. The connections are shown in Figure 6. The remote sensing transistor is calibrated by adjusting R_{CAL} to obtain the value of V_{CAL} as specified in Table II.

(Example: $V_{CAL} = 570.0 \text{mV} \otimes 25^{\circ}\text{C}$)

Figure 6. Remote Reference Junction Sensing

Sensor Temp (°C)	V _{CAL} (mV)
5	616.5
10	604.9
15	593.3
20	581.6
25	570.0
30	558.4
35	546.8
40	535.1
45	523.5

(Values may be interpolated)

Table II. Calibration Voltages vs. Sensor Temperature

Proper sensor placement is important. Close thermal contact of the sensor and thermocouple termination point (reference junction) is essential for accurate operation of the 2B50. The sensor may be placed any distance from the 2B50. When the sensor leads are more than ten feet long, or in the presence of strong noise signal sources, shielded cable should be used.

Four-Channel, Isolated Thermocouple/mV Conditioners

2B54/2B55

FEATURES

Low Cost Per Channel

Wide Input Span Range: $\pm 5mV$ to $\pm 100mV$ (2B54) $\pm 50mV$ to $\pm 5V$ (2B55) Pin Compatible with 2B34 RTD Conditioner High CMV Isolation: $\pm 1000V$ dc; CMR = 156dB min @ 60Hz Low Input Offset Voltage Drift: $\pm 1\mu V/^{\circ}$ C max (2B54B) Low Gain Drift: $\pm 25ppm/^{\circ}$ C max (2B54B) Low Nonlinearity: $\pm 0.02\%$ max ($\pm 0.012\%$ typ) Normal Mode Input Protection (130V rms) and Filtering Channel Multiplexing: 400 chan/sec Scanning Speed Solid State Reliability

APPLICATIONS

Multichannel Thermocouple Temperature Measurements Low and High Level Data Acquisition Systems Industrial Measurement and Control Systems

GENERAL DESCRIPTION

Models 2B54 and 2B55 are low cost, high performance, fourchannel signal conditioners. Both models are functionally complete, providing input protection, isolation and common mode rejection, multiplexing, filtering and amplification.

The 2B54 has been designed to condition low level signals ($\pm 5mV$ to $\pm 100mV$), like those generated by thermocouples or strain gages, in the presence of high common mode voltages. The 2B55 is optimized to condition $\pm 50mV$ to $\pm 5V$ or 4 to 20mA transmitter signals as inputs. The four-channel structure of both models results in significant cost and size reduction.

The high performance of the 2B54 and 2B55 is accomplished by the use of reliable transformer isolation techniques and an amplifier-per-channel architecture. Each of the input channels is galvanically isolated (±1000V dc) from the other input channels and from output ground. The amplifier-per-channel structure is used to obtain low input drift (±1 μ V/° C max, 2B54B), high common mode rejection (156dB @ 60Hz), and very stable gain (±25ppm/° C max). Other key features include low input noise (1 μ V p-p), low nonlinearity (±0.02% max) and open-thermocouple detection (2B54).

APPLICATIONS

Models 2B54 and 2B55 were designed to serve as a superior alternative to the relay multiplexing circuits used in multichannel data acquisition systems, computer interface systems, process signal isolators, and temperature measurement and control instrumentation. Advantages over relay circuits include functional versatility, superior performance, and solid state reliability. Both models are also pin compatible with the 2B34, four-channel RTD/strain gage conditioner.

In thermocouple temperature measurement applications, outstanding low drift, high noise rejection, high throughput and 1000V isolation make the 2B54 a natural choice over flying

2B54/2B55 FUNCTIONAL BLOCK DIAGRAM

capacitor multiplexers in conditioning any thermocouple type. When cold junction compensation is required in measurement of temperature with thermocouples, the 2B54 may be used directly with the model 2B56 Universal Cold Junction Compensator.

DESIGN FEATURES AND USER BENEFITS

High Reliability: To assure high reliability and provide isolation protection to electronic instrumentation, reliable transformer isolation and solid state switching are used. Both models have been conservatively designed to meet the IEEE standard for Transient Voltage Protection (472-1974:SWC) and offer 130V rms normal mode input protection.

High Noise Rejection: To preserve high system accuracy in electrically noisy industrial environments, the 2B54 and 2B55 provide excellent common mode noise rejection, RFI/EMI immunity, and low pass filtering for rejection of series mode noise and 50Hz/60Hz pickup.

Ease of Use: The multichannel, functionally complete design in a compact $(2'' \times 4'' \times 0.4'')$ module, assures ease of use, conserves board space and eliminates the need for a number of discrete components necessary in relay multiplexing circuits.

Low Cost: The 2B54 and 2B55 offer the lowest cost per channel for isolated, solid state, low level signal conditioners.

SPECIFICATIONS (typical @ $+25^{\circ}$ C and V_s = $\pm 15V$ and V_{osc} = +15V, unless otherwise noted)

Model	2B54A	2B54B	2B55A	OUTLINE DIMENSIONS
ANALOG INPUTS				Dimensions shown in inches and (mm).
Number of Channels	4	•	•	1
Input Span Range	±5mV to ±100mV	*	±50mV to ±5V	2 01 (51 1) MAX
Gain Equation	$G = 1 + 10k\Omega/R_{C}$	•	•	
Gain Error	±0.2% max (G = 50 to 300)	•	±0 2% max (G = 1 to 100)	0 41 (10 4) MAX
	±1% max (G = 1000)	•	NA	0 02 (0 5)
Gain Temperature Coefficient	±35ppm/°C max	±25ppm/°C max	±25ppm/°C max	
Gain Nonlinearity ¹	±0.03% max (G = 50 to 300)	±0.02% max(±0 012% typ)	±0.02% max (G = 1 to 100)	- 02(61) MAX
	±0.03% (G = 1000)	•	NA	
Offset Voltage				
Input Offset, Initial (Adj. to Zero)	$\pm 20\mu V$ max	•	$\pm 50\mu V$ max	
vs Temperature	$\pm 2.5\mu V/C max$	$\pm 1\mu V/C max(\pm 0.5\mu V/C typ)$	±5µV/ C max	
vs Time	$\pm 1.5\mu$ V/month	•	•	
Output Offset (Adjustable to Zero)	$\pm 12 \text{mV}$ max	•		 ∑ + + + + + + + + + + + + ↓
vs. Temperature	$\pm 50\mu V/C max$		•	
Total Offset Drift (RTI), max	$\pm (2.5 + \frac{50}{50}) \mu V / C$	$\pm (1 + \frac{50}{C}) \mu V/^{2}C$	$\pm (5\mu V + \frac{50}{C})\mu V/^{\circ}C$	 ♦
Innus Marea Valtage	C G/	(G)	(* 6)*	
$0.01H_{7} = 100H_{7}$ R ₂ = 1kO	1//W p.p.	•	•	O 19 O 19 O 4 02
CMV Channel-to-Channel or	1µv p-p			102 1)
Channel-to-Ground				
Continuous, ac. 60Hz	750V rms	•	•	
Continuous, ac or dc	±1000V pk max	•	•	
Common Mode Rejection				I ₹ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
$R_S \leq 100\Omega, f \geq 50Hz$	156dB min (G = 1000)	•	145dB min (G = 100)	Ĩ ∳ ĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨ
$R_S \leq 100\Omega, f \geq 50Hz$	128dB min (G = 50)	•	110dB min (G = 1)	₩₩₩₩₩
Normal Mode Input, Without Damage	130V rms, 60Hz	•	•	
Normal Mode Rejection, @ 60Hz	55dB min (G = 1000)	•	55dB min (G = 100)	
Input Resistance, Power On	100MΩ	•	•	● 1 ⁷ 2 ●
Power Off	35kΩ min	•	74kΩ min	
Input Bias Current	+8nA max	•	•	WEIGHT 2 OZ 0 1 (2 54) GRID
ANALOG OUPUT				(57G)
Output Voltage Swing ²	±5V @ ±5mA	•	•	TERMINAL PINS INSTALLED ONLY IN SHADED
Output Noise, dc - 100kHz	0.8mV p-p	•	•	HOLE LOCATIONS
Output Resistance	-			
Direct Output	0 102	•	•	2054/2055 DIN DESIGNATIONS
Switched Output	3512		-	2DJ4/2DJJ FIN DESIGNATIONS
CHANNEL SELECTION				
Channel Selection Time to ±0 01% FS	2 5ms max	•	•	PIN FUNCTION PIN FUNCTION
Channel Scanning Speed	400 chan/sec min	•	•	1 - SELECT CH D 37 HI
Bating	2W may			3 SWD OUTPUT ENABLE 39 RG
	5V max	·	-	4 SWITCHED 40 RG/COM CHANNEL A 5 41 LO/OFS
POWER SUPPLY				6 DIRECT 42 V-OUT
Output +V- (Pated Performance)	+15V do +10%			8 YOUTPUT 44
(Operating)	±13V to ±18V dc max	*	•	9 OFS ADJ (45 10 46
Oscillator +Voss	=12 V to =10 V ut max			11 -Vs 47 HI
(Rated Performance)	+13 5V to +24V	•	•	13 +Vs 49 Rg
Absolute max +VOSC	+26V	•	•	14 50 Rg/COM CHANNEL B 15 -) 51 LO/OFS
Current				16 SELECT CH C 52 V-OUT
Output $\pm V_S = \pm 15V$	±4mA max	•	•	18 +) 54
Oscillator +V _{OSC} = +15V	40mA max	*	•	19 55 20 - 1 56 HI
Supply Effect on Offset				21 + SELECT CH B 57
Output ±Vs	100µV/V RTO	-	-	23 59 Rg/COM CHANNEL C
Oscillator + VOSC	1μν/ν κπ	-	-	24 60 LO/OFS 25 61 V-OUT
ENVIRONMENTAL				26 62 V+ OUT J
Temperature	0			28 64
Rated Performance	0 to $+70$ C			29 65 30 AVeral 66 Hi
Storage	$-23 \ C \ t0 + 63 \ C$	•	•	31 COM OSC POWER 67
Relative Humidity	-55 0 10 705 0			32 IN 33 OUT SYNC 68 Rg 69 Rg/COM CHANNEL D
Non-Condensing to +40°C	0 to 85%	•	•	34 70 LÖ/OFS
CASE SIZE	2" X 4" X 0 4"	*	•	36 + SELECT CH A 72 V+ OUT
CASE SIZE	2 A 4 A 0.4			

NOTES

Specifications same as 2B54A.

Operational states as 20-74. Can nonlinearity in specified as a percentage of output signal span representing peak deviation from the best straight line, e.g. nonlinearity at an output span of 10V pk-pk (±5V) is ±0.02% or ±2mV Protected for shorts to ground and/or either supply voltage.

Specifications subject to change without notice.

MOUNTING CARDS AC1215, AC1216

The AC1215 and AC1216 mounting cards are available to assist in evaluation of the 2B54 and 2B55. These $4.1/2'' \times 6''$ printed circuit edge connector cards have sockets that allow a 2B54/2B55 and 2B56 to be plugged directly onto them, as well as offset adjustment pots, and address decoding circuitry. The AC1215 and AC1216 differ only in input signal connections: the AC1215 includes a screw terminal block and AC1216 has an edge connector.

0 462

DECODER

0 375 (9 53)

3 575 (90 81)

Mating Connector: Cinch 251-22-30-160 or equivalent.

DNS

AC1215 OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

6 0 (153)

1

45

ADJ

FUNCTIONAL DESCRIPTION

The internal structure of the 2B54/2B55 is shown in Figure 1. Four individually isolated input channels are multiplexed into a single output buffer, with the desired channel selected by control inputs SELECT A through SELECT D. Isolated power and timing signals for the input channels are provided by an internal oscillator.

Each channel contains an input protection and filtering network and a low-drift amplifier whose gain is set by a usersupplied resistor (R_G). Additional filtering is provided in the amplifier circuit. This structure preserves signal integrity by taking all signal gain ahead of the isolation and multiplexing circuits. The isolated power supply for each channel is brought out to permit convenient fine adjustment of the input offset voltage if desired.

Transformer coupling is used to achieve stable, reliable galvanic isolation of each channel from all other channels and from output ground. Although the bandwidth of the input channels is small (<2Hz at high gains) to provide immunity to normal-mode noise, the multiplexing technique allows the channels to be scanned at a high rate (400 channels/sec). Thus a high revisitation rate is maintained even in systems with a large number of input channels.

The output buffer amplifier operates at unity gain with feedback provided by an external connection from the DIRECT output to the SENSE input. The DIRECT output provides a $\pm 5V$ swing with low source resistance to permit error-free operation with heavy loads. In addition, a separate seriesswitched output with an active-low enable control is provided so that multiple modules may be combined without the use of external analog multiplexers. An offset trim point which does not affect drift is also provided on the output channel.

Figure 1. 2B54/2B55 Functional Diagram

The internal oscillator has its own power supply pins for enhanced application flexibility, and a sync mechanism is provided to eliminate beat-frequency errors when multiple 2B54/ 2B55's are used or when a system clock is present.

The 2B54 and 2B55 share the same design, differing only in input specifications and filter characteristics.

OPERATING INSTRUCTIONS

The connections shown in Figure 2 are common to most applications of the 2B54/2B55, and in many cases will be all that is required. The following sections describe this basic application and also detail some optional connections which enhance the module's utility in more complex applications.

Figure 2. Basic 2B54/2B55 Application

Interconnection Guidelines

In any high accuracy isolator application it is important to minimize coupling between input and output, and the 2B54/ 2B55 pinout has been designed to make this easy to do. For best results, keep all leads associated with signals on the input edge as far as possible from signals on the output edge. This will minimize the effects of board leakage and capacitance. The use of a guard track on both sides of the board (Figure 2) can also be helpful.

The power supplies should be decoupled with tantalum capacitors as close to the unit as possible. For lowest noise, the output grounding scheme should be as shown in Figure 2. The output signal common is connected directly to pin 12, with power supply returns brought separately to that pin so that power supply currents do not flow in the low lead of the signal output.

Since most of the power taken by the 2B54/2B55 is supplied to the internal oscillator which requires only a positive supply and can accommodate a wide range of supply voltages, it is sometimes desirable to power the oscillator from a convenient source of unregulated power (such as +24V - Figure 2). A $0.1\mu F$ capacitor should be then connected directly from pin 12 to pin 31. Since the output and oscillator circuits are not fully isolated, a dc path must exist between the two power supply commons. A small (one or two volts) potential difference between OUT COM and OSC COM will not affect operation.

SIGNAL CONDITIONING COMPONENTS & SUBSYSTEMS 11-83

Gain Setting

The gain of each channel is independently set by a usersupplied resistor (R_G) connected as shown in Figure 2. Channel gain will normally be selected so that the maximum output of the signal source will result in a plus or minus full scale (±5V) output swing. The resistor value required is R_G = 10k Ω / (G - 1). Thus if R_G = 101 Ω , the gain will be 100, and an input signal swing of ±50mV will yield an output span of ±5V.

A parallel trim on the gain-setting resistor can be used to trim out the resistor's tolerance and the module's gain error (Figure 3). Since a parallel trim will always increase the gain, the value of the gain-setting resistor should be chosen to give an untrimmed gain somewhat lower than the desired trimmed gain. Good quality metal-film resistors should be used for R_G since gain accuracy and drift are a direct function of R_G's characteristics. Cermet pots are suitable for the trim.

Figure 3. Input Offset and Gain Adjustments

Optional Offset Adjustment

The 2B54/2B55 has provision for fine adjustment of the input offset of each channel and the output offset of the entire module. None of the offset adjustments affect offset drift, and there is no need to make any adjustment unless the application calls for tighter offsets than those specified for the module type.

Connections for input offset adjustment are shown in Figure 3. This is a fine trim with a limited range $(\pm 250\mu V - 2B54)$ and $\pm 1mV - 2B55$, RTI), used to adjust each channel for zero offset while operating at the desired gain. Since the range of the input offset first is small, it will usually be necessary to adjust output offset first. This can be conveniently done by operating one channel with zero input at unity gain (by disconnecting the gain resistor) and adjusting the output offset adjustment are shown in Figure 4.

Figure 4. Output Offset and Master Gain Adjustments

An alternative offset adjustment procedure is appropriate in applications where the channel gains are field-selected by switching the gain-setting resistor. Here it is desirable to set the input offset so that there is no zero shift at the output when the gain is changed. To make the adjustment, switch back and forth from low to high gain with zero input and adjust the input offset control until no shift occurs at the output when changing gains. Then adjust the output offset control for zero output at the lower gain. Stable components (a metal film resistor and a cermet pot) should be used for the input offset adjustment to avoid compromising drift. Output offset adjustment components are not critical and may be omitted altogether when a single 2B54/ 2B55 is followed by an A to D Converter that has a zero adjustment.

Channel Selection

Each channel in the 2B54/2B55 is turned on and off by a SELECT input. As indicated in Figure 1, each SELECT input consists of an LED in series with a resistor, and is not connected to any other circuits in the module. Turning the LED on (I ≥ 2.5 mA) turns the channel on, and turning the LED off (I $\leq 50\mu$ A) turns the channel off. This allows considerable flexibility of connection, but the easiest way to use the SELECT inputs is to tre all four SELECT + pins to +5V and drive the SELECT-inputs from TTL logic (either open-collector or totem-pole outputs can be used), as shown in Figure 2.

It is also possible to use CMOS logic to drive the SELECT inputs (Figure 5). With a +15V logic supply a standard CMOS decoder or gate can supply enough current to drive the SE-LECT inputs directly, but at lower supply voltages it is advisable to use a buffer such as that shown in Figure 5b. The power taken by the SELECT inputs is small, since only one is on at a time, but at the higher CMOS supply voltages more current than the required 2.5mA will flow. This does not affect operation, but if desired the current can be brought back to the minimum value with series resistors as shown in Figure 5. Use $2k\Omega$ for 10V operation, and $3.9k\Omega$ at 15V.

The maximum reverse voltage applied to any SELECT input must be limited to 3V to avoid damage to the LED. Maximum forward current should be kept below 25mA. Each SELECT input is isolated from all other circuits in the module and may be operated up to $\pm 50V$ away from output and power ground.

Channels may be selected in any order, and there are no restrictions on rate or duty cycle except the 2.5ms settling time for access to a channel. It should be noted, however, that selecting two or more channels simultaneously for more than a few microseconds will result in a very long settling time when the conflict is resolved. Timing overlaps should therefore be avoided.

Figure 5b. Figure 5. CMOS Channel Selection

Channel Expansion

The 2B54/2B55 has provision for directly interconnecting several modules when more than four channels are needed. The series-switched outputs of a group of modules are connected together, the SELECT inputs are driven in parallel, and the output of the desired module is selected using the Output Enable pin. This is shown in Figure 6. A single 74LS139 decoder is used to drive the SELECT inputs of up to four modules, and also provides address expansion so that the binary coded channel address word selects the appropriate module output via the Output Enable pins. The overall operation of the series-switched outputs is analogous to three-state logic, and the output rail is thus an analog bus.

It is possible to operate up to sixteen modules in parallel, for a total of 64 input channels. Note that it will be necessary to break up the SELECT inputs into several groups to avoid overloading the decoder when many modules are used. The settling time of the output switches is $<50\mu$ s to $\pm0.01\%$ and is thus negligible in comparison to the channel selection times.

The Output Enable signal is active low, and is compatible with both TTL and CMOS logic. The switching threshold is +1.8V; input current at 0V is typically -0.4mA.

The output resistance of the Switched Output (typically 35Ω $+0.5\%/^{\circ}$ C) is low enough to provide fast switching times but will cause gain errors when driving a heavy load. A single buffet isolating the Switched Outputs from the load will solve this problem in an "analog bus" application (Figure 6). In single-module applications the DIRECT (low impedance) output should be used. Note that in all cases the SENSE pin must be connected to the DIRECT output to provide feedback for the output amplifier.

Figure 6. Expansion to More than Four Channels

Synchronization

In applications where multiple 2B54/2B55's are used in close proximity or when system clock signals are present near the isolator, differences in individual oscillator frequencies may cause "beat frequency" related output errors. To eliminate these errors, multiple units may be synchronized by connecting the SYNC OUT (pin 33) terminal to the SYNC IN (pin

32) terminal of the adjacent 2B54/2B55 (Figure 7). The first of a group of modules may be synchronized to an external source via the SYNC IN pin. To minimize noise pickup, sync wiring should be separated from analog signal runs.

The frequency of the external sync source, when used, will have a small effect on the gain and output offset of the 2B54/ 2B55. Thus any adjustments should be made with the module synchronized.

Open Input Detection

The 2B54 can be programmed to respond to an open-circuit condition on a channel input with either an upscale or downscale response when the affected channel is selected. The response time to detect an open input can be in the tens of seconds, since only a few nA of input bias current are available to charge the input filter. The circuits in Figure 8 indicate the selection of either downscale or upscale response and can be used to provide shorter open-circuit response times. Either circuit will produce a bias current of approximately 20nA which can be used to aid or oppose the 3nA typically supplied by the module, as shown. The circuit of Figure 8A has the advantage of simplicity, but the highvalue resistor may not be readily available. Figure 8B shows how to solve the problem at the expense of complexity. The values shown may be modified to give an optimum trade of bias current for response time in a given application. A 2 to 5 second response is typical for the values shown.

If a downscale response is desired, a resistor divider circuit like Figure 8B may be desired to prevent a negative overscale. If a negative overscale condition occurs (typically -7V), the output will saturate on all channels.

Figure 8. High Speed or Reversed Open Input Detection **Output Filtering**

In most applications, no output filtering will be required since the effect of the small carrier-related noise spikes on the output (<1mV p-p, 100kHz B.W.) drops off rapidly as bandwidth decreases and in many cases will be negligible. In some applications (e.g., when driving a successive-approximation A to D) the effective system bandwidth may be large enough to pass the noise. To eliminate the carrier noise (without any effect on switching times), a simple R-C filter may be used at the output (Figure 9A). Only one filter is needed even when multiple modules are used, as shown in Figure 9B. If the load to be driven has an input resistance of less than $10M\Omega$, a buffer will be needed.

Figure 9. Output Filtering

CMR AND NMR PERFORMANCE

Common mode rejection is a result of both isolation and filtering and indicates ability to reject common mode inputs while amplifying differential signal inputs. CMR is dependent on source impedance imbalance, signal frequency and conditioner gain.

Normal mode rejection is also a function of the 2B54/2B55 gain. Figures 10 and 11 illustrate typical CMR and NMR performance. Note that any additional low pass filtering (e.g., an integrating A to D converter) at the output of the 2B54/ 2B55 will further improve both CMR and NMR performance.

Figure 10. Common Mode and Normal Mode Response – Model 2854

Figure 11. Common Mode and Normal Mode Response – Model 2B55

APPLICATIONS

Thermocouple Temperature Measurement: Figure 12 shows a four-channel thermocouple input system with isolation, amplification, and multiplexing provided by the 2B54. Several different thermocouple types are used, and the gain-setting resistors on each channel have been chosen to take the standard ANSI range for each type to a 5V output span. Since thermocouples must be compensated for the temperature of the reference junction which is formed where the thermocouple leads are terminated, the 2B56 Universal Cold Junction Compensator is used. The 2B56 monitors the temperature of the reference junction (terminal block) via an external sensor and corrects the signal at the output of the 2B54 for reference temperature. Compensation for several thermocouple types is selectable via digital control inputs. Thermocouple linearization, if needed, would be typically performed in system's software.

Figure 12. Four-Channel Thermocouple Temperature Measurement with Cold Junction Compensation

Process Signals Interface: In Figure 13, the 2B55 is used to provide floating inputs for four 4-20mA process signal loops. The use of floating inputs in this type of application gives protection from common-mode voltages and greatly simplifies system configuration, since additional loads in series with the loop can be connected on either side of the isolator input.

Each current input is converted into a 1 to 5 volt signal by a 250 Ω resistor. The 2B55 is operated at unity gain (no gainsetting resistors) so that a 1 to 5 volt signal appears at the output. Since no gain-setting resistors are used, gain adjustment, if required, is done by connecting trims directly across the input resistors. Other current ranges can be accommodated by changing the value of the input resistors.

When there are several loads on the loop, compliance voltage at the transmitter may be at a premium. In this case it will be advantageous to reduce the voltage swing at the isolator inputs by using smaller resistors (perhaps 25Ω) and scaling the output back to a 5V span by taking an appropriate gain in the isolator.

Figure 13. Isolated 4-20mA Loop Signals Interface

2B Series

The 2B Series two-wire transmitters are versatile, rugged and accurate ($\pm 0.1\%$) instruments designed to operate in harsh environments. All units feature RFI/EMI immunity and an operating temperature range of -30° C to $+85^{\circ}$ C. The 2B Series transmitters accept input from thermocouples (both isolated and nonisolated), RTDs, AD590 sensors and dc current or voltage sources. The thermocouple and RTD models are FM approved for intrinsically safe operation. A loop-powered isolator is also available.

2B52 and 2B53: Thermocouple Input

- Accuracy: ±01%
- Isolation: ±800V pk (2B52 only)
- Supply voltage range. + 12V to +60V
- Load resistance range. 0 to 600Ω
- $(at V_{s} = +24V)$
- FM approved (2B52)

Ordering Information

Range in °C (°F)	тс туре	No.
- 100 to + 300 (- 148 to + 572)	J, K, T	01
0 to + 200 (+ 32 to + 392)	т	02
0 to + 500 (+ 32 to + 932)	J	03
0 to + 600 (+ 32 to + 1112)	к	04
0 to + 750 (+32 to + 1382)	J	05
0 to + 1000 (+ 32 to + 1832)	к	06

Custom ranging is also available.

• Accuracy ±01%

2B58: RTD Input

- Linearized output
- Sensor excitation. 0 5mA
- Supply voltage range + 16V to + 60V
- Load resistance range 0 to 400Ω (at V_S = + 24V)
- FM approved

Ordering Information

Example:	Model 2858A-1-1-01
Enter Model 2858A	
Enter Housing 1-standard enclosure	
Enter RTD Type 1-100 Ω Pt, $\alpha = 0.0038$	ıs
Enter Temperature Rang 01 through 04	e

Range in °C (°F)	No.
- 100 to + 100 (- 148 to + 212)	01
0 to + 100 (+32 to +212)	02
0 to + 200 (+32 to + 392)	03
0 to + 400 (+ 32 to + 752)	04

Custom ranging is also available.

- Accuracy. ±0.1%
- Input current: 1-30mA (2B24A), 1-50mA (2B24B)
- Input voltage requirement 3 5V plus voltage drop across output load
- Isolation ± 1500V pk

Ordering Information

Example: Model 2B24A Enter Model 2B24A (1-30mA) ______ 2B24B (1-50mA)

This two-page data summary contains key specifications to speed your selection of the proper solution for your application. Additional information on this product can be obtained from your local sales office.

TRANSMITTERS FOR ENERGY MANAGEMENT APPLICATIONS

The 2B57 in a modular form and 2B59 two-wire transmitters were specifically designed to provide low cost, small size and ease of installation in multipoint temperature monitoring applications. These transmitters can be mounted in a standard $2'' \times 4''$ utility box with a probe for duct temperature sensing or in wall thermostat boxes. The 2B57 is also available in a standard metal enclosure.

The Complete Signal Conditioning I/O Subsystem

3B Series

FEATURES/BENEFITS

Low Cost, Completely Integrated 16-Channel Modular Signal Conditioning Subsystem Wide Selection of Functionally Complete Input and **Output Plug-In Modules** Rugged Industrial Chassis, Rack or Surface Mounted **On-Board Power Supplies Available** Analog Input Modules Available for Direct Interface to a Wide Variety of Signal Sources Thermocouples, RTDs, Strain Gages, LVDTs Millivolt, Voltage and Frequency Sources, 4-20mA/0-20mA Process Current Inputs **Current Output Modules** 4-20mA/0-20mA Outputs **Complete Signal Conditioning Function** Input Protection, Filtering, Amplification, Galvanic Isolation to ±1500V. Wide-Range Zero Suppression, High Noise Rejection and RFI/EMI Immunity,

GENERAL DESCRIPTION

The 3B Series Signal Conditioning I/O Subsystem provides a low cost, versatile method of interconnecting real-world analog signals to a data acquisition, monitoring or control system. It is designed to interface directly to analog signals such as thermocouple, RTD, Strain Gage, or AD590/AC2626 solid state temperature sensor outputs or millivolt or process current signals and convert the inputs to standardized analog outputs compatible with high level analog I/O subsystems.

Simultaneous Voltage and Current Outputs

The 3B Series Subsystem consists of a 19" relay rack compatible universal mounting backplane and a family of plug in (up to 16 per rack) input and output signal conditioning modules. Eight and four channel backplanes are also available. Each backplane incorporates screw terminals for sensor inputs and current outputs and a connector for high level single ended outputs to the user's equipment.

The input and output modules are offered in both isolated $(\pm 1500V \text{ peak})$ and nonisolated versions. The input modules feature complete signal conditioning circuitry optimized for specific sensors or analog signals and provide high level analog outputs. Each input module provides two simultaneous outputs: 0 to 10V (or $\pm 10V$) and 4-20mA (or 0-20mA). Output modules accept high level single ended signals and provide an isolated or nonisolated 4-20mA (or 0-20mA) process signal. All modules feature a universal pin-out and may be readily "mixed and matched" and interchanged without disrupting field wiring.

Each backplane contains the provision for a subsystem power supply. The 3B Series Subsystem can operate from a dc/dc converter or ac power supply mounted on each backplane or from externally provided dc power. Two LEDs are used to indicate that power is being applied.

APPLICATIONS

The Analog Devices 3B Series Signal Conditioning Subsystem is designed to provide an easy and convenient solution to signal conditioning problems in measurement and control applications. Some typical uses are in mini- and microcomputer based systems, standard data acquisition systems, programmable controllers, analog recorders, dedicated control systems, and any other applications where monitoring and control of temperature, pressure, flow, and analog signals are required. Since each input module features two simultaneous outputs, the voltage output can be used to provide an input to a microprocessor based data acquisition or control system while the current output can be used for analog transmission, operator interface, or an analog backup system.

DESIGN FEATURES AND USER BENEFITS

Ease of Use: Direct sensor interface via screw terminals, standardized high level outputs, factory precalibration of each unit and the modular design make the 3B Series Subsystem extremely easy to use. The subsystem features rugged packaging for the industrial environment and can be easily installed and maintained.

High Protection and Reliability: All field wired terminations offer 130V or 220V rms normal-mode protection. To assure connection reliability, gold plated pin and socket connections are used throughout the system. The isolated modules offer protection against high common-mode voltages and are designed to meet the IEEE Standard for Transient Voltage Protection (472–1974: SWC).

High Performance: The high quality signal conditioning features $\pm 0.1\%$ calibration accuracy and chopper-based amplification which assures low drift ($\pm 1\mu V/^{\circ}C$) and excellent long-term stability. For thermocouple applications, high accuracy cold junction sensing is provided in the backplane on each channel. Low drift sensor excitation is provided for RTD and strain gage models. For RTD models, the input signal is linearized to provide an output which is linear with temperature.

This four-page data summary contains key specifications to speed your selection of the proper solution for your application. Additional information on this product can be obtained from your local sales office.

FEATURES

Wide Variety of Sensor Inputs
Thermocouples, RTDs, Strain Gages, LVDTs, AD590/AC2626
Dual High Level Outputs
Voltage: 0 to +10V or ±10V
Current: 4-20mA/0-20mA
Mix and Match Input Capability
Sensor Signals, mV, V, 4-20mA, 0-20mA
High Accuracy: ±0.1%
Low Drift: ±1µV/°C
Reliable Transformer Isolation:
±1500V CMV, CMR = 160dB
Meets IEEE-STD 472: Transient Protection (SWC)
Input Protection: 130V or 220V rms Continuous
Low Cost Per Channel

GENERAL DESCRIPTION

Each input module is a single channel signal conditioner that plugs into sockets on the backplane and accepts its signal from the input screw terminals. All input modules provide input protection, amplification and filtering of the input signal, accuracy of $\pm 0.1\%$, low drift of $1\mu V/^{\circ}C$ (low level input modules), and feature two high level analog outputs that are compatible with most process instrumentation. The isolated input modules also provide $\pm 1500V$ isolation.

The choice of specific 3B module depends on the type of input signal and also whether an isolated or nonisolated interface is required. Input modules are available to accept millivolt, volt, process current, thermocouple, RTD, strain gage, and AD590 inputs. The voltage output of each module is available from the voltage I/O connector while the current output is available on the output screw terminals.

THERMOCOUPLE INPUT MODELS 3B37, 3B47

The isolated thermocouple models incorporate cold junction compensation circuitry which provides an accuracy of $\pm 0.5^{\circ}$ C over the $+5^{\circ}$ C to $+45^{\circ}$ C ambient temperature range. Open thermocouple detection (upscale) is also provided. Standard models are available for thermocouple types J, K, T, E, R, S and B. Factory configured custom ranges are also available. The 3B37-X-00 can be user configured with the AC1310 ranging card. The 3B47 internally linearizes the thermocouple signal. All screw terminals have a 220V rms protection.

RTD INPUT MODELS 3B14, 3B15, 3B34

Each RTD model provides a sensor excitation current and produces an output signal that is linear with temperature with a conformity error of $\pm 0.05\%$ of span and accuracy of $\pm 0.1\%$ span. The lead resistance effect for the three models is $\pm 0.02^{\circ}C/\Omega$ for the 3B14 and the 3B34, and $\pm .00001^{\circ}C/\Omega$ for the 3B15. All excitation input and output screw terminal connections have at least 130V rms protection.

STRAIN GAGE INPUT MODEL 3B16

Models 3B16 accepts inputs from full four arm bridge strain gage-type transducers. It provides a constant +10V bridge excitation and can be used with a bridge resistance of 300Ω or greater. All excitation input and output screw terminal connections have 130V rms protection.

WIDEBAND STRAIN GAGE MODEL 3B18

Model 3B18 accepts inputs from full four arm bridge strain

gage-type transducers. It provies a switch selectable excitation of +3.3V or +10.0V and can be used with 100Ω to 1000Ω strain gage bridges. The module has a 20kHz bandwidth to interface to dynamic signals.

MILLIVOLT AND VOLTAGE INPUT MODELS 3B10, 3B11, 3B30, 3B31

Models 3B10 and 3B11 are nonisolated modules that accept mV and V signals respectively. Models 3B30 and 3B31 are isolated modules that accept mV and V signals respectively. All screw terminal connections have at least 130V rms protection.

WIDEBAND MILLIVOLT AND VOLT INPUT MODELS 3B40, 3B41

Models 3B40 and 3B41 are isolated modules that accept mV and V signals respectively. The modules have a 10kHz bandwidth to interface to dynamic signals. All screw terminal connections have at least 130V rms protection.

CURRENT INPUT MODELS 3B12, 3B32

Models 3B12 (nonisolated) and 3B32 (isolated) accept process current signals. Both models use a 100 Ω sensing resistor that is mounted on backplane terminals 2 and 3. All screw terminal connections have at least 130V rms protection.

AD590 INPUT MODEL 3B13

Model 3B13 accepts an AD590 as its input signal. Sensor excitation is provided and a $2k\Omega$ sensing resistor is mounted on backplane terminals 2 and 3. All excitation input and output screw terminal connections have 130V rms protection.

LVDT OR RVDT INPUT MODEL 3B17

Model 3B17 accepts signals from 4, 5 and 6 wire LVDT or RVDT transducers. It provides an ac excitation of 1-5V rms at frequencies ranging from 1kHz to 10kHz and has a 100Hz bandwidth. All screw terminal connections have 130V rms protection.

AC INPUT MODELS 3B42, 3B43 AND 3B44

Models 3B42, 3B43, and 3B44 accept ac signals from 20mV to 450V rms. The modules are rms calibrated for sinusoidal inputs, such as ac power lines. All screw terminal connections have at least 130V rms protection.

FREQUENCY INPUT MODELS 3B45, 3B46

Models 3B45 and 3B46 accept frequency input signals from 25Hz to 25kHz. User selectable thresholds of 1.6V and 0V (for zero crossing) are available. All screw terminal connections have at least 130V rms protection.

Output Modules

High Level Voltage Input (0 to $\pm 10V$, $\pm 10V$) Process Current Output (4-20mA/0-20mA) High Accuracy: $\pm 0.1\%$ Reliable Transformer Isolation: $\pm 1500V$ CMV, CMR = 90dB Meets IEEE-STD 472: Transient Protection (SWC) Output Protection: 130V or 220V rms Continuous Reliable Pin and Socket Connections Low Cost Per Channel

GENERAL DESCRIPTION

Each output module accepts a high level analog signal from the system connector and provides a current output on the output screw terminals. When a +24V loop supply is used, loads up to 850 Ω can be driven. If desired, +15V can be used to power the output modules with a smaller load (up to 400 Ω). Each output module features high accuracy of ±1%. If isolation is required, the 3B39 provides ±1500V peak common-mode voltage isolation protection.

NONISOLATED OUTOUT MODEL 3B19

The 3B19 output module accepts a 0 to +10V or $\pm 10V$ input signal and converts it to a proportional current output. Output

ranges are jumper selectable for either 0-to 20mA or 4-to-20mA. The current output is protected to 130V rms continuous.

ISOLATED OUTPUT MODEL 3B39

Model 3B39 is an isolated module that accepts a 0 to +10V or $\pm 10V$ input signal and converts it to a proportional current output. Output ranges are jumper selectable for either 0-to-20mA or 4-to-20mA. Input to output isolation is rated to 1500V pk continuous.

FEATURES

4-, 8-, or 16-Channel Versions Available ac or dc Power Supply Options

GENERAL DESCRIPTION

The three backplane models, 3B01, 3B02 and 3B03 are designed for 16, 8 and 4 channels, respectively, to give users the flexibility to match the size of a system to specific applications. The 16-channel backplane can be mounted in a $19'' \times 5.25''$ panel space. The backplanes can be surface mounted, mounted on a rack or mounted in a NEMA enclosure.

POWER SUPPLY

The 3B Series Subsystem can operate from a common ac power supply or dc/dc (+24V input) power supply mounted on the backplane or an externally provided $\pm 15V$ and +24V supply. The power supply is bussed to all signal conditioners in the system. The current consumption is a function of the modules that are actually used.

INPUT MODULES

Input Types

Thermocouples: J, K, T, E, R, S, B Thermocouples: J, K, T, E, R, S, B (Linearized) RTDs: 100Ω Platinum, 10Ω Copper, 120Ω Nickel (Linearized) Strain Gage Transducers: ± 30 mV and ± 100 mV spans LVDT or RVDT: 4, 5, 6 Wire Solid State Temperature Transducers: AD590 or AC2626 DC Voltage: ± 10 mV, ± 50 mV, ± 100 mV ± 1 V, ± 5 V, ± 10 V DC Current: 4-to-20mA, 0-to-20mA AC Voltage: 0-50mV rms, 0-100 V rms, 0-10V rms, 0-150V rms, 0-250W rms Frequency: 0-25Hz, 0-300Hz, 0-1500Hz, 0-3000Hz, 0-25kHz

Outputs (Simultaneous)

0 to +10V or ±10V and 4-to-20mA or 0-to-20mA*

Performance

Accuracy: $\pm 0.1\%$ of span Nonlinearity: $\pm 0.01\%$ of span Bandwidth: 3Hz (-3dB)

Isolated Modules

Common-Mode Voltage, Input to Output: ±1500V pk continuous Transient Protection: Meets IEEE-Std 472 (SWC) Normal-Mode Input Protection: 220V rms continuous Current Output Protection: 130V rms continuous Common-Mode Rejection @ 50Hz or 60Hz: 160dB Normal-Mode Rejection @ 50Hz or 60Hz: 60dB

Nonisolated Modules

Common-Mode Voltage: $\pm 6.5V$ Normal-Mode Input Protection: 130V rms continuous Current Output Protection: 130V rms continuous Common-Mode Rejection @ 50Hz or 60Hz: 90dB Normal-Mode Rejection @ 50Hz or 60Hz: 60dB

OUTPUT MODULES

Input

0 to $\pm 10V$ or $\pm 10V$

Output 4-to-20mA or 0-to-20mA

Performance Accuracy: ±0.1% of span Nonlinearity: ±0.01% of span

Isolated Module

Common-Mode Voltage, Input to Output: ± 1500V pk continuous Current Output Protection Transient: Meets IEEE-Std 472 (SWC) Continuous: 220V rms

Nonisolated Module

Current Output Protection: 130V rms continuous

*There is no current output on the 3B47. Specifications subject to change without notice.

BACKPLANES

Channel Capacity 3B01: 16 channels 3B02: 8 channels 3B03: 4 channels

POWER SUPPLIES

Backplane Mounted: 100, 115, 220, 240V ac, 50/60Hz or + 24V dc External Power Option ±15V dc and +24V dc

MECHANICAL

Input or Output Modules: 3.150" × 0.775" × 3.395" (80.0mm × 19.7mm × 86.2mm) Backplanes: 3B01: 17.40" × 5.20" × 4.37" (442.0mm × 132.1mm × 111.1mm) 3B02: 11.00" × 5.20" × 4.37" (279.4mm × 132.1mm × 111.1mm) 3B03: 7.80" × 5.20" × 4.37" (198.1mm × 132.1mm × 111.1mm)

ENVIRONMENTAL

Temperature Range, Rated Performance: -25°C to +85°C Storage Temperature Range: -55°C to +85°C Relative Humidity: Conforms to MIL-STD 202, Method 103 RFI Susceptibility: ±0.5% span error, 5W @ 400MHz @ 3 ft.

Alarm Limit Subsystem

4B Series

FEATURES/BENEFITS

- Low Cost, Completely Integrated 12-Channel Modular Alarm Limit Subsystem
 - Selection of Alarm Limit Modules Rugged Industrial Chassis, Rack or Surface Mounted On-Board Power Supplies Available
- Alarm Modules Accept High Level Voltage and Process Current Inputs
- Complete Alarm Function per Module

High Accuracy of ±0.1%

Two Set Points, Adjustable Over 100% Span Dead Band Adjustment per Set Point, Adjustable

Over 0.5%–10.0% Span

Alarm Types are Configurable for HI or LO Operation Two Relay Outputs

Three Digit Display Indicates Set Points and Process Variable as a Percent of the Input Span

LED per Set Point Provides Local Alarm Indication Input Protection

High RFI/EMI Immunity

- Specifications Valid Over the 0 to +70°C Temperature Range
- Easy to Install, Calibrate and Service Direct Connections to Industrial Screw Terminals Modules Removable without Disturbing Field Wiring or Power
- Front Panel Set Point and Dead Band Adjustments

 Convenient Connection to User's Equipment
- Interfaces Directly to Analog Output Subsystems Used for Single Board Computer Interfaces Universal Adapter Board Allows Easy Interface to Any Equipment

This two-page data summary contains key specifications to speed your selection of the proper solution for your application. Additional information on this product can be obtained from your local sales office.

GENERAL DESCRIPTION

The 4B Series Alarm Limit Subsystem is a low cost method of providing adjustable alarm limits. Used in conjunction with either the 5B Series, the 3B Series or a module in the 2B Series transmitter family, the 4B Series' modules provide alarms for a wide variety of process sensors and transducers. The Alarm Limit Subsystem accepts a high level signal and provides fully independent HI and LO relay outputs.

The subsystem consists of a 19" relay rack compatible universal mounting backplane and a family of plug-in (up to 12 per rack) alarm limit modules. A four channel backplane is also available. The modules, designed for voltage or current inputs, can be readily mixed and matched and interchanged without disturbing field wiring. Each backplane incorporates screw terminals for field wiring and a connector for high level single ended inputs from the user's equipment.

Each alarm module has two set points which are fully adjustable over the 100% span. It will accept a standardized high level analog input and will provide one or two ON/OFF outputs. The allowable input ranges are \pm 10V, 0 to + 10V, 4-20mA and 0-20mA. All input types can be connected to either the voltage input connector or the input screw terminals.

The two set points within each module can be user configured with push-on jumpers for HI-LO, HI-HI or LO-LO use. If only one limit per channel is desired, the module can be used in a HI or LO state. The value of each set point and the process variable can be viewed with a 3 digit display which is controlled with a rotary switch. Each set point has an adjustable dead band (hysteresis) which can be adjusted up to 10% of span and can be used to eliminate nuisance alarms.

DESIGN FEATURES AND USER BENEFITS

Direct interface via screw-terminals or ribbon cable, two screwdriver adjustable set points per module, adjustable dead band per set point, a three digit display that indicates the value of the process variable and set points, and the modular design make the 4B Series Subsystem extremely easy to use. The subsystem features rugged packaging for the industrial environment and can be easily installed and maintained.

All input screw terminals offer 130V rms normal mode protection. Connection reliability is assured by gold plated pin and socket connectors. The high quality alarm modules feature $\pm 0.1\%$ accuracy and a low drift with temperature ($\pm 0.005\%$).

APPLICATIONS

The Analog Devices' 4B Series Alarm Limit Subsystem provides an easy and convenient solution to alarm/annunciation problems in measurement and control applications. When used with field transmitters or any other device that provides a process current or high level voltage output, it can provide either alarm indication or ON/OFF control. In a typical application, the 4B Series Alarm Subsystem provides alarm indication for any sensor input when used with the 3B Series Signal Conditioning Subsystem. The 3B Series interfaces directly to sensors and converts the inputs to the standardized high level analog signal that the 4B Series alarms. This modular approach provides a very flexible means to alarm indication since the same 4B module can be used to alarm a variety of sensors when used with the appropriate 3B module.

FUNCTIONAL DESCRIPTION

Each alarm module is a single channel unit that plugs into sockets on the backplane and accepts its signal from either the input screw terminals or the voltage input connector. All alarm modules provide input protection, filtering of the input signal, accuracy of $\pm 0.1\%$ and feature two relay outputs that are capable of driving loads up to 3A.

The choice of a specific 4B module depends on whether the input signal is a high level voltage or a process current. The voltage inputs can be connected to a 4B module by either the input screw terminals or the voltage input connectors. Process currents can also be connected through either the screw terminals or the voltage input connector, but must use a sensing resistor. The current input models are shipped with the required sense resistor, which is to be installed on the input screw terminals.

The transfer function provided by each alarm module is: Inputs: High level voltage or process current Outputs: Two independent ON/OFF Relay Outputs

Figure 1 shows a functional diagram for the model 4B10 alarm limit module which has been configured for HI-LO operation. The high level voltage input signal is filtered and compared against both set points. If the process variable is above the HI limit or below the LO limit, the appropriate relay is turned on.

Each set point has an adjustable dead band (0.5%-10.0% span), which is used to eliminate nuisance alarms. Dead band is the amount of signal change necessary, after an alarm has occurred, to return an alarm to its original condition. As an example, if the HI limit is set at 75% of span and the dead band is 2%, the alarm will turn on when the process variable is at 75% and will not turn off until the process variable falls to 73%. For a LO limit configuration, the dead-band relationship is reversed and the alarm would not turn off until the process variable has risen above the sum of the LO set point value and the dead-band value.

Each set point has an LED which turns on when an alarm condition occurs and provides local alarm indication.

Figure 1. 4B10 Functional Block Diagram

The alarm status of both limits can be read externally from the digital I/O connector. When an alarm state exists which is TTL active high on the readback pins, the relay can be turned off with an external override signal (TTL active low) that connects to the digital I/O connector. The readback/override feature allows for external monitoring of the alarm states as well as for external control or alarm acknowledgement. When an override signal is used, the readback feature reads the alarm state and not the relay input signal so that the state of the process variable can still be monitored.

For the modules with a display, positive overload is indicated by]] and negative overload is indicated by a [in the left most position.

The 4B modules have five user programmable jumper options. Each unit can be configured for unipolar or bipolar inputs, both set points can be configured for HI or LO limit operation, and both relays can be configured for Normally Open (NO) or Normally Closed (NC) operation. These options allow the user to readily tailor the 4B units to his specific needs. For instance, if HI-HI operation were required, it is available by changing the appropriate jumpers. All modules are shipped from the factory configured for unipolar input, NO relay action, and HI-LO operation.

4B MODULE SPECIFICATIONS

Model	4B10, 4B20	4B11,4B21	4B12,4B22
Inputs ¹	$0 \text{ to } + 10 \text{V}, \pm 10 \text{V}$	020mA	4-20mA
Outputs (2 SPST Relays)	Resistive Rating. 3A @		
• • • • •	120V ac or 24V dc	*	*
Performance			
Accuracy ²	±0 1% span	*	*
Temperature Stability	± 0.005% span/°C	*	*
Bandwidth ³	5Hz(-3dB)	*	*
Normal Mode Input Protection	130V rms	*	*
Normal Mode Rejection @ 50Hz or 60Hz	20dB	*	*
Input Resistance ⁴	100ΜΩ	*	*
Warm-Up Time to Rated			
Performance	3 Minutes	*	*
Features			
Two Set Points per Module	Adjustable over 100% span		
•	by 25 turn potentiometers	*	*
Dead band per Set Point	0.5%-10.0% span, adjustable		
-	by 1 turn potentiometer	*	*
Relay Action	Field reversible by jumper change	*	*
Three Digit Display ⁵	0-99.9% of input span	*	*
Alarm Status Readback	TTL Level	*	*
External Override Signal	TTL Level	*	* `
Power Supply			
Voltage, Rated Performance	±15V. +5V	*	*
Voltage, Operating	$\pm 12V$ to $\pm 18V$, $\pm 4.5V$ to 5.5V	*	*
Current ⁶	± 12mA, + 150mA	*	*
Size ⁷	4.020" × 1.050" × 4.020"	*	*
Environmental		•	
Temperature Range, Rated Performance	0 to + 70°C	*	*
Storage Temperature Range	- 25°C to + 85°C	*	*
Relative Humidity, Conforms to MIL			
Std 202, Method 103B	0 to 95% @ 60°C, noncondensing	*	*
RFI Susceptibility	$\pm 0.5\%$ span error,		
	5W @ 400MHz @ 3 ft.	*	*

NOTES

Voltage input range is jumper selectable Accuracy includes setability, repeatability, linearity, and hysteresis Models 4B10, 4B11, and 4B12 have a quantizati 2Accura error of ±1 digit

lar inputs only Bipolar inputs have a bandwidth of 10Hz (Unipo ce of 400kΩ

*Unipolar imputs only Bipolar inputs have an input resistance of 400kΩ´ *Only models 4B10, 4B11 and 4B12 have a three digit display *Only models 4B10, 4B11 and 4B12 Models 4B20, 4B21 and 4B22 require ± 12mA for ± 15V and + 125mA

+ 5V es to models 4B10, 4B11 and 4B12 Models 4B20, 4B21 and 4B22 measure 4 020"×1 050"×3 530" Only appli

Specifications same as 4B10, 4B20

Specifications subject to change without notice

ANALOG DEVICES

Compact, Low-Cost Modular Signal Conditioners

5B Series

FEATURES

- Rugged, Compact, Low Cost Signal Conditioners
- Analog Input Modules for Direct Interface to Sensors: Thermocouples and RTDs Millivolt and Voltage Sources 4-20mA or 0-20mA Process Current Inputs
- Analog Output Module
 4-20mA or 0-20mA Process Current Output
- Complete Signal Conditioning Function 240V rms Field Wiring Protection, Filtering, Amplification, 1500V rms CMV Isolation, High Noise Rejection, RFI/EMI Immunity, and Wide Range Zero Suppression
- High Accuracy: ±0.05%
- Low Drift: ±1µV/°C
- -25°C to +85°C Temperature Range
- Mix and Match Module Capability
- Convenient Connection to User's Equipment
- Simplified Designer Application

GENERAL DESCRIPTION

The 5B Series represents a new generation of low cost, high performance plug-in signal conditioners. Designed for industrial applications, these modules incorporate a new circuit design utilizing transformer-based isolation and automated surface mount manufacturing technology. They are remarkably compact, economical components whose performance exceeds that available from more expensive devices. Combining 1500V rms continuous CMV isolation, $\pm 0.05\%$ calibrated accuracy, small size and low cost, the 5B Series is an attractive alternative to expensive signal conditioners and in-house designs.

All modules are hard potted and identical in pinout and size $(2.25'' \times 2.25'' \times 0.60'')$. They can be mixed and matched, permitting users to address their exact needs, and may be changed without disturbing field wiring. The isolated input modules provide 0 to +5V outputs and accept J, K, T, E, R, S, and B thermocouples; 100Ω platinum, 10Ω copper and 120Ω nickel RTDs; mV, V, 4-20mA or 0-20mA, and wide bandwidth (10kHz) mV and V signals. These modules feature complete signal conditioning functions including 240V rms input protection, filtering, chopper stabilized low drift ($\pm 1\mu$ V/°C), amplification, 1500V rms isolation, linearization for RTD and thermocouple (with 5B47) inputs and sensor excitation when required. The output module converts a 0 to +5V input to an isolated 4-20mA or 0-20mA process current signal. All modules feature excellent common mode rejection and meet IEEE 472-1974 surge withstand specs.

The 5B Series provides system designers with an easy to use solution for analog I/O in a minimum of board space. The modules' simple pinout and easy mechanical application simplify design.

There are also a number of backplanes which provide a complete signal conditioning solution for end users. Each backplane incorporates screw terminals for field wiring inputs and outputs and cold junction compensation sensors for thermocouple applications. Nineteen-inch relay rack compatible units that can hold up to sixteen modules are available.

APPLICATIONS

These signal conditioners are designed to provide an easy and convenient solution to signal conditioning problems of both designers and end users in measurement and control applications. Typical uses include mini- and microcomputer-based measurement systems, standard data acquisition systems, programmable controllers, analog recorders, and dedicated control systems. The 5B Series modules are ideally suited to applications where monitoring and control of temperature, pressure, flow, and other analog signals are required.

DESIGN FEATURES AND USER BENEFITS

System Design: It is easy for a system designer to apply the functionally complete 5B Series modules in his own circuit board or backplane. These modules feature a simple pinout, plug into widely available sockets and are secured with selfcontained mounting screws. Other features, which can be used to minimize system interface cost, have also been incorporated in the 5B Series design. Each input module has an output switch which is controlled by a TTL-compatible enable input, eliminating the need for an external multiplexer. Each output module has a track and hold input which permits a single DAC to serve numerous current output channels. For thermocouple applications, cold junction compensation sensors are available.

Subsystem Solution: The 5B Series provides a complete signal conditioning solution. A family of backplanes, plug-in modules, factory precalibration of each unit, direct sensor interface via screw terminal connections, standardized high level outputs, and ribbon cable system interface result in easy integration into any system. For thermocouple applications, high accuracy cold junction compensation sensing is provided on each channel. A general susbsystem application is outlined in Figure 1.

Flexibility: The 5B Series can be easily tailored to meet each user's needs. These plug-in signal conditioners can be mixed and matched to provide I/O for various process sensors and actuators. Many standard configurations of each module are available, and, for added flexibility, factory laser trimmed custom units can be supplied. A wide zero suppression capability allows a user to map any portion of the input signal into the full ouput span permitting improved system resolution within a selected measurement range.

High Reliability: The 5B Series was designed to assure maximum reliability under real-world conditions. The modules are specified over the -25° C to $+85^{\circ}$ C temperature range. Each module is hard potted; there are no adjustment potentiometers which could introduce mechanical and human errors that impair system integrity. All field wired terminations, including sensor inputs, excitations and current outputs, are protected against continuous 240V rms line voltage. This prevents a fault from damaging not only the module itself but also the backplane and other devices connected to the system. The modules also provide protection

against high common-mode voltages and are designed to meet the IEEE standard for transient voltage protection (472-1974: SWC). Gold plated pin and socket connections are used throughout the system to assure connection reliability.

High Performance: The high quality signal conditioning features $\pm 0.05\%$ calibration accuracy, nonlinearity of only $\pm 0.02\%$ span, and chopper-based amplification which assures low drift $(\pm 1\mu V/^{\circ}C)$ and excellent long-term stability. Low drift sensor excitation is provided when required, and the RTD module provides an output which is linear with temperature.

High Noise Rejection: The 5B Series Modules were designed to accurately process low level signals in electrically noisy environments by providing 1500V rms continuous transformer isolation which eliminates ground loops, protects against transients and solves common-mode voltage problems. To further preserve signal integrity, 160dB common-mode rejection, 60dB normalmode rejection and excellent RFI/EMI immunity are provided.

Small Size: Each 5B Series module measures only $2.25'' \times 2.25'' \times 0.60''$ resulting in space savings for both system designers and end users: each module occupies 1.35 square inches of board space and a 16-channel backplane occupies only 3.5 inches in a rack.

Figure 1. Functional Block Diagram of a General Measurement and Control Application Using the 5B Series

INPUT MODULE FEATURES

- Variety of Signal Source Inputs Sensors: Thermocouples and RTDs Millivolt and Voltage Sources
 4-20mA or 0-20mA Process Current Inputs
- Mix and Match Input Capability
- High Level Voltage Output: ±5V or 0 to +5V
- High Accuracy: ±0.05%
- Low Drift: ±1µV/°C
- Reliable Transformer Isolation: 1500V rms CMV, 160dB CMR, Meets IEEE-STD 472: Transient Protection (SWC)
- Input Protection: 240V rms Continuous
- Factory Ranged and Trimmed, Custom Ranges Available

GENERAL DESCRIPTION

The galvanically isolated 5B Series input modules are single channel, plug-in signal conditioners that provide input protection, amplification and filtering, series output switching, and a high level analog output. Key specifications include: 1500V rms isolation, accuracy of $\pm 0.05\%$, $\pm 0.02\%$ span nonlinearity and low drift of $\pm 1\mu V/^{\circ}C$. All modules operate from a single $\pm 5V$ supply with typical power consumption of 0.15W. The modules, which measure only 2.25" $\times 2.25" \times 0.60"$, are hard potted.

The transfer function provided by each input module is:

Input - specified sensor measurement range

Output - 0 to +5V or $\pm 5V$.

5B37 FUNCTIONAL DESCRIPTION

Figure 2 shows a functional diagram for a typical input module, the 5B37 thermocouple conditioner. The module provides cold junction compensation for the associated screw terminals as well as a bias current to give a predictable (upscale) response to an open thermocouple. Input protection allows safe operation even in the event of a 240V rms power line being connected to the signal terminals. (In modules designed to work with sensors requiring excitation, low drift sensor excitation is provided and is protected at the same level).

A three-pole filter with a 4Hz cutoff provides 60dB of normal-mode rejection and CMR enhancement at 60Hz. One pole of this filter is located at the module input while the other two poles are in the output stage for optimum noise performance. A chopperstabilized input amplifier provides all of the module's gain for ultra-low drift. This amplifier operates on the input signal after subtraction of a stable, laser trimmed zero-suppression signal which sets the zero-scale input value. It is, therefore, possible to suppress a zero-scale input which is many times the total span to provide precise expanded scale measurements.

Signal isolation is provided by transformer coupling, using a proprietary modulation technique for exceptionally linear, stable performance at low cost. A demodulator on the output side of the signal transformer recovers the original signal, which is then filtered and buffered to provide a clean, low-impedance output. A series output switch is included to eliminate the need for external multiplexing in many applications. This switch has a low output resistance (50Ω) and is controlled by an active-low enable input which is compatible with CMOS and LSTTL signals. In cases where the output switch is not used, such as single-channel and conventionally multiplexed applications, the enable input should be grounded to power common to turn on the switch.

A single +5V power supply input (as used for all 5B Series modules) operates a clock oscillator which drives power transformers for the input and output circuits. The input circuit is, of course, fully floating. In addition, the output section acts as a third floating port, eliminating many problems that might be created by ground loops and supply noise. The common-mode range of the output circuit is limited; however, output common must be kept within $\pm 3V$ of power common, and a current path must exist between the two commons at some point for proper operation of the demodulator and output switch.

Figure 2. 5B37 Block Diagram

INPUT MODULE SPECIFICATIONS (typical @ + 25°C and + 5V power)

Model	5B30/5B31	5B32	5B34	5 B 37/5 B 47	5B40/5B41
Input Ranges	dc mV/dc V	Process Current	RTD	Thermocouple	Wideband dc mV/V
Output Ranges	$\pm 5V \text{ or } 0 \text{ to } + 5V$	0 to + 5V	0 to + 5V	0 to + 5V	*
Accuracy	± 0.05% Span	*	*	*/0.10% Span	*
Nonlinearity	± 0.02% Span	*	0.05% Span Conformity	*/NA	*
Stability vs. Ambient Temperature	-		-		
Input Offset	$\pm 1\mu V/^{\circ}C/20\mu V/^{\circ}C$	± 0.0025% Span/°C	±0.02°C/°C	±0.02°C/°C/µV/°C	$\pm 2\mu V/^{\circ}C/\pm 40\mu V/^{\circ}C$
Output Offset	$\pm 20 \mu V/^{\circ}C$	*	* ·	*/NA	*
Span	± 25ppm of rdg/°C	± 35ppm of rdg/°C	± 50ppm of rdg/°C	*	*
Common-Mode Voltage, Input to Output	1500V rms Continuous	*	*	*	*
Common-Mode Rejection@ 50Hz to 60Hz			· ·		
1kΩ Source Unbalance	160dB/150dB	*	*	*	100dB/90dB
Normal-Mode Rejection @ 50Hz or 60Hz	60dB	*	*	*	N/A
Differential Input Protection	240V rms Continuous	*	•	*	
Output Resistance	50Ω	*	*	*	*
Voltage Output Protection	Continuous Short to Ground	* "	*	*	*
Input Transient Protection	Meets IEEE-STD 472 (SWC)	*	*	*	*
Input Resistance	5MΩ/650kΩ	*	*	*	200MΩ/650kΩ
Bandwidth	4Hz	*	*	*	10kHz
Output Selection Time	20µs	*	*	*	*
Power Supply	$+5V \pm 5\%$	*	*	*	*
Power Consumption	0.15W	*	*	*	*
Size	2.25"×2.25"×0.6"	*	*	*	*
Environmental					
Temperature Range, Rated Performance	- 25°C to + 85°C	*	*	*	*
Temperature Range, Operation	- 40°C to + 85°C	*	*	*	*
Storage Temperature Range	-40°C to +85°C	*	*	*	*
Relative Humidity Conforms to	0 to 95% @ 60°C				
MIL Spec 202	Noncondensing	*	*	*	*
RFI Susceptibility	±0.5% Span Error, 5W			,	
	@ 400MHz @ 3'	*	*	*	*

NOTES

*Specifications same as 5B30

Accuracy specification includes the combined effects of repeatability, hysteresis and linearity and does not include sensor or signal source error

This specification is for the 5B Series family and may not apply to all ranges of all modules Consult the 5B Series User's Manual for detailed specifications

Specifications subject to change without notice

Output	Model
$\pm 5V$	5B30, 5B40
$\pm 5V$	5B31,5B41
0-5V	5B32
0-5V	5B37
0-5V	5B47
0-5V	5B34
	Output ± 5V ± 5V 0-5V 0-5V 0-5V 0-5V

Table I. Input Selection

ISOLATED MILLIVOLT AND VOLTAGE INPUT

MODELS 5B30, 5B31

Model 5B30 and 5B31 accept millivolt and voltage signals respectively and have a 4Hz bandwidth.

ISOLATED CURRENT INPUT MODEL 5B32

Model 5B32 accepts process current signals. A resistor is supplied to convert the signal current to a voltage, and, since that resistor cannot be protected against destruction in the event of inadvertent connection of the power line, it is provided in the form of a separate pluggable resistor carrier assembly. Extra current conversion resistors are available as accessories.

ISOLATED RTD INPUT MODEL 5B34

This RTD input module provides 3 wire lead resistance compensation and can be connected to 2, 3, or 4 wire RTDs. The lead resistance effect is $\pm 0.02^{\circ}$ C/ Ω . It provides a low drift sensor excitation current of 0.25mA for the 5B34 or 5B34-N or 1.0mA for the 5B34-C and produces an output signal that is linear with temperature with a conformity error of $\pm 0.05\%$ of span and accuracy of $\pm 0.05\%$ of span.

ISOLATED THERMOCOUPLE INPUT MODELS 5B37, 5B47

The isolated thermocouple model incorporates cold junction compensation circuitry which provides an accuracy of $\pm 0.5^{\circ}$ C over the $+5^{\circ}$ C to $+45^{\circ}$ C ambient temperature range. Open thermocouple detection (upscale) is also provided. Standard models are available for thermocouple types J, K, T, E, R, S, and B. Model 5B47 provides a linearized 0-5V output.

ISOLATED WIDEBAND MILLIVOLT AND VOLTAGE INPUT MODELS 5B40, 5B41

Models 5B40 and 5B41 accept millivolt and voltage signals respectively and have a 10kHz bandwidth for interface to dynamic signals.

11

OUTPUT MODULE FEATURES

- Voltage Input Ranges: 0 to +5V or ±5V
- Process Current Output: 4-20mA or 0-20mA
- High Accuracy: ±0.05%
- **Reliable Transformer Isolation: 1500V rms CMV.** CMR = 90dB
- Meets IEEE-STD 472: Transient Protection (SWC)
- **Output Protection: 240V rms Continuous**

GENERAL DESCRIPTION

The 5B39 Current Output Module accepts a high level analog signal at its input and provides a 4-20mA or 0-20mA process current signal at its output. The module features high accuracy of ±0.05% and 1500V rms common-mode voltage isolation protection.

The transfer function provided by this module is:

Input - 0 to +5V or $\pm 5V$

Output - 4-20mA or 0-20mA.

To provide this range of functions four varieties of the 5B39 are available; unipolar or bipolar input and output range must be specified when ordering.

5B39 FUNCTIONAL DESCRIPTION

Figure 4 is a functional block diagram of the 5B39 current output module. The voltage input, usually from a digital-to-analog converter, is buffered and a quarter scale offset is added if a 4-20mA output is specified.

The signal is latched in a track-and-hold circuit. This track-andhold allows 1 DAC to serve numerous output channels. The output droop rate is 80µA/s which corresponds to a refresh interval for 0.01% FS droop of 25ms. The track-and-hold is controlled by an active-low enable input which is compatible with CMOS and LSTTL signals. In conventional applications where one DAC is used per channel and the track-and-hold is not used, the enable input should be grounded to power common. This keeps the module in tracking mode.

The signal is sent through an isolation barrier to the current output (V-to-I converter) stage. Signal isolation is provided by transformer coupling using a proprietary modulation technique for linear, stable performance at low cost. A demodulator on the output side of the signal transformer recovers the original signal, which is then filtered and converted to a current output. Output protection allows safe operation even in the event of a 240V rms power line being connected to the signal terminals.

A single +5V supply powers a clock oscillator which drives power transformers for the input circuit and the output's high compliance, current loop supply. The output current loop is, of course, fully floating. In addition, the input section acts as a third floating port, eliminating many problems that might be created by ground loops and supply noise. The common-mode range of the input circuit is limited; however, input common must be kept with $\pm 1V$ of power common, and a current path must exist between the two commons at some point for proper operation of the track-and-hold control input.

T MODULE SPECIFICATIONS

(typical @ + 25°C and + 5V power)

Input Ranges	0 to $+5V$ or $\pm 5V$
Output Ranges	4-20mA or 0-20mA
Load Resistance Range ¹	0 to 650Ω
Accuracy ²	± 0.05% Span
Nonlinearity	± 0.02% Span
Stability vs. Ambient Temperature	
Zero	±0.5µA
Span	20ppm of Span/°C
Common-Mode Voltage, Output to	
Input and Power Supply	1500V rms Continuous
Common-Mode Rejection	90dB
Normal-Mode Output Protection	240V rms Continuous
Output Transient Protection	Meets IEEE-STD 472 (SWC)
Sample & Hold:	
Output Droop Rate	80µA/s
Acquisition Time	50µs
Over Range Capability	10%
Maximum Output Under Fault	26mA
Input Resistance	10ΜΩ
Bandwidth	400Hz
Power Supply	$+5V dc \pm 5\%$
Power Consumption	0.85W(170mA)
Maximum Input Voltage Without Damage	±10V
Size	2.25"×2.25"×0.6"
Environmental	
Temperature Range, Rated Performance	- 25°C to + 85°C
Storage Temperature Range	-40°C to +85°C
Relative Humidity Conforms to	
MIL Spec 202	0 to 95% @ 60°C
	Noncondensing
RFI Susceptibility	$\pm 0.5\%$ span error, 5W
	@ 400MHz @ 3 ft.

NOTES

¹With a minimum power supply voltage of 4 95V, R_1 can be up to 750 Ω ²Accuracy specification includes the combined effects of repeatability, hysteresis and linearity Does not include signal source error

Specifications subject to change without notice.

Figure 4. 5B39 Block Diagram

DESIGNER APPLICATION FEATURES

- Module Pins Fit Widely Available Sockets
- Single Threaded Insert for Module Hold Down
- Cold Junction Compensation Sensors Available
- Input Modules Have Internal Series Output Switches
- Output Modules Have Track-and-Hold Inputs

DESIGNER APPLICATION INFORMATION

The 5B Series was designed to facilitate integration by a system designer into his own circuit board or backplane. Only a single 3.0mm threaded insert is required for module hold down. Module pins are accommodated by widely available sockets, and temperature sensors for thermocouple cold junction compensation are available as one-piece precalibrated units.

The 5B Series was also designed to minimize system interface space and cost. Each input module has an internal series output switch which can be controlled by a TTL-compatible enable input eliminating the need for external multiplexers. Each output module has a track-and-hold input which allows a single digital-toanalog converter to serve numerous channels. In applications where it is desirable to do so, the module enable lines can be grounded, and the 5B Series input modules can be used with a conventional external mux and the output modules with a DAC per channel.

Ease of system application of these modules is enhanced by the fact that the output modules have enable and signal input pin assignments which do not coincide with the enable and signal output pins of the input modules, see Figure 5. This means that in a single mix-and-match backplane environment the reading of inputs and the writing and refreshing of outputs are completely independent and occur simultaneously. For example, the input system may dwell for a long time on a single channel to collect thousands of samples without having to interrupt the process to do an output refresh or set a new output value. Similarly, a "dumb" refresh circuit can be built which can maintain outputs without even knowing which channels have output modules; it can refresh all channels, and those that are really inputs will ignore the operation.

BASIC DESIGN GUIDELINES

Modules may be mounted in any position and will normally be placed next to the screw terminals connecting to the associated field wiring. The temperature sensor is only used by thermocouple modules, but it is normally installed in all channel locations in a "mix-and-match" application. This sensor must be physically close to the terminals where the thermocouple wire connects to copper. Because the low power dissipation of the 5B Series minimizes temperature gradients on the backplane, no special precautions are needed to get accurate temperature sensing. Provision must be made on each channel for the 5B32's current conversion resistor.

The width of the modules is intended to permit installation on 0.6'' centers where required, but consideration must be given in each application to the required distance between backplane conductors where large interchannel voltages exist or where code requirements apply. The nature of the screw terminals used for field wiring will also factor in determining practical interchannel spacing.

The 5B Series User's Manual includes an extensive discussion of system design issues. Design of backplanes which take full advantage of the 5B Series' capabilities by maintaining isolation is emphasized.

OUTLINE DIMENSIONS

Figure 5. Module Footprint and Pinout

PIN DESIGNATIONS

WRITE EN (0) RESERVED	23 21 19	22 20	READ EN (0) V _{OUT}
+5V	17,	18 16	V _{IN} POWER COM
IN LO - EXC SENSOR -	5 3 1	6 4 2	IN HI + EXC SENSOR +

BACKPLANE FUNCTIONAL DESCRIPTION

To address diverse applications, the 5B Series includes an expanding family of backplanes. Two 16 channel backplanes which can be mounted in a $19'' \times 3.5''$ panel space are available. Each channel has four screw terminals for field connections. These connections satisfy all transducer inputs, process current outputs, and provide transducer excitation when necessary. A cold junction sensor is supplied on each channel to accommodate thermocouple modules. A system interface connector provides high level voltage I/O for all channels. Both 5B Series backplanes require a + 5V external power source. Other backplanes with integral power supplies are under development.

The 5B Series offers high density packaging to conserve mounting space and can be easily tailored to fit the user's needs. All modules feature universal pin out which assures interchangeability. The screw down design allows easy reconfiguration.

The 5B01, diagrammed in Figure 6, provides sixteen single ended input/output pins on the system connector. It is pin compatible with Analog Devices' 3B Series applications. (Note, however, that 5B Series modules provide a \pm 5V output swing rather than the \pm 10V swing provided by 3B Series modules).

Figure 6. 5B01 Block Diagram

The 5B02, diagrammed in Figure 7, incorporates an input and an output bus which take advantage of the internal series output switches in the input modules and the track-and-holds in the output modules. Designers integrating the 5B02 into a measurement and control system do not need external multiplexers and can use a single digital to analog converter to serve numerous output channels.

For smaller applications, the 5B03 and 5B04 module sockets are available for one and two 5B Series modules, respectively. These module sockets may be clustered for groups of three or more signals, and they are DIN rail compatible using Phoenix Universal Module UM elements.

Figure 7. 5B02 Block Diagram

BACKPLANE SPECIFICATIONS

5B01, 5B02	5B03/5B04
16	1,2
+5V	*
On Each Channel	*
3.5"×17.4"	4.25"×1.37"
88.9mm × 442mm	108mm × 34.7mm
	5B01, 5B02 16 + 5V On Each Channel 3.5" × 17.4" 88.9mm × 442mm

*Same as 5B01, 5B02.

Figure 8. System Connector Pinout

ACCESSORIES

To ease the board design process for designers and to complete the 5B Series subsystem solution, the following accessories are available.

CJC Sensors. SIP temperature sensors are available to provide cold junction temperature measurement for thermocouple applications on user designed backplanes. These sensors are provided on each channel of the 5B01 and 5B02 backplanes. Model number AC1361.

Current Conversion Resistors. Supplied with each 5B32 Current Input Module, a replacement pluggable resistor (20Ω) assembly. Model number AC1362.

Single Channel Socket. A single channel test socket with screw terminals and cold junction compensation for module evaluation. DIN rail compatible. Model number AC1360.

Rack Mount. A single piece metal chassis for mounting 5B Series backplanes in a 19" rack. Model number AC1363.

Power Supplies. Chassis mounted 1A (model number 955) and 3A (model number 976) 5V power supplies are available.

Cables. A 2' (60cm) 26-pin cable with two connectors, model number AC1315. For daisy chaining 5B02 backplanes, a 26-pin cable with three connectors, model number CAB-01.

Interface Board. A universal interface board with a 26-pin connector in and 26 screw terminals out. Model number AC1324.

Digital Panel Instruments Contents

Page

Selection Guide	2 – 2
Orientation	2 – 4
AD2010 – Low Cost, 3 1/2 Digit DPM for OEM Applications	2 – 9
AD2021 - Low Cost, 3 1/2 Digit, Logic Powered DPM with LED Displays	2 – 11
AD2026 – Low Cost, 3 Digit, AC Line or Logic Powered DPM	2 – 13
AD2050/2051 – Microprocessor Based Thermocouple Meters	2 – 15
AD2060/2061 – Microprocessor Based Autoranging RTD/Thermistor Meters	2 – 17
AD2070/2071 – Microprocessor Based Autoranging Thermocouple Meters	2 – 19

Selection Guide Digital Panel Instruments

DIGITAL PANEL METERS

		402-07-07-	40.001	0 1000 1000 1000	402005 20202	/
Digits; F.S. Range	3;-99 to +999mV	•			•	1
	3½; ±199.9mV ±1.999V ±19.999V	•	•	•		
	4½; ±1.9999V *					
Input Type	Limited Differential	•	•	•		
	Floating				•	
Data Outputs	Character Serial Parallel BCD Latched		•	•		
Display Type	LED	•	٠	•	•	1
Display Size in/mm	1	0.5/13	0.27/7	0.5/13	0.5/13	1
Max Case Depth ¹ i	n/mm	0.65/17	1.4/36	1.9/48	2.44/63	
Power Supply +	-5V AC Line	•	•	•	•]
Page		12-13	12-9	12-11	12-13	

NOTES

¹Case depth includes mating connector. All logic powered DPMs use industry standard case with 3.175" ×1.810" (80.65 × 45.97mm) cutout. AC-powered AD2026-2 uses industry standard case with 3.930" × 1.682" (99.82 × 42.72mm) cutout.

* Other products that are still available are listed on page 17-4.

			⁴ <i>D</i> ₂₀ 50	⁴ <i>b</i> ₂ <i>o</i> ₅ <i>y</i>	10201 10201	000 1020 1020	10,01	12020F
Input	Number of Channels	1 *	•	•	•	•	•	•
Sensor (Determines Temperature Range)	Function Thermocouple Type	Switch Selected User Specified J, K, T E, R, S C, B, J DIN, T DIN	•	•	•	•	• • •	•
	RTD Thermistor				•	•		
Features	Self-Calibration Cold-Junction C Linearization	ompensation	•	•	•	•	•	•
	Isolation		• ¹	•1	•1	• ¹	•	•
Readout	Digits	3½ 4½	•	•	•	•	•	•
	LED Display Height	0.56", 14.3mm	•	•	•	٠	•	•
Digital Data Output	7-Bit Character- Isolated, 20mA RS232/TTL	Serial ASCII Current Loop	•	•	•	•	•	•
Analog Output	Voltage		•	•	•	٠	•	•
Power Supply	AC Line DC +7.5V to +2	28V	•	•	•	•	•	•
Page			12-15	12-15	12-17	12-17	12-19	12-19

DIGITAL TEMPERATURE/TRANSDUCER METERS*

NOTES ¹ AC line-operated versions.

* Other products that are still available are listed on page 17-4.

Orientation Digital Panel Instruments

A digital panel instrument is a self-contained instrument designed for panel mounting. It contains circuitry for measuring analog quantities, converting them to digital and providing a numeric readout. In addition, it usually provides data outputs for interfacing with a printer and/or a computer system.

Digital panel instruments manufactured by Analog Devices fall into two classes: digital panel meters for voltage measurements and microprocessor-based digital thermometers to read out temperature measurements from user-chosen sensors. A *digital panel meter* measures voltage, generally with fractional-millivolt resolution. A *temperature meter* accepts inputs from standard thermocouples, RTDs, and thermistors, and provides readouts directly in temperature, to 3 1/2 or 4 1/2 digits; thermocouple meters provide reference-junction compensation and linearization, while RTD/thermistor meters also provide current excitation for RTDs and thermistors.

Two useful publications from Analog Devices may be helpful in understanding the issues involved in signal conditioning and data conversion: *Analog-Digital Conversion Handbook*, third edition (1986, \$32.95) and *Transducer Interfacing Handbook* (1980, \$14.50). Both are available from the Analog Devices Literature Center at P.O. Box 796, Norwood MA 02062.

A DPM samples the input voltage periodically, converts that voltage to digital, and displays the corresponding reading visually. A digital panel meter, then, consists of four basic functional sections: the input section, including signal conditioning and analog to digital conversion circuitry; the display; the data outputs and the power supply.

Processing the Input Signal

The primary function of the input section is to convert an analog input voltage into a digital signal for display. Besides this basic function, the input section also buffers the input to provide a high input impedance, prevent circuit damage in overvoltage conditions, reject both normal-mode and common-mode noise on the input signal, compensate for large variations in operating temperature and sometimes even measure the ratio of two separate input voltages.

The analog to digital conversion scheme used on most DPMs is the dual-slope type due to its inherent stability and normal-mode noise rejection. The dual-slope converter can also be used to measure the ratio of two input voltages in some DPM designs. Lower-resolution DPMs sometimes use staircase or single slope converters which require RC filtering of the input signal for a normal-mode-noise rejection.

The input of the DPM may be single-ended, differential or floating. Single-ended inputs measure the input voltage with respect to input common and may require some care in application to avoid ground loop problems. To prevent ground loops, some of Analog Devices' DPMs use a "limited differential input," where a resistor separates analog and digital grounds allowing up to 200mV of common-mode voltage and providing up to 60dB of common-mode rejection.

AC-powered DPMs can be floated on the power-supply transformer to provide isolation and CMR. For example, the linepowered AD2026-2 has floating inputs with 116dB of CMR and a 1,000-volt common-mode rating.

Displaying the Data - Digital Outputs

Once the input signal is digitized, it is decoded and displayed on a digital readout. Analog Devices DPMs use large sevensegment light-emitting diode (LED) displays.

DPM full-scale range, including *overrange*, is defined by the number of digits and polarity. In mixed-fraction designations (e.g., 3 1/2 digits), a full digit is one capable of displaying any numeral from 0 through 9. The fraction generally means the ratio of the display's maximum leading digit to the power of two that corresponds to the number of overrange bits; for example, a 3 1/2-digit meter's maximum reading is 1999, a 4 3/4-digit meter's maximum reading is 39999.

Since the visual display of a DPM must be in a decimal format, counter chips used in DPM conversion circuitry are generally binary-coded decimal (BCD) types. The data output format depends on the circuit design of the meter; for example, the AD2010 has parallel BCD data outputs with all BCD bits available simultaneously, while the AD2021 has character-serial outputs – each BCD digit is gated onto a single set of parallel output lines in sequence. The latter technique requires fewer connections and simplifies data interfacing.

Digital data outputs from DPMs are generally compatible with DTL or TTL logic systems; many DPMs are also compatible with CMOS logic.

Control

The kinds and number of control inputs and outputs – and their interpretation – may differ from one model to another, but they are well defined on the data sheets. Examples of typical control functions that may be found in DPMs include triggering of conversions, external *hold*, decimal points (jumper or logic-programmable), display blanking and *status* output.

DIGITAL TEMPERATURE METERS

Microprocessor-based devices in this class include the AD2050/ AD2051 Thermocouple Meters, the AD2060/AD2061 Autoranging RTD/Thermistor Meters and the AD2070/AD2071 Autoranging Thermocouple Meters.

In addition to the basic panel-meter circuitry, these instruments have signal-conditioning front ends with overvoltage protection and open-sensor detection, automatic self-calibration and sophisticated output options. Besides linearization, their functions include cold-junction compensation for thermocouples and excitation for RTDs and thermistors. They read out in degrees Fahrenheit or Celsius, and the autoranging types choose between 0.1° and 1° resolution, depending on range.

The AD2050, AD2060, and AD2070 are dedicated instruments for optional specific sensor types (e.g., type K thermocouple), while the AD2051, AD2061, and AD2071 are "universal instruments" for any one of a set of specified sensors, programmable by the user to meet the needs of the application.

Communication options simplify temperature recording with computers, strip-chart recorders or printers. In addition to 7-bit character-serial ASCII outputs, the user has the option of a linearized analog output for strip-chart recorders, and serial ASCII output in two forms: isolated 20mA digital current-loop and/or nonisolated TTL. The AD2070/AD2071 has optional isolation for all data outputs, including RS-232.

Understanding Performance Specifications

Resolution, Accuracy and Stability – these three specs are very important in the selection of a DPM. Although more digits may mean more resolution, the digits themselves are useless unless the accuracy is sufficient for the digits to have real meaning. Therefore, accuracy and resolution should be comparable.

Besides temperature variations, there are three components of DPM inaccuracy: zero offset error, gain error and quantization error. In any device using a counter and clock to determine a digital output, there is always a potential ± 1 count error in the output. This is caused by the timing of the input gate of the counter; when the gate closes asynchronously with the clock, a clock pulse that occurs just as the gate closes may or may not be counted, hence the fixed ± 1 digit inaccuracy.

Zero-level offsets in the analog circuitry cause errors specified as a percentage of full-scale reading. These errors can be corrected by a zero-calibration potentiometer requiring periodic resetting, or by internal calibration circuits that set the zero level automatically between each pair of readings, assuring no zero-level contribution to the error.

Gain variations occur as a function of signal level in the analog circuitry and produce errors which are specified as a percentage of the reading. These are the hardest errors to design out of a DPM circuit, but they can be minimized by component specification and selection. A range potentiometer is used for periodic adjustment of the gain. Gain errors may also be calibrated out in "smart" instruments having an automatic internal calibration facility (e.g. AD2070).

Since all the electronic components used in the design of a DPM have some temperature dependence, one can expect the accuracy of the DPM to be affected by changes in operating temperature. If automatic zero correction circuitry is not used, the zero level may drift with temperature. Variations in the reference voltage circuitry and its associated switches will cause changes in the gain of the DPM, but careful selection and matching of components can minimize this error.

To illustrate these specifications, consider a 3 1/2 digit DPM (1999 counts full scale). The resolution of the unit is the value of one digit, 1 part in 2000 or 0.05% of full scale. If the accuracy is comparable to the resolution (exclusive of digital indecision), the DPM should have a maximum error of $\pm 0.05\% \pm 1$ digit.

Temperature coefficient specifications for a DPM should be very good to maintain the accuracy. A tempco of only 50ppm/°C (0.005%/°C) will produce an additional error of $\pm 0.05\%$ over a range of only $\pm 10^{\circ}$ C.

Since each manufacturer tends to use a different method of specifying accuracy and temperature coefficients, specifications must be expressed in common terms to be comparable.

DEFINITIONS – DPM TERMS & SPECIFICATIONS

Accuracy (Absolute): DPMs are calibrated with respect to a reference voltage which is in turn calibrated to a recognized voltage standard. The absolute accuracy error of the DPM is the tolerance of the full-scale set point referred to the absolute voltage standard.

Accuracy (Relative): Relative accuracy error is the difference between the nominal and actual ratios to full scale of the digital output corresponding to a given analog input. See also: *Linearity*.

Automatic Zero: To achieve zero stability, a time interval during each conversion is provided to allow the circuitry to compensate for drift errors, thereby providing virtually no zero drift error.

Bias Current: The current required from the source at zero signal input by the input circuit of the DPM. Bias current is normally specified at typical and maximum values. Analog Devices' DPMs using transistor input circuitry are biased current sinks.

Binary Coded Decimal (BCD): Data coding where each decimal digit is represented by a group of 4 binary coded digits (called "quads"). Each quad has bits corresponding to 8, 4, 2 and 1 and 10 permissible levels with weights 0-9. BCD is normally used where a decimal display is needed.

Bipolar: A bipolar DPM measures inputs which may be of either positive or negative polarity and automatically displays the polarity as well as the magnitude of the input voltage on the readout.

Character Serial BCD: Multiplexed BCD data outputs, where each digit is gated sequentially onto four common output lines.

Common-Mode Rejection: A differential-input DPM will reject any input signals present at both input terminals simultaneously if they are within the common-mode voltage range. Commonmode rejection is expressed as a ratio and usually given in dB. (CMR = 20 log CMRR 120dB of common-mode rejection.) (CMRR = 10⁶) means that a 10V common-mode voltage is processed as though it were an additive differential input signal of 10 μ V magnitude.

Common-Mode Voltage: A voltage that appears in common at both input terminals of a device, with respect to its ground.

Conversion Rate: The frequency at which readings may be processed by the DPM. Specifications are typically given for internally clocked rates and maximum permissible externally-triggered rates.

Conversion Time: The maximum time required for a DPM to complete a reading cycle, specified for the full-scale reading.

Dual-Slope Conversion: An integrating A/D conversion technique in which the unknown signal is converted to a proportional time interval, which is then measured digitally. This is done by integrating the unknown for a predetermined time. Then a reference input is switched to the integrator, and integrates "down" from the level determined by the unknown, until a "zero" level is reached. The time for the second integration process is proportional to the average of the unknown signal level over the predetermined integrating period.

Input Impedance: The complex ratio of signal voltage to signal current at the input terminals. For dc measuring DPMs, the input is measured at dc. For ac measuring DPMs, it is expressed as a dc resistance shunted by a specified capacitance.

Linearity: The conventional definition for nonlinearity of a DPM is the deviation from a "best" straight line which has been fitted to a calibration curve. Analog Devices defines nonlinearity as the deviation from a straight line drawn between the zero and full-scale end points. Not only is this an easier method for customer calibration, it is also a more conservative method of specifying nonlinearity.

Linearity

Normal-Mode Rejection: Filtering or integrating the input signal improves noise rejection of undesired signals present at the analog high input. Normal-mode rejection is expressed as the ratio of the actual value of the undesired signal to its measured value over a specified frequency range. (NMR (dB) = 20 log NMRR, e.g. NMR = 40dB means an attenuation of 100:1.)

Overload: An input voltage exceeding the full-scale range of the DPM produces an overload condition. An overload condition is usually indicated by conspicuous manipulation of the display such as all dashes, flashing zeros, etc. On a 3 1/2 digit DPM with a range of 199.9mV, a \geq 200mV, signal will produce an overload condition.

Overrange: An input signal that exceeds all nines on a DPM, but is less than an overload. On a 3 1/2 digit DPM with a full-scale range of 199.9mV, the all-nines range is 0-99.9mV, and signals from 100-199.9mV are said to fall in the 100% overrange region. Some DPMs have higher overrange capability. A 3 3/4 digit DPM has a full-scale range of 3.999 or 300% overrange.

Overvoltage Protection: The input section of the DPM must provide protection from large overloads. Specifications are given for sustained dc voltages that can be tolerated.

Parallel BCD: A data output format where all digital outputs are available simultaneously.

Range (Temperature Operating): The range of temperatures over which the DPM will meet or exceed its performance specifications.

Range (Full Scale): The range of input signals that can be measured by a DPM before reaching an overload condition. A 3 1/2 digit DPM's full-scale range consists of three digits (all-nines range) and 100 percent overrange capability.

Ratiometric: Dual Slope DPMs compare voltage inputs to a stable internal reference voltage. In some systems, the voltage being measured is a function of another voltage, and accurate measurements should be made as the ratio of the two voltages. Some DPMs provide inputs for external reference voltages for ratiometric measurements.

Resolution: The smallest voltage increment that can be measured by a DPM. It is a function of the full-scale range and number of digits of a DPM. For example, if a $3 \frac{1}{2}$ digit DPM has a resolution of 1 part in 2000 (0.05%) over a full-scale range of 199.9mV, the DPM can resolve 0.1mV.

Digits	Counts(F.S.)	Resolution (% F.S.)
2 1/2	199	0.5%
3	999	0.1%
3 1/2	1999	0.05%
3 3/4	3999	0.025%
4	9999	0.01%
4 1/2	19999	0.005%
4 3/4	39999	0.0025%

Temperature Coefficient: The additive error term (ppm/°C or % Reading/°C) caused by effects of variations in operating temperature on the electronic characteristics of the DPM.

Unipolar Input DPM: A DPM designed to measure input voltages of only one polarity.

Grounding Configurations of DPMs

12-8 DIGITAL PANEL INSTRUMENTS

Low-Cost, 3 1/2 Digit DPM for OEM Applications

AD2010

FEATURES

LED Display with Latched Digital Outputs Small Size, Lightweight Automatic Zero Correction; Max Error: 0.05% ±1 Digit High Normal Mode Rejection: 40dB @ 50 or 60Hz Optional Ratiometric Operation Leading "0" Display Blanking 5V dc Powered

APPLICATIONS

Medical/Scientific/Analytic Instruments Data Acquisition Systems Industrial Weighing Systems Readouts in Engineering Units Digital Thermometers

GENERAL DESCRIPTION

Analog Devices' model AD2010 represents an advance in price/ performance capabilities of $3\frac{1}{2}$ digit digital panel meters. The AD2010 offers 0.05% ±1 digit maximum error with bipolar, single ended input, resolution of 100μ V, and a common mode rejection ratio of 60dB (CMRR) at ±200mV (CMV).

The AD2010 features a light-emitting-diode (LED) display with a full scale range of 0 to ± 199.9 millivolts, latched digital data outputs and control interface signals, and leading zero display blanking. Automatic-zero correction circuitry measures and compensates for offset and offset drift errors, thereby providing virtually no error. Another useful feature of the AD2010 is its 5V dc operation. The AD2010 can operate from the users' 5V dc system supply, thereby eliminating the shielding and decoupling needed for line powered units when the ac line must be routed near signal leads.

To satisfy most application requirements, the conversion rate of the AD2010 is normally 4 readings per second. However, an external trigger may be applied to vary the sampling rates from a maximum of 24 readings per second down to an indefinite hold time. The AD2010 can also be connected for automatic conversion at its maximum conversion rate. During conversion, the previous reading is held by the latched logic. The numeric readout is available as BCD data. Application of the metering system in a computer or data logging system is made easy with the availability of the "overrange," "polarity," "overload," and "status" signals.

A simplified block diagram of the AD2010, illustrating the features described above is shown in Figure 1.

IMPROVED NOISE IMMUNITY, ACCURACY AND ZERO STABILITY

Dual-slope integration, as used in the AD2010 and as described in the theory of operation section, offers several design benefits.

- Conversion accuracy, for example, is independent of both the timing capacitor value and the clock frequency, since they affect both the up ramp and down ramp integration in the same ratio.
- Normal mode noise at line frequencies or its harmonics is rejected since the average value of this noise is zero over the integration period.
- To achieve zero stability, a time interval during each conversion is provided to allow the automatic-zero correction circuitry to measure and compensate for offset and offset drift errors, thereby, providing virtually no zero error.

SPECIFICATIONS (typical @ +25°C and +5VDC unless otherwise noted)

DISPLAY OUTPUT

- Display consists of four LED's (0.27" (6.9mm) high). for data digits plus 100% overrange and polarity indication.
- Overload three data digits display zeros and flashes.
- Decimal Points selectable at input connector.
- Leading "0" Display Blanking controlled externally.

INPUT

- Full Scale Range 0 to ±199.9 millivolts
- Automatic Zero
- Automatic Polarity
- Bias Current 3nA
- DC Impedance $-100M\Omega$
- Overvoltage Protection 20V sustained, 50V momentary without damage.
- Decimal Points (3) illuminate with logic "1", extinguish with logic "0".

ACCURACY

- Maximum Error 0.05% of reading ±1 digit
- Resolution 0.1 millivolt
- Temperature Range 0 to +50°C operating
- -30°C to +85°C storage
- Temperature Coefficient ±50ppm/°C

NORMAL MODE REJECTION

• 40dB @ 60Hz

COMMON MODE REJECTION

60dB @ ±200mV

CONVERSION RATE

- External Trigger up to 24 conversions per second
- Internal Trigger 4 conversions per second
- Automatic A new conversion is initiated automatically upon completion of conversion in process; conversion rate will vary from 24/sec to 40/sec depending on input magnitude.
- Hold and Read upon command.
- CONVERSION TIME
 - Normal Conversion 42ms max (full scale input)
 - Overload Conversion 62ms max
- INTERFACE SIGNALS

•	DTL/TTL Compatible		IN	OUT
	-	logic "0"	<0.8V	<0.4V
		logic "1"	>2.0V	>2.4V

• Inputs

External Trigger – Operation in the "External Trigger" mode requires that the "External Hold" input be a logic "0" or ground.

Negative Trigger Pulses – Applying a logical "low" to the "HOLD" input disables the internal trigger. A negative trigger pulse (logic "1" to logic "0") of 1.0µs minimum applied to the "EXT TRIGGER" input will initiate conversion in the same manner as the internal oscillator. The external trigger should not be repeated, however, until the "status" indicates completion of the conversion in process.

Positive Trigger Pulses – The "HOLD" input can be used to trigger the AD2010 from a "normally low" signal with the "EXT TRIGGER" input open or logic "1". Following a "hold" a new reading will be initiated on the leading edge of the "hold" signal. Thus, a momentary positive pulse on the "HOLD" input can be used to trigger the AD2010. The drift correct interval, however, begins on the trailing edge of the positive pulse, so if the pulse width exceeds 1 ms, the conversion will actually be initiated by the internal trigger.

Specifications subject to change without notice.

Maximum Conversion Rate - Automatic – The AD2010 can also be connected for automatic conversion at its maximum conversion rate by connecting the "status" output back into the "hold" input. In this manner the status signal going high at the end of one conversion immediately initiates a new conversion. The pulses appearing on the status line can be used to step a multiplexer directly, since the built-in drift-correct delay of 8.33ms will allow settling of the input prior to conversion. A logic "0" applied to the "EXT TRIGGER" will inhibit the automatic trigger mode. External Hold – Logic "0" or ground applied to this input disables the internal trigger and the last conversion is

put disables the internal trigger and the last conversion is held and displayed. For a new conversion under internal control the input must be opened or at logic "1". For a new conversion under external control, a positive pulse of less than 1.0ms can be applied (as previously explained).

OUTPUTS

- 3 BCD Digits (8421 Positive True) latched 3TTL loads
- Overrange logic "1" latched 6TTL loads, indicates overrange.
- Overload logic "0" indicates overload (>199.9mV) logic "1" - latched - 6TTL loads, indicates data valid.
- Polarity logic "1" latched 6TTL loads, indicates positive polarity input.
- Status logic "0" conversion in process logic "1" - latched - 6TTL loads, indicates conversion complete.

POWER

- +5V dc ±5%, 500mA
- WARM UP
 - Essentially none to specified accuracy
- ADJUSTMENTS
 - Range potentiometer for full scale calibration. Calibration recommended every six months.

SIZE

3"W x 1.8"H x 0.84"D (76.2 x 45.7 x 21.3mm) (overall depth for case and printed circuit board extension is 1.40" (35.6mm)).

ORDERING GUIDE

 AD2010 - Standard AD2010 as described above - tuned for peak normal mode rejection at 60Hz and its harmonics.

WEIGHT

• 4 oz. (113.5gm)

OVERALL DIMENSIONS

All dimensions are given in inches and (mm).

Low-Cost, 3 1/2 Digit Logic Powered DPM with LED Displays

AD2021

FEATURES

"Second Generation" MOS-LSI Design Large 0.5" (13mm) LED Displays +5VDC Logic Powered ±1.999V, ±199.9mV or ±19.99V Full Scale Ranges Limited Differential Input Low Power Consumption: 2.0 Watts Small Size, Industry Standard Case Design

APPLICATIONS

General Purpose Logic Powered DPM Applications Portable Applications Requiring Low Power Consumption

GENERAL DESCRIPTION

The AD2021 is a low cost, 3¹/₂ digit, +5V dc logic powered digital panel meter with large LED displays. While designed for general purpose DPM applications, the small size, light weight and low power consumption of the AD2021 make it an ideal digital readout for modern, compact instrument designs.

THE BENEFITS OF "SECOND GENERATION" DESIGN

The AD2021 is designed around MOS-LSI (Metal-Oxide-Semiconductor, Large Scale Integration) integrated circuits, which greatly reduce the number of components, and thereby the size, and reduce power consumption to 2.0 watts. Both the lower power consumption and fewer interconnections between components promise greatly increased reliability, and the circuit design maintains the performance and features of earlier DPMs. Large 0.5 inch (13mm) LED displays offer the visual appeal of gas discharge displays with the ruggedness and lifetime of all solid state devices.

EXCELLENT PERFORMANCE AND EASY APPLICATION

The AD2021 measures input voltage over a full scale range of $\pm 1.999V$ dc or $\pm 199.9mV$ dc ("S" option) with an accuracy of $\pm 0.05\%$ reading $\pm 0.025\%$ full scale ± 1 digit. Using the "limited differential" input first used on Analog Devices' AD2010, the AD2021 prevents ground loop problems and provides 35 to 50dB of common mode rejection at common mode voltages up to $\pm 200mV$. Normal mode rejection is 40dB at 50Hz to 60Hz.

BCD data outputs are provided in a bit parallel, character serial format compatible to CMOS logic systems. For those applications requiring parallel BCD data, schemes for making the serial to parallel conversion are available. Controls to hold readings, select decimal points and blank the display are provided.

DESIGNED AND BUILT FOR RELIABILITY

The AD2021 is packaged in Analog Devices' logic powered DPM case size, only 1.25 inches (32mm) deep. The small size of this DPM makes it easy to accommodate in any instrument design, and since several other manufacturers now use the same panel cutout for logic powered DPMs, this industry standardization allows mechanical second sourcing. In addition, the

AD2021 uses the same pin connections as the AD2010 (except in BCD outputs, of course) as a convenience to allow updating designs to take advantage of the second generation design and larger display of the AD2021. Each AD2021 receives a full one week failure free burn-in before shipment.

Figure 1. AD2021 Bit Parallel Character Serial to Full Parallel Data Conversion. AD2021 Pin Connections are Shown in Parentheses.

For detailed information, contact factory.

SPECIFICATIONS

DISPLAY OUTPUT

- Light emitting diode, planar seven segment display readouts, 0.5" (13mm) high for three data digits, 100% overrange and negative polarity indication. Overload indicated by flashing display, polarity remains valid.
- Decimal points selectable at input connector.
- Display blanking on three data digits (does not affect overrange digit, polarity sign of decimal points).

ANALOG INPUT

- Configuration: bipolar, limited differential
- Full Scale Range: ±1.999V or ±199.9mV ("S" option) ±19.99V ("V" option)
- Automatic Polarity
- Auto Zero
- Input Impedance: $100M\Omega$ ($1M\Omega$ "V" option)
- Bias Current: 50pA
- Overvoltage Protection: ±50V dc, sustained
- ACCURACY
 - ±0.05% reading ±0.025% full scale ±1 digit¹
 - Resolution: 1mV, 10mV ("V" option) or 100 μ V ("S" option)
 - Temperature Range²: 0 to +50°C operating; -25°C to +85°C storage
 - Temperature Coefficient: Gain: 50ppm/°C Zero: auto zero
 - Warm-Up Time to Rated Accuracy: less than one minute
 - Settling Time to Rated Accuracy: 0.4 second

NORMAL MODE REJECTION

• 40dB at 50-60Hz

COMMON MODE REJECTION

- AD2021: 35dB (dc -10kHz)
- AD2021/S: 50dB (dc -10kHz)
- AD2021/V: 15dB (dc -10kHz)
- COMMON MODE VOLTAGE
 - ±200mV

CONVERSION RATE

- 5 conversions per second
- Hold and read on command

CONTROL INPUTS

- <u>Display Blanking</u>: (TTL, DTL compatible, 2 TTL loads). Logic "0" or grounding blanks the three data digits only, not the decimal points, overrange digit (if on) and polarity sign. Logic "1" or open circuit for normal operation. Display blanking has no effect on output data and the display reading is valid immediately upon removal of a blanking signal.
- <u>Hold</u>: (CMOS, DTL, TTL compatible, 1LP TTL load). Logic "0" or grounding causes the DPM to cease conversions and display the data from the last conversion. Logic "1" or open circuit for normal operation. After the "Hold" input is removed, one to two conversions are needed before the reading is valid.
- <u>Decimal Points</u>: Grounding or Logic "0" will illuminate the desired decimal point. External drive circuitry must sink 35mA peak at a 25% duty cycle when the decimal points are illuminated.

DATA OUTPUTS (See Application Section for details on data outputs)

- BCD Data Outputs: (CMOS, LP TTL or LP Schottky compatible), bit parallel, character serial format.
- Digit Strobe Outputs: (CMOS, DTL, TTL compatible, one TTL load). Logic "1" on any of these lines indicates the output data is valid for that digit.
- Polarity Output: (CMOS, TTL, DTL compatible, one TTL load). Logic "1" indicates positive polarity input, logic "0" indicates negative polarity.
- Status: (CMOS or LP TTL compatible). When this signal is at Logic "1", the output data is valid.
- Clock: (CMOS, DTL, TTL compatible, one TTL load). The clock signal is brought out to facilitate conversion from character serial to parallel data.
- INTERFACING DATA OUTPUTS. The BCD data outputs are in a bit parallel, character serial format. There are four' BCD bit outputs (1, 2, 4, 8) and four digit outputs (10⁰, 10¹ 10², 10³). The BCD digits are gated onto the output lines sequentially, and the BCD bits are valid for the digit whose digit line is high. The data is valid except when being updated which occurs within 2 milliseconds after the status line goes low.

REFERENCE OUTPUT

• A 6.4V ±5% analog reference output is made available. This reference should be buffered and filtered if use in external circuitry is desired.

POWER INPUT

• +5V dc ±5%, 1.45 watts

CALIBRATION ADJUSTMENTS (See Application Section for calibration instructions)

- Gain
- Zero
- Recommended recalibration interval: six months

SIZE

- 3"W x 1.8"H x 1.33"D (76 x 46 x 34mm)
- 1.90" (48mm) overall depth to rear of card edge connector.
- Panel cutout required: 3.175" x 1.810" (80.65 x 45.97mm).

WEIGHT

• 4 ounces, (115 grams)

OPTIONS – ORDERING GUIDE

• Input Voltage Range: AD2021 – 1.999V dc Full Scale AD2021/S – 199.9mV dc Full Scale

AD2021/V – 19.99V dc Full Scale

CONNECTOR

- 30 pin, 0.156" spacing card edge connector. Viking 2VK15D/1-2 or equivalent.
- Optional: Order AC1501

NOTES

¹Guaranteed at 25°C and nominal supply voltage ²Guaranteed

Specifications subject to change without notice.

Low-Cost, 3 Digit AC Line or Logic Powered DPM

AD2026*

FEATURES

Third Generation I² L LSI Design Either Line Powered or Logic Powered Large 0.56" Red Orange LEDs Balanced Differential Input/Floating 1000V, CMV Terminal Block Interface (ac Version) High Reliability: > 250,000 Hour MTBF Small Size and Weight Low Cost

GENERAL DESCRIPTION

The AD2026 is specifically designed to provide a digital alternative to analog panel meters. The AD2026 is available either logic powered (+5V dc) or ac line powered. Most of the analog and digital circuitry is implemented on a single I^2L LSI chip, the AD2020. Only 13 additional components are required to complete the AD2026 +5V dc version. The entire dc version is mounted on a single $3'' \times 15/8''$ PCB. AC line power is achieved with the addition of a second PCB containing the ac power transformer and power supply circuitry.

The AD2026, on both the ac line and logic powered versions, offers as a standard feature, 0.56" high LED Displays. Brightness is enhanced on both versions due to the Red Orange lens. In addition to the Red Orange lens, the AD2026 is also available with a dark red lens for applications where maximum brightness is not required and minimum backlighting is desired.

A unique patented case design utilizes molded-in fingers, both to capture the PCB in the case and to provide snap-in mounting of the DPM in a standard panel cutout. No mounting hardware of any kind is used. The dc version occupies less than 1" of space behind the panel. The line powered version offers the same mounting features but occupies 2 1/2" of behind-panel space.

EXCELLENT PERFORMANCE

The AD2026 offers the instrument designer digital accuracy, resolution and use of readout while occupying less space than its analog counterpart. Other features of analog meters such as reliability and instantaneous response are retained in the AD2026.

The AD2026 measures and displays inputs from -99mV to +999mV, with an accuracy of 0.1% of reading ± 1 digit. Zero shift is less than one bit over the full operating temperature range, resulting in the same performance as a DPM with auto zero. The balanced differential input of the dc powered AD2026 rejects common mode voltages up to 200mV, enough to eliminate most ground loop problems. The floating differential input inherent in the ac line powered version offers 1000V of common mode voltage rejection.

*Covered by patent numbers: 4,092,698; 29,992; 3,872,466; and 3,887,863.

Optional 10.0V full scale (F.S.) range is available on the ac line version that will accept inputs from -0.99V to 9.99V.

WIRING CONNECTIONS

For Balanced Differential operation with the AD2026 dc version, connect input as shown in Figure 1. The common mode loop must provide a return path for the bias currents internal to the AD2026. The resistance of this path must be less than $100k\Omega$ and total common mode voltages must not exceed 200mV.

For applications where attenuation is required, scaling resistors can be connected between pins 6 and 7 and between pins F and H. Pin 5 must be used as the High Analog Input when scaling resistors are used and pin 4 when they are not. Pin E is the Analog Low Input.

Connection to the ac line powered AD2026 is via the terminal strip on the rear. AC line power is connected to terminals 4 and 5 and the signal input is connected to terminal 1 (Analog HI) and 2 (Analog Ground).

SPECIFICATIONS (typical at +25°C and nominal supply voltage unless otherwise noted)

DISPLAY OUTPUT

- Light emitting diode, planar seven segment display readouts, 0.56" (14.6mm) high (orange)
- Overload Indication: EEE
- Negative Indication: -XX
- Negative Overload Indication ----
- Decimal Points: three (3) selectable at input connector (dc version), internally on ac version
- ANALOG INPUT
 - Configuration: balanced differential input (dc version) single ended isolated (ac version) •
 - Full Scale Range. -99mV to +999mV -0.99V to +9.99V (10V option on ac version)
 - Automatic Polarity
 - Input Impedance: $100M\Omega$, $100k\Omega$ (10V option)
 - Bias Current, 100nA
 - Overvoltage Production · ±15V dc, sustained

ACCURACY

- ±0.1% ±1 dıgıt¹
- Resolution 1mV or 10mV
- Temperature Range² -10°C to +60°C operating, -25°C to +80°C storage Temperature Coefficient Gain 50ppm/°C .
 - Zero 10µV/°C (essentially auto zero)
- Warm-Up Time to Rated Accuracy Instantaneous Settling Time to Rated Accuracy. 0.3 second for full input voltage swing (dc version), 0.75 second for full input voltage swing (ac version)
- COMMON MODE REJECTION (1k Source imbalance, dc to 1kHz)
- 50dB, ±200mV common mode voltage (dc version)
 - 116dB (96dB on 10V range), 1000V rms max CMV (ac version)
- NORMAL MODE REJECTION
- 30dB at 50-60Hz (ac version)
- CONVERSION RATE
 - 4 conversions per second
 - Hold and read on command (dc version only)
- CONTROL INPUTS

Display Blanking/Display Power Input, (dc version only) The display of the AD2026 can be blanked by removal of power to the display power input, with no effect on conversion circuitry. If external logic switching is used, the display requires 110mA peak (85mA average) when illuminated.

Hold (dc version only) When the Hold input is at Logic "0", grounded or open circuit, the AD2026 will convert at 4 conversions per second. If a voltage of 0.6V to 2.4V is applied to this input, the DPM will stop converting and hold the last reading. A $12k\Omega$ resistor in series with this input to +5V will provide the proper voltage input. (Consult factory for "HOLD" on ac version.)

 \oplus

- To illuminate decimal points on dc version, ground appropriate pin (A, B or 3).
- To illuminate decimal points on ac version, remove shroud and bridge appropriate solder pad (A, B or 3).

- Converter. +5V ±5%, 0.2 watts typ, 0.33 watts max
- Display: +5V ±40%, 0.45 watts typ, 0.75 watts max
- POWER INPUT AC LINE POWER
 - AC line, 50-60Hz, 1.5 watts

CALIBRATION ADJUSTMENTS • Gain

- ٠ Zero
- Recommended recalibration interval six months
- SIZE⁴
 - 3.43"W × 2.0"H × 0.85"D (87 × 52 × 22mm)
 - 0.88" (22mm) overall depth to rear of connector .
 - . Panel cutout required 3.175 ±0.015" × 1.810 ±0.015" (80.65 ±0.38 × 45.97 ±0.38mm)
- WEIGHT
 - 1.8 ounces (53 grams) (dc version)
 - 7 ounces (198 grams) (ac version)

CONNECTIONS

A 10-pin T&B/Ansley 609-1000M with two feet of 10 conductor ribbon cable is available. Order AC2618 (dc version, only).

Conductor to pin A is color coded. Sequence of ribbon connections is A, 1, B, 2, C, 3, etc.

The AD2026 ac version is complete with terminal strip for easy interface

NOTES

- Guaranteed at +25°C and nominal supply voltage
- When the same power supply is used to power both display and converter, +5V, ±5%,
- O.65 watts typical, 0.9 watts max is required.
 Dimensions for ac line powered version 3 43"W × 2.0"H × 2 44"D (87mm × 52mm × 63mm)

3 17 (80 52

MODEL AD2026

- ⁸No Charge Options ⁶10V dc full scale option is available on ac power only
- Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

NOT NORMALLY USED ALLOWS CONVENIENT MOUNTING OF SCALING RESISTORS

12–14 DIGITAL PANEL INSTRUMENTS

- ²Guaranteed.

- DECIMAL POINT

Microprocessor-Based Thermocouple Meters

AD2050/AD2051

FEATURES

Automatic Self-Calibration for Gain, Offset, Cold Junction Compensation and Thermocouple Linearization

J, K, T, E, R, S Thermocouple Selections (AD2050) Universal Meter (AD2051), User Programmable Character Serial ASCII Digital Output Optional Linearized Analog Output: 1mV/degree Optional Isolated 20mA Loop/TTL Serial Outputs

Meets DIN/NEMA Dimension Specifications

Temperature Ranges: - 265°F to + 1999°F

- 165°C to + 1760°C

Power Options: 120V ac, 240V ac, +7.5V dc to +28V dc APPLICATIONS

Temperature Monitoring in Laboratory, Manufacturing, and Quality Control Environments

Process Control Temperature Measurements Remote Data Logging

GENERAL DESCRIPTION

The AD2050 and AD2051 are high performance single channel $3\frac{1}{2}$ digit thermocouple meters that can measure temperatures accurately between -265 and +1999 in degrees Celsius or Fahrenheit. The AD2050 is supplied factory programmed to interface directly with any of the following six thermocouple types: J, K, T, E, R and S. The AD2051 is a universal instrument in which the user selects one of the six thermocouple types via switch programming. Being microprocessor based, all gain and offset error correction, cold junction compensation, thermocouple linearization, and °C/°F scaling are automatically performed in firmware.

The AD2050 and AD2051 display temperature information on large 0.56" (14.3mm) high LEDs. Digital information is provided in standard ASCII character serial format with rate selection for easy interface to printers, terminals, and other peripherals. For remote data acquisition applications, an optional isolated 20mA

serial loop/TTL compatible interface is available. Also an optional analog output linearized to 1mV/degree is provided for driving recorders and other analog instruments. Selection of °C or °F scaling is accessed by removing the front panel lens and setting

the selector switch to its proper position.

The AD2050 and AD2051 can also be ordered with any of the following power versions: 120V ac, 240V ac, or +7.5V dc to +28V dc. Input overvoltage protection for 300V peak (thermocouple to ac line shorts) and common mode voltages as high as 1400V peak (ac version) with overrange and open thermocouple detection are provided. These instruments are rated for operation over the $+10^{\circ}$ C to $+40^{\circ}$ C temperature range. Testing is performed per MIL-STD-202E Method 103B to insure specified operation over various relative humidity conditions. The AD2050 and AD2051 are supplied in rugged high impact plastic cases that meet DIN/NEMA standard dimensions.

AD2050/AD2051 FUNCTIONAL BLOCK DIAGRAM

For detailed information, contact factory.

SPECIFICATIONS (typical @ + 25°C and rated supply voltages unless otherwise specified)

THERMOCOUPLE INPUTS

- Thermocouple Types: J, K, T, E, S, R
- Input Impedance: >100MΩ
- External (Lead) Resistance Effect: <20μV per 350Ω of Lead Resistance
- Cold Junction Compensation Error: ±0.5°C max (+10°C to + 40°C)
- Open Thermocouple: + EEE Display; + EEEE ASCII Digital Output; + 2.048V Analog Output
- Thermocouple Short to ac Line: Internal Protection Provided to 300V peak (200V ac rms)
- Common Mode Voltage: 1400V peak (dc or ac), between Input and Power Line Ground (ac Versions)
- Common Mode Rejection Ratio: >130dB with 250Ω Source
- Imbalance (ac Versions); (dc to 60Hz) • Normal Mode Rejection Ratio: >80dB @ 50/60Hz
- DIGITAL OUTPUTS Character Serial ASCII
 - Data: Nine transmitted characters, (each 7 bits plus strobe) Drive Capability: 2TTL loads, CMOS/TTL compatible Strobe: Negative transition determines when character serial data is valid. CMOS/TTL compatible Character Rate: Selectable on P1 (pin 32) Grounded: 25 characters/sec. (SLOW) Open: 100 characters/sec. (FAST)
 - Isolated Serial Output (Optional) Data: Asynchronous ASCII 20mA current loop (Optically isolated to ± 600V peak) Baud Rate: Selectable on P1 (Pin 32) Grounded: 300 baud (SLOW) Open: 1200 baud (FAST) Distance: 10,000 ft. max
 - Serial Output (Nonisolated, Optional) Data: Serial ASCII Drive Capability: 2TTL Loads, CMOS/TTL compatible Baud Rate: (same as Isolated Serial Output)
 - Overrange: ± EEEE
 - Minimum Time Between New Data Update: 150ms
- DIGITAL INPUTS
 - REQ: Low-Level Triggered: Must go low at any time other than during data transmission to be recognized. REQ line taken low during data transmission will not be acknowledged and the ASCII digital output transmission will not occur. Display readings are not effected by REQ.
 - SERIAL INPUT (Optional): Edge Triggered, Current On to Current Off: Must be triggered at any time other than during data transmission to be recognized. Serial Input triggered during data transmission will not be acknowledged and the 20mA isolated/TTL compatible serial output transmission will not occur. Display readings are not effected by Serial Input.

ANALOG OUTPUT (OPTIONAL)

- Voltage: 1mV/degree, linearized
- Current: ±2mA max drive
- CMV: 1400V peak (ac or dc) Peak between Analog Output
- Ground & ac Power Line Ground
- Overrange: +2.048V, -0.512V

ACCURACY

- Temperature Resolution: 1°C/1°F
- All Ranges are Guaranteed Monotonic
- Range Temperature Coefficient: ±25ppm/°C typ, ±60ppm/
- °C max
- Readout Accuracy @25°C:

- 165°

- 265°

R

Sensor Туре

> 1 Ř - 50°C

> ĸ - 58°F

т -- 150

т - 2389

ange	Accuracy			
C to 760°C	±0.7°C	± 1/2LSD		
F to 1400°F	±1.3°F	± 1/2LSD		
to 1250°C	±0.9°C	± 1/2LSD		
to 1999°F	±1.6°F	± 1/2LSD		
C to 400°C	±0.8°C	± 1/2LSD		
F to 752°F	±1.4°F	± 1/2LSD		

± 1/2LSD

- ± 1/2LSD - 100°C to 870°C ±1.0°C E ±2.0°F $\pm 1/2LSD$ Ε - 148°F to 1598°F + 300°C to 1760°C ±1.5°C ± 1/2LSD S,R 0° to 299°C ±6.0°C $\pm 1/2LSD$
- + 572°F to 1999°F ± 3.0°F S.R
- + 32°F to 571°F ±12.0°F ±1/2LSD

ANALOG TO DIGITAL CONVERSION

Technique: Offset Dual Slope with Gain and Offset Error Correction

- Rate: 2.5 Conversions/Second Typical Input Integration Period: 100ms for 50/60Hz
- Noise Rejection
- POWER REQUIREMENTS (Choice of Three Supply Ranges) • ac: 90V ac to 132V ac @ 25mA (47Hz to 500Hz)
 - 198V ac to 264V ac @ 12.5mA (47Hz to 500Hz) dc: +7.5V to +28V dc @ 200mA (Protected Against Supply Reversals)
- DISPLAY
 - Type: Seven Segment Orange LED 0.56" (14.3mm) high
 Polarity Indication: "+" or "-" displayed

 - Overrange Indication: ± EEE
 - Display Test: At Power Turn-On, 3 Second Display of "+ 1888" Tests all Segments of Display
- ENVIRONMENTAL
 - Rated Temperature Range: +10°C to +40°C
 - Operating Temperature Range: -10°C to + 50°C
 - Storage Temperature Range: -40°C to +85°C
 - Relative Humidity: Meets MIL-STD-202E, Method 103B
- DIMENSIONS
 - Case: 3.78" × 1.89" × 5.13" (96.8mm × 48.9mm × 131.3mm), high impact molded plastic case. DIN/NEMA Standard
 - Weight: 15.2 oz (431 grams) max, ac powered 12.0 oz (341 grams) max, dc powered.
- RELIABILITY
 - Burn In: 168 Hours at + 50°C and Power ON/OFF Cycles.
 - Calibration: NBS Traceable
 - Recalibration: Recommended 15-Month Intervals
 - Warranty: 12 months

CONNECTOR

One 44 pin 0.1" (2.54mm) spacing card edge connector Viking 3VH22/1 IN5 or equivalent Optional: Order AC2630

Rear Panel View

ORDERING GUIDE

THERMOCOUPLE TYPE: ĸ т Е R S POWER OPTION* (1)120V ac (2)240V ac (3) + 7.5V dc to + 28V dc

ANALOG OUTPUT OPTION

SERIAL OUTPUT OPTION

(S) Contains Serial Output

(Blank) Does Not Contain Serial Output

(A) Contains Analog Output

*Only one option can be ordered The thermocouple type does not need to be specified when ordering the AD2051 since it is user programmable

Specifications subject to change without notice

Microprocessor-Based Autoranging RTD/Thermocouple Meters

AD2060/AD2061

FEATURES

Temperature Ranges: - 328°F to + 1562°F -200°C to +850°C Autoranging: 0.1° from - 199.9° to + 199.9°; 1°≥200° Sensor Selection (AD2060): RTD 100Ω Platinum $\alpha = 0.00385, 0.00390, 0.00392$ or 2252 Ω Thermistor Universal Meter (AD2061) Sensor User Programmable Switch Selectable Sensor Configuration: 2, 3 or 4-wire 7-Bit ASCII Character Serial Data Output Automatic Self-Calibration for Gain, Offset, Excitation and Sensor Linearization **Optional Linearized Analog Voltage Output:** 1mV/dearee **Optional Isolated 20mA ASCII Loop/TTL Serial Outputs APPLICATIONS** Temperature Monitoring in Laboratory, Manufacturing and Quality Control Environments **Process Control Temperature Measurements Remote Data Logging**

GENERAL DESCRIPTION

The AD2060/AD2061 are high performance single channel $3\frac{1}{2}$ digit RTD/Thermistor meters that can measure temperature accurately between -328° F and $+1562^{\circ}$ F (-200° C and $+850^{\circ}$ C). Both meters offer autoranging from 0.1° C/F to 1° C/F. The AD2060 is supplied factory programmed for one of four sensor types: 100 Ω Platinum RTDs: $\alpha = 0.00385$, 0.00390, 0.00392 or a 2252 Ω Thermistor. The AD2061 is a universal meter in which the user selects one of the four sensor types via switch programming. The microprocessor based AD2060/AD2061 provides gain, offset and excitation error correction, linearization and °C/°F scaling in firmware. The AD2060/AD2061 display temperature information on large 0.56″(14.3mm) high LEDs. Digital information is provided in 7-bit standard ASCII character serial

format with baud rate selection for easy interface to printers, terminals and other peripherals. For remote data acquisition applications, an optional isolated 2-wire 20mA ASCII serial loop/TTL compatible interface is available. For driving recorders or other analog instruments, an optional linearized analog voltage output of 1mV/degree is available. Selection of °C or °F scaling is accessed by removing the front panel lens and setting the selector switch to its proper position.

The AD2060/AD2061 can be ordered in one of the following power versions: 120V ac, 240V ac or +7.5V dc to +28.0V dc. Input voltage protection of 180V peak (RTD short to ac line), common-mode voltage to 1400V peak (ac version) with overrange and open sensor detection is provided. These meters are rated for operation over the 0 to $+40^{\circ}$ C temperature range. Each AD2060/AD2061 is burned-in for 168 hours @ 50°C with on/off power cycles for increased reliability.The AD2060/AD2061 are supplied in rugged molded plastic cases that meet UL94V-0 and DIN/NEMA standard dimensions.

AD2060/AD2061 FUNCTIONAL BLOCK DIAGRAM

For detailed information, contact factory.

SPECIFICATIONS (typical @ + 25°C and rated supply voltages unless otherwise specified)

RTD INPUTS

- RTD Types:
- 100Ω Platinum $\alpha = 0.00385$ (Per DIN 43760) $\alpha = 0.00390$
 - $\alpha = 0.00392$
- Configuration: 2, 3 or 4 Wire
- Excitation Current: 0.25mA nominal
- External Lead
- Resistance Effect: Automatically Compensated for 3 & 4 wire configurations
- Lead Resistance: 50 Ω /Lead max; RTD + Lead Resistance must be less than 400 Ω 3 Wire Error: 2.8°C/Ω of impedance imbalance
- Open Sensor: DISPLAY + EEE
- RTD Short to ac Line: Internal protection provided to 180V peak (130V rms)
- Maximum Common-Mode Voltage: 1400V peak (ac or dc) between input and power line ground (ac version)
- · Common-Mode Rejection Ratio. 100dB ac power to RTD input
- Normal Mode Rejection: 60dB @ 50/60Hz
- THERMISTOR INPUTS
 - Thermistor Type: Series 400 R = 2252Ω
 - Configuration: 2 Wire
 - Open Sensor: DISPLAY -EEE
- ACCURACY
 - Temperature Resolution: Autoranging (0.1° from -199.9° to +199.9°, 1°≥200°)
 - · All Ranges Guaranteed Monotonic
 - Range Temperature Coefficient: 20ppm/°C typ, 30ppm/°C max
 - Readout Accuracy* @ +25°C

Sensor	Range	Accuracy		
$100\Omega RTD \alpha = 0.00385$	- 200°C to + 850°C	±0.3°C ± 1/2LSD		
	- 328°F to + 1562°F	$\pm 0.6^{\circ}F \pm 1/2LSD$		
$100\Omega RTD \alpha = 0.00392$	- 200°C to + 640°C	±0.3°C ± 1/2LSD		
	- 328°F to + 1184°F	± 0.6°F ± 1/2LSD		
$100\Omega RTD \alpha = 0.00390$	- 200°C to + 640°C	$\pm 0.3^{\circ}C \pm 1/2LSD$		
	- 328°F to + 1184°F	$\pm 0.6^{\circ}F \pm 1/2LSD$		
Thermistor $\mathbf{R} = 2252\Omega$	- 30°C to + 100°C	±0.4°C ± 1/2LSD		
	- 22°F to + 212°F	$\pm 0.8^{\circ}F \pm 1/2LSD$		

*Readout Accuracy: Includes Gain and Offset Errors, Recommended Recalibration Interval 15-MONTHS.

DIGITAL OUTPUTS

- Character Serial ASCII
- Data: Eleven transmitted characters, (each 7 bits plus strobe) Drive Capability: 2TTL loads, CMOS/TTL compatible Strobe: Negative transition determines when character serial data is valid. CMOS/TTL compatible. Character Rate: Selectable on P1 (Pin 32) Grounded: 25 characters/sec. (SLOW) Open: 100 characters/sec. (FAST) Isolated Serial Output (Optional)
- Data: Asynchronous ASCII 20mA current loop (Optically isolated to ±600V peak) Baud Rate: Selectable on [1 (Pin 32) Grounded: 300 baud (SLOW) Open: 1200 baud (FAST) Distance: 10,000 ft. max • Nonisolated Serial Output (Optional)
- Data: Serial ASCII Drive Capability: 2TTL Loads, CMOS/TTL compatible Baud Rate: (same as Isolated Serial Output)
- Overrange: ± EEE.E
- Minimum Time Between New Data Update: 150ms
- DIGITAL INPUTS
 - REQ. Low-Level Triggered: Must go low at any time other than during data transmission to be recognized. REQ line taken low during data transmission will not be acknowledged and the ASCII digital output transmission will not occur. Display readings are not effected by REQ.
 - SERIAL INPUT (Optional): Edge Triggered, Current On to Current Off: Must be triggered at any time other than during data transmission to be recognized. Serial Input triggered during data transmission will not be acknowledged and the 20mA isolated/TTL compatible serial output transmission will not occur Display readings are not effected by Serial Input.

ANALOG OUTPUT (OPTIONAL)

- Voltage: 1mV/degree, linearized
- Current: ± 2mA max drive
- CMV: 1400V peak (ac or dc) between Analog Output Ground & ac Power Line Ground
- Overrange: +2.048V, -0.512V
- Accuracy: ±2mV from Display Reading

- ANALOG TO DIGITAL CONVERSION
 - Technique: Offset Dual Slope with Gain and Offset Error Correction
 - Rate: 2.5 Conversions/Second Typical
 - Input Integration Period: 100ms for 50/60Hz Noise Rejection
- POWER REQUIREMENTS (Choice of Three Supply Ranges)
 - ac: 90V ac to 132V ac @ 25mA (47Hz to 500Hz)
 - 198V ac to 264V ac @ 12 5mA (47Hz to 500Hz)
 - dc: +7.5V to +28V dc @ 200mA (Protected Against Supply Reversals)

DISPLAY

- Type: Seven Segment Orange LED 0.56" (14.3mm) high
 Polarity Indication: "+" or "--" displayed
- Overrange Indication: ± EEE
- Display Test: At Power Turn-On, 3 Second Display of "+ 188.8." Tests all Segments of Display

ENVIRONMENTAL

- Rated Temperature Range: 0 to +40°C
- Operating Temperature Range: 10°C to + 50°C
- Storage Temperature Range: -40°C to +85°C
- Relative Humidity: Meets MIL-STD-202E, Method 103B
- (0 to 90%, Noncondensing)

DIMENSIONS

- Case: 3.78" × 1.89" × 5.13" (96.8mm × 48.9mm × 131.3mm), rugged molded plastic case. Meets UL94V-0 and DIN/NEMA Standard dumensions
- Weight: 15.2 oz (431 grams) max, ac powered
 - 12.0 oz (341 grams) max, dc powered.

RELIABILITY

- MTBF: >55.000 hours calculated
- Burn In: 168 Hours at + 50°C and Power ON/OFF Cycles.
- Calibration: NBS Traceable
- Recalibration: Recommended 15-Month Intervals
- Warranty: 12 months

CONNECTOR

One 44 pin 0.1" (2.54mm) spacing card edge connector Viking 3VH22/1 JN5 or equivalent

Optional: Order AC2630

Rear Panel View

*Only one option can be ordered. The sensor type does not need to be specified when ordering the AD2061 since it is user programmable.

Specifications subject to change without notice.

Microprocessor-Based Autoranging Thermocouple Meters

AD2070/AD2071

FEATURES

- Autoranging (0.1° 1°)
- 4 1/2 Digit Resolution
- Automatic Self-Calibration for Gain, Offset, Cold Junction Compensation and Thermocouple Linearization
- J, K, T, E, R, S, C, B, J DIN, and T DIN Thermocouple Selection
- Universal Meter (AD2071), User Programmable for all Thermocouple Types
- Four Port Isolation: Input, Power, Digital Output and Analog Output
- Optional Isolated and Linearized Analog Voltage Output 1mV/Degree

Optional Isolated 20mA Loop/TTL Serial Data Output Optional Isolated RS-232/TTL Serial Data Output Heavy Gauge Rugged Metal Case

GENERAL DESCRIPTION

The AD2070/AD2071 are high performance, microprocessor based, autoranging, single channel thermocouple meters that can measure temperature accurately from -328° F to $+4200^{\circ}$ F (-200° C to $+2315^{\circ}$ C). The AD2070 is supplied factory programmed for any of the following ten thermocouple types: J, K, T, E, R, S, C, B, J DIN, and T DIN. The AD2071 is a universal meter in which the user selects one of the ten thermocouple types via switch programming. Both meters offer autoranging from 0.1°C/°F to 1°C/°F. The microprocessor based AD2070/ AD2071 provides gain and offset error correction, cold junction compensation, thermocouple linearization and °C/°F scaling in firmware.

The AD2070/AD2071 display temperature information on large 0.56" (14.3mm) high LEDs. Digital information is provided in standard ASCII character serial format with rate selection for easy interface to printers. For remote data acquisition applications, an optional isolated 20mA serial loop or RS-232 compatible

interface is available. For driving recorders or other analog instruments, an optional isolated and linearized analog voltage output of 1mV/degree is available. Selection of °C or °F scaling is accessed by removing the front panel lens and setting a selector switch.

The AD2070/AD2071 can be ordered in one of the following power versions: 120V ac, 240V ac or +7.5V dc to +28.0V dc. Input overvoltage protection rating is 300V peak (thermocouple to ac line shorts). The common-mode voltage rating is 1400V peak. Overrange and open thermocouple detection are provided in all models. Analog output and digital outputs are isolated to 500V peak from power, input and output sections. Each meter is burned-in for 168 hours at 50°C with on/off power cycles for increased reliability. These meters are rated for operation over a $+10^{\circ}$ C to $+40^{\circ}$ C range. The AD2070/AD2071 are supplied in a heavy gauge, rugged metal case that meets DIN/NEMA standard dimensions.

AD2070/AD2071 FUNCTIONAL BLOCK DIAGRAM

For detailed information, contact factory.

SPECIFICATIONS (typical $@+25^{\circ}$ and rated supply voltages unless otherwise specified)

THERMOCOUPLE INPUTS

THERMOCOUPLE TYPES: J, K, T, E, R, S, B, C, J DIN and T DIN **INPUT IMPEDANCE:** 100MΩ EXTERNAL LEAD RESISTANCE EFFECT: <20μV per 350Ω of Lead resistance COLD JUNCTION COMPENSATION ERROR: $\pm 0.3^{\circ}$ C max (+10°C to +40°C) OPEN THERMOCOUPLE: + EEEE Display; + EEEE.E ASCII DIGITAL OUTPUT: + 3.500V ANALOG OUTPUT THERMOCOUPLE SHORT TO AC LINE: Internal Protection Provided to 300V peak, (200V ac rms) COMMON-MODE VOLTAGE: 1400V peak (dc or ac), Between Input and Power Line Ground COMMON-MODE REJECTION RATIO: >130dB with 250Ω Source Imbalance (dc to 60Hz) NORMAL-MODE REJECTION RATIO: >80dB @ 50/60Hz **DIGITAL OUTPUTS** ISOLATED CHARACTER SERIAL ASCII (Standard) DATA: Eleven transmitted characters, each 7 bits plus strobe DRIVE CAPABILITY: 2TTL Loads, CMOS/TTL compatible OVERRANGE: ± EEEE.E STROBE Positive transition determines when character serial data is valid. CMOS/TTL compatible. ISOLATION:

500V Between Input, Analog Output and Power Input CHARACTER RATE: Selectable on P1 (Pin 20)

Grounded: 25 Characters/sec. (SLOW) Open: 100 Characters/sec. (FAST)

- ISOLATED SERIAL OUTPUT (Optional)
- DATA:

Asynchronous ASCII 20mA current loop or RS-232 BAUD RATE:

Selectable on P1 (Pin 20) Grounded: 300 baud (SLOW) Open: 1200 baud (FAST)

OVERRANGE: + FEFE E

DISTANCE:

- 50 ft. (RS-232), 10,000 ft. (20mA loop) ISOLATION:
- 500V Between Input, Analog Output and Power Input ISOLATED SERIAL OUTPUT

DATA

Serial ASCII TTL

- DRIVE CAPABILITY: 2TTL Loads, CMOS/TTL Compatible
- BAUD RATE:
- (same as above)

OVERRANGE:

± EEEE.E

ISOLATION:

500V Between Input, Analog Output and Power Input MINIMUM TIME BETWEEN NEW DATA UPDATE: 100ms

DIGITAL INPUTS

REO: LOW-LEVEL TRIGGERED: Must go low at any time other than during data transmission to be recognized. REQ line taken low during data transmission will not be acknowledged and the ASCII digital output transmission will not occur. Display readings are not effected by REQ.

SERIAL INPUT: EDGE TRIGGERED, CURRENT ON TO CURRENT OFF Must be triggered at any time other than during data transmission to be recognized. Serial Input triggered during data transmission will not be acknowledged and the isolated 20mA loop/TTL or isolated RS-232/TTL compatible serial output transmission will not occur. Display readings are not effected by Serial Input.

ISOLATED ANALOG OUTPUT (OPTIONAL)

VOLTAGE

1mV/degree, Fahrenheit or Celsius linearized

```
C
   В
JDIN
TDIN
```

RS-232 Serial Output. *Only one option can be ordered. The thermocouple type does not need to be specified when ordering the AD2071 since it is user programmable.

Specifications subject to change without notice.

CURRENT +2mA max OVERRANGE: +3.500V, -0.328V ACCURACY ±2mV from Display Reading ISOL ATION. 500V Between Input, Digital Output and Power Input ACCURACY TEMPERATURE RESOLUTION: Autoranging 0.1°C/°F - 1°C/°F RANGE TEMPERATURE COEFFICIENT: 20ppm/°C typ, ±40ppm/°C max (of Reading) All Ranges are Guaranteed Monotonic. POWER REQUIREMENTS (Choice of Three Supply Ranges) ac: 90V ac to 132V ac @ 25mA (dc to 1kHz) 198V ac to 264V ac @ 12.5mA (dc to 1kHz) dc: +7.5V to +28V dc @ 600mA (Protected Against Supply Reversals) DISPLAY TYPE: Seven Segment Orange LED 0.56" (14.3mm) high POLARITY INDICATION: "+" or "-" displayed **OVERRANGE INDICATION:** ± EEEE DISPLAY TEST: At Power Turn-On, 3 Second Display of "+1888.8." Tests All Segments of Display DIMENSIONS

CASE: $3.78'' \times 1.89'' \times 6.75''$ (96.8mm \times 48.0mm \times 171.0mm), rugged aluminum case. DIN/NEMA Standard. PANEL CUT OUT: $3.622''^{+0.031''}92^{+,8}$ mm × $1.771^{+0.024}_{-0.000}(45^{+,6}_{-,0})$ mm PANEL THICKNESS: 1/16" (1.5mm) to 3/16" (4.8mm) WEIGHT: 23 oz. (650 grams) typ

ORDERING GUIDE

Type, 120V ac Power, Analog Voltage Output and

Application Specific Integrated Circuits

Analog Devices offers a full spectrum of capabilities in applicationspecific integrated circuits (ASICs). These chip-level systems can implement designs with 12-bit accuracy and 16-bit resolution that formerly required board-level solutions.

Analog Devices can incorporate most of the functions of its standard monolithic parts in full-custom and semicustom ICs. Full-custom parts optimize performance and space requirements, while cell-based semicustom parts reduce development time and engineering expense. Development costs can be cut further by tailoring a generic predefined system-on-a-chip to your application.

Analog's experienced design engineers work with powerful computer-aided design tools to design and lay out your circuit. Design centers are currently in Massachusetts, California and England.

Multiple locations for fabrication, assembly, and testing ensure a ready supply of production parts. Products can be processed in full MIL-38510 certified facilities.

DESIGN EXAMPLES

Analog Devices has created a variety of customer-specific and function-specific ASIC parts. Described here are two examples, a custom chip set and a semicustom chip.

AD75004 Quad DAC

This circuit contains four separate 12-bit D/A converters with amplifiers for voltage output and an on-board reference. Doublebuffering latches interface with an 8-bit parallel bus and permit updating of all four channels individually or simultaneously.

AD75003 Data Acquisition System

This DAS converts analog signals on 8 input channels to 12-bit values and interfaces via an 8-bit parallel bus. The chip integrates

an 8-channel multiplexer, programmable-gain amplifier, sampleand-hold, and 12-bit A/D converter with internal voltage reference.

Derivative Circuits

The circuits outlined above can be modified to suit a specific customer's application. One such device is a serial-interface DAS. The AD75003 design was altered to have programmable gains of 1 to 20 instead of 1 to 16, and a serial UART instead of an 8-bit parallel interface. In addition to the AD75003 functions, this part contains a precision instrumentation amplifier, a programmable line-frequency notch filter, a 7-bit trim DAC, and a temperature sensor.

Modem Chip Set

Library cells can be combined to form macro building blocks for high-speed modems. This two-chip design concept filters and converts data to interface a digital signal processor with the analog circuitry of a 9600-baud modem. On one chip, the received signal passes through an anti-aliasing filter, sample-and-hold, 12-bit A/D converter, 8th-order digital filter and decimation. On the other chip, transmit data is $8 \times$ oversampled, then goes to an 8th-order filter, a 12-bit DAC and an active reconstruction filter.

HIGH-SPEED MODEM CHIP SET

Transversal Filter Element

This design implements 5 taps of a finite-impulse response filter. Each tap comprises an 8-bit DAC and a multiplier, which handle signals up to 40MHz. A parallel interface sets the tap weights.

TRANSVERSAL FILTER ELEMENT

HIGH-PERFORMANCE PROCESSES

Analog Devices' semicustom and custom circuits are fabricated using the same high-performance processes as our standard ICs. These technologies include two mixed bipolar-CMOS processes, a high-voltage CMOS process, and high-speed and low-power bipolar processes. These processes can include thin-film resistors, which may be laser trimmed for precise matching and stable performance over a wide temperature range. The BiMOS II and Linear-Compatible CMOS (LC²MOS) processes combine bipolar and CMOS devices on one chip. Functional density is an order of magnitude greater than previous mixed-signal processes; over 20,000 devices can be placed on a single chip. Bipolar transistors provide low-noise, low-offset input stages and high-power output stages. The CMOS devices offer high input impedance, and make dense logic and good switches for data converters and switched-capacitor filters. LC²MOS also provides a JFET for very low input noise.

The bipolar-CMOS processes operate on supply voltages ranging from single +5 volts to split $\pm 15V$, with signal levels ranging from single-ended +3V to $\pm 10V$. These processes are ideally suited for applications in data acquisition, instrumentation, industrial automation and telecommunications.

The High-Voltage Switch (HVS) process provides quality analog switches that can operate with supply voltages up to ± 22 volts. It can combine switches and multiplexers with CMOS logic.

The Flash bipolar process makes high-speed linear signal processing, data conversion, and ECL logic functions on one chip. Signal levels are ± 4 volts with $\pm 5V$ supplies or + 10V with a + 12V supply. Applications include disk-drive read/write circuitry and high-speed telecommunications equipment.

The Complementary Bipolar (CB) process features high-speed PNP and NPN devices for precision, low-power linear applications. It also offers low-noise buried-Zener references and dual-gate JFETs. CB runs on +5V to $\pm 15V$ supplies.

The table below summarizes the processes available for designing ASICs. Other processes in development will offer even higher speed, denser logic and higher integration of analog and digital functions.

ANALOG DEVICES HIGH-PERFORMANCE PROCESSES FOR ASICs

Process	Power	Signal	Features
BiMOS II	$\pm 12V$	$\pm 5V$	Wide Variety of Precision Linear and Digital Functions
LC ² MOS	$+5 \text{ to } \pm 15$	± 3 to ± 10	Wide Variety of Precision Linear and Digital Functions
HVS	$+5 to \pm 22$	$+2 to \pm 18$	High-Voltage Switches, Muxes and Logic Functions
Flash	$\pm 5 \text{ or } + 12$	$\pm 4 \text{ or } + 10$	High-Speed Linear and Digital Functions
CB	$+5 to \pm 15$	$+2 \text{ to } \pm 10$	High-Speed, Low-Power Linear Functions

CELL LIBRARIES

Cell libraries for the bipolar-CMOS processes are described below. These libraries are growing with the development of new processes, macrocells and cells. Many new catalog parts will also be available as cells. Your local sales office can give you current information on the cell libraries and available generic circuits.

Operational amplifiers are available in bipolar and CMOS configurations. Representative bipolar opamp cells have performance characteristics similar to an AD OP-27 and a slew-enhanced AD741. The LC²MOS process offers JFET op amps, including an AD544 equivalent.

Instrumentation amplifiers with performance comparable to the AD521 and AD524 are available. Comparators suitable for 12-bitaccurate applications are available. Linear comparators have response times down to 100 nanoseconds and strobed comparators have setup/access times down to 50 nanoseconds.

Digital-to-analog converters range in resolution from 8 to 14 bits, and include a cell similar to the AD667. Analog-to-digital converters vary from 8 to 12 bits in resolution, and include cells equivalent to the AD7572 and AD574. One half-flash ADC cell converts to 8-bit accuracy in 500 nanoseconds, and one successive approximation-cell converts to 12 bits in 5 microseconds.

Support cells include sample-and-hold amplifiers with performance comparable to the AD585, low-voltage bandgap references comparable to the AD584 and low-noise buried-Zener references.

RC active filters and programmable switched-capacitor filters are available with specifications in these ranges:

Topology: all classical filter types

- Frequency Range: 200Hz to 20kHz (switched-cap)
- Number of Sections: up to 10th-order (switched-cap) or 4th-order (RC) $\,$
- Signal/Noise and THD: >72dB, compatible with 12-bit data acquisition.

Logic cells include gates, counters, registers, PLA, RAM and ROM. Interface cells include 8- and 16-bit parallel I/O ports and UARTs.

DESIGN AND LAYOUT

Analog Devices engineers are available to design your integrated circuit, drawing on their years of experience and using powerful computer-aided design (CAD) tools. These comprehensive CAD tools help design, simulate and lay out the circuit and aid in generating test programs. The following figure shows the standard design cycle, which begins with schematic entry. After logic and initial electrical simulation, the designer uses the graphics editor to lay out the circuit. Parasitics and other data are extracted from the layout and circuit operation is simulated again. Finally, the system checks that the layout follows process design rules and matches the schematic.

In addition to using these commercial CAD tools, Analog Devices has developed a proprietary compiler for mixed-signal IC design, called JANUS. By integrating all design functions into one environment with a common database, JANUS reduces design time by an order of magnitude.

To speed schematic entry, the designer selects devices, cells and macrocells from comprehensive menus. Device generators allow the designer to specify devices for maximum performance and minimum size. Analog, logic and functional simulators verify the performance of individual cells and the overall chip design. Placement and routing algorithms complete circuit layouts automatically, yet allow interaction with the designer to handle special cases. When placing devices, JANUS considers thermal and electrical matching as well as die area. An expert system optimizes routing to minimize interconnect length and number of vias. Post-layout simulation comprehends the parasitics of the final routing and is more accurate than the initial simulation.

Future goals for JANUS include automatically generating programs for production trim and test of analog/digital ICs.

TEST AND TRIM

Analog Devices has over 20 years of experience in testing complex circuits and manufactures commercial test systems for precision linear ICs. In each fabrication facility, a computer network integrates Analog Devices, Teradyne and LTX test equipment. The design, wafer probe and test areas share data on the network for statistical analysis and device modelling.

All Analog Devices ASICs are tested at the wafer level, and most are laser-wafer trimmed to achieve high accuracy. Untrimmed thin-film resistors match within 1% to 0.1%, depending on area. Trimmed resistors can match to better than 0.01%. Wafers may be laser-drift trimmed with a hot-chuck probe to minimize the effects of temperature on accuracy.

After packaging, all parts are tested to assure that they meet guaranteed specifications. Environmental handlers can verify parts at multiple temperatures. Burn-in is performed as specified by the customer.

PACKAGING

Analog Devices ICs are available in most modern package types, including high-pin-count and surface-mount varieties. ASICs may be assembled in any of Analog Devices' standard packages, listed below. This list is constantly expanded and other packages may be used if they are suitable for high-performance applications.

Available Packages

Pin-grid array (PGA): 68 to 144 pins Leadless ceramic chip carrier (LCC): 20 to 68 pins Plastic leaded chip carrier (PLCC): 20 to 44 pins Plastic dual in-line package (DIP): 14 to 64 pins Side-brazed DIP: 14 to 64 pins Frit-seal DIP (Cerdip): 14 to 28 pins Small outline (SO): 14 and 16 pins

PROGRAM RESPONSIBILITIES AND INTERFACES

The following chart shows the major phases in developing an ASIC, and responsibilities during each phase. The overall development time depends on the complexity of the circuit and on how custom the design is.

Your Analog Devices Sales Engineer is your first interface for ASIC development. Your local sales office can provide further information on Analog Devices' custom/semicustom capabilities.

PROGRAM RESPONSIBILITIES AND INTERFACES

Modular AC/DC Power Supplies

GENERAL DESCRIPTION

Analog Devices offers a broad line of modular ac/dc power supplies that provide both OEMs and designers a reliable, easy to use, low-cost solution to their power requirements. Models are available in PC mountable and chassis mountable designs with 5 volt to 15 volt (single, dual, triple) outputs and current ratings from 25mA to 3 amps. Since these modular supplies are fully encapsulated, no trimming or external component selection is necessary; simply mount the unit, connect power and output leads, and you're on the air! Most Analog Devices' power supplies are available from stock in both large and small quantities with substantial discounts being applied to large quantity orders.

AC/DC POWER SUPPLY FEATURES

- Current Limit Short Circuit Protection
- PC Mounted and Chassis Mounted Versions
- Single (+5V), Dual $(\pm 12V, \pm 15V)$, and Triple
- $(\pm 15V/+5V, \pm 15V/+1V \text{ to } + 15V)$ Output Supplies • Current Outputs:
- 25mA to 1000mA for Dual and Triple Output Supplies 250mA to 3000mA for Single Output Supplies
- Wide Input Voltage Range
- Low Output Ripple and Noise
- Excellent Line & Load Regulation Characteristics
- High Temperature Stability
- Free-Air Convection Cooling: No External Heat Sink Required

GENERAL SPECIFICATIONS Powe

Power Requirements	
Input Voltage Range:	105V ac to 125V ac
Frequency:	50Hz to 250Hz
Electrical Specifications	
Temperature Coefficient:	0.02%/°C
Output Voltage Accuracy:	$\pm 2\%$, max
	See Specification Table
Breakdown Voltage:	500V rms, min
Isolation Resistance:	50ΜΩ
Short Circuit Protection:	All ac/dc power supplies employ current limiting. They can withstand substantial overload including direct short. Prolonged operation should be avoided since excessive temperature rises will occur.
Environmental Requirements	
Operating Temperature	
Range:	-25° C to $+71^{\circ}$ C

Range.	25 010 171 0
Storage Temperature	
Range:	- 25°C to + 85°C

Output	Output	Line Reg.	Load Reg.	Output	Ripple &
SPECIFICATIONS – Typical $@+25^{\circ}$ C and 115V ac 60Hz unless otherwise noted*					
cetton Cooning, No External meat	Shik Ku	Junca			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 0 5 0 5	$3.5 \times 2 5 \times 0.875$ $3.5 \times 2 5 \times 1 25$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05 05	3.5×2 5×1 25
902-2 ± 15 ± 100 0.02 0.02 $+ 300 \text{mV}$	05	
1 1/1/4		$3\ 5\times 2\ 5\times 0.875$
Output 920 ± 15 ± 200 0.02 0.02 + 300mV - 0mV	0.5	3 5×2.5×1.25
$925 \pm 15 \pm 350 0.02 0.02 \pm 1\%$	0.5	3 5 × 2 5 × 1.62
921 ± 12 ± 240 0.02 0.02 + 300mV 0mV	0.5	3.5×2.5×1.25
2 Start 905 5 1000 0.02 0.05 ±1%	1	3.5×2.5×1.25
Single 922 5 2000 0.02 0.05 $\pm 1\%$	1	3 5 × 2.5 × 1.62
928 5 3000 0 05 0.10 ± 2%	5 (typ)	$3.5 \times 2.5 \times 1.25$
923 ± 15 ± 100 0.02 $\pm 1\%$	0 5	3.5×2.5×1.25
$+5$ 500 0.02 0.05 $\pm 1\%$	0.5	
927 ± 15 ± 150 0.02 0.02 $\pm 2\%$	0.5(typ)	3 5×2.5×1.62
Triple +5 1000 0.02 0.10 ±2%	1.0(typ)	
Output 2B35J ±15 ±65 0.08 0.1 (-0, +300mV) 05	3.5×2.5×1 25
+1 to +15** 125 0 08 0 1	0.25	
$2B35K \pm 15 \pm 65 0.01 0.02 (-0, +300mV)$) 0.5	$3.5 \times 2.5 \times 1.25$
+ 1 to + 15** 125 0.01 0.02	0.25	
952 ± 15 ± 100 0.05 0.05 ± 2%	1	$4.4 \times 2.7 \times 1.44$
Dual 970 ± 15 ± 200 0.05 $\pm 2\%$	1	$4.4 \times 2.7 \times 1.44$
Output 973 ±15 ±350 0.05 0.05 ±2%	1	$4.4 \times 2.7 \times 2.00$
<u>975 ± 15 ± 500 0.05 0.05 ± 2%</u>	1	$4.4 \times 2.7 \times 2.00$
Single 955 5 1000 0.05 0.15 ± 2%	2	4.4×2.7×1.44
Output 976 5 3000 0.05 0.10 ± 2%	5 (typ)	4.75 × 2.7 × 2.00
972 ± 15 ± 150 0.02 0.02 ± 2%	0 5 (typ)	4.75×2.7×1.45
Triple +5 300 0 02 0.10 ±2%	1.0(typ)	
Output 974 ± 15 ± 150 0.02 0.02 ± 2%	0 5(typ)	4.75×27×1.45
$+5$ 1000 0.02 0.10 $\pm 2\%$	1.0(typ)	

Consult Analog Devices Power Supply Catalog for additional information **Resistor programmable

Specifications subject to change without notice
Modular DC/DC Converters

GENERAL DESCRIPTION

Analog Devices' line of compact dc/dc converters offer system designers a means of supplying a reliable, easy to use, low-cost solution to a variety of floating (analog and digital) power applications. These devices provide high accuracy, short circuit protected, regulated outputs with very low output noise and ripple characteristics.

Fourteen models are offered in five power levels of 1 watt, 1.8 watts, 4.5 watts, 6 watts and 12 watts. Input voltage versions include 5 volt, 12 volt, 24 volt and 28 volt with output ranges as follows: +5 volt, ± 12 volts and ± 15 volts at ± 60 mA to 1000mA output current capability.

Most models are high efficiency (typically over 60% at full load) and feature complete 6-sided continuous shielding for EMI/RFI protection. A π -type input filter is contained, in some models, which virtually eliminates the effects of reflected input ripple current. Most Analog Devices' dc/dc converters are available from stock in both large and small quantities with substantial discounts being applied to large quantity orders.

DC/DC POWER SUPPLY FEATURES

- Inaudible (>20kHz) converter switching frequency
- Continuous, Six-Sided EMI/RFI Shielding Except on 1 Watt and 1.8 Watt Models
- Output Short Circuit Protection (either output to common)
- Automatic Restart After Short Condition Removed
- Automatic Starting with Reverse Current Injected into Outputs
- Low Output Ripple and Noise
- High Temperature Stability
- Free Air Convection Cooling
 - No external heat sink or specification derating is required over the operating temperature range.

GENERAL SPECIFICATIONS FOR 1W AND 1.8W MODELS

Line Regulation-full range: $\pm 0.3\%$ ($\pm 1\%$ max, 949)

Load Regulation-no load to full load: $\pm 0.4\%$ ($\pm 0.5\%$ max, 949)

Output Noise and Ripple: 20mV p-p (with 15µF tantalum capacitor across each output) (2mV rms max, 949)

Breakdown Voltage: 300V dc min (500V dc min, 949) Input Filter Type: π

Operating Temperature Range: -25°C to +71°C

Storage Temperature Range: -40°C to +125°C (+100°C, 949)

Fusing: If input fusing is desired, we recommend the use of a slow blow type fuse that is rated at 150%–200% of the dc/dc converter's full load input current.

GENERAL SPECIFICATIONS FOR 4.5W, 6W, 12W MODELS

Line Regulation-full range: $\pm 0.07\%$ max ($\pm 0.02\%$ max, 951, 960 series) ($\pm 0.1\%$ max, 943)

- Load Regulation-no load to full load: $\pm 0.07\%$ max ($\pm 0.02\%$ max, 951, 960 series) ($\pm 0.1\%$ max, 943)
- Output Noise and Ripple: 1mV rms max

Breakdown Voltage: 500V dc min

Input Filter Type: π

- Operating Temperature Range: -25°C to +71°C
- Storage Temperature Range: -40°C to +125°C
- Fusing: If input fusing is desired, we recommend the use of a slow blow type fuse that is rated at 150%–200% of the dc/dc converter's full load input current.

SPECIFICATIONS - Typical @ +25°C at nominal input voltage unless otherwise noted*

Model	Output Voltage Volts	Output Current mA	Input Voltage Volts	Input ¹ Voltage Range Volts	Input Current Full Load	Output Voltage Error max	Temperature Coefficient /°C max	Efficiency Full Load min	Dimensions Inches
943	5	1000	5	4.75/5.25	1.52A	±1%	±0.02%	62%	$2.0 \times 2.0 \times 0.38$
958	5	100	5	4.5/5.5	200mA	± 5%	$\pm 0.01\%$ (typ)	50%	1.25 imes 0.8 imes 0.4
941	±12	±150	5	4.75/5.25	1.17A	±1%	±0.01%	58%	$2.0 \times 2.0 \times 0.38$
960	±12	± 40	5	4.5/5.5	384mA	± 5%	$\pm 0.01\%(typ)$	50%	1.25 imes 0.8 imes 0.4
962	±15	± 33	5	4.5/5.5	396mA	± 5%	$\pm 0.01\%(typ)$	50%	1.25 imes 0.8 imes 0.4
964	±15	± 33	12	10.8/13.2	165mA	± 5%	$\pm 0.01\%$ (typ)	50%	1.25 imes 0.8 imes 0.4
965	±15	±190	5	4.65/5.5	1.7A	±1%	$\pm 0.005\%(typ)$	62% (typ)	$2.0 \times 2.0 \times 0.38$
966	±15	±190	12	11.2/13.2	710mA	±1%	$\pm 0.005\%(typ)$	62% (typ)	$2.0 \times 2.0 \times 0.38$
967	±15	±190	24	22.3/26.4	350mA	±1%	$\pm 0.005\%(typ)$	62% (typ)	$2.0 \times 2.0 \times 0.38$
949	±15	±60**	5	4.65/5.5	0.6A	± 2%	±0.03%	58%	$2.0 \times 1.0 \times 0.375$
940	±15	±150	5	4.75/5.25	1.35A	±1%	±0.01%	62%	$2.0 \times 2.0 \times 0.38$
953	±15	±150	12	11/13	0.6A	±0.5%	±0.01%	62%	$2.0 \times 2.0 \times 0.38$
945	±15	±150	28	23/31	250mA	±0.5%	$\pm 0.01\%$	61%	$2.0 \times 2.0 \times 0.38$
951	±15	±410	5	4.65/5.5	3.7A	±0.5%	$\pm 0.01\%$	62%	$3.5 \times 2.5 \times 0.88$

NOTES

Models 940 and 941 will deliver up to 120mA output current (and model 943 will deliver up to 600mA) over an input voltage range of 4 65V dc and 5.5V dc *Consult Analog Devices Power Supply Catalog for additional information

**Single-ended or unbalanced operation is permissible such that total output current load does not exceed a total of 120mA

Specifications subject to change without notice.

LTS-2020 Component Test Systems

LINEAR, DIGITAL, DATA CONVERSION, DISCRETE)

THE LTS CONCEPT

The LTS-2020 is a versatile component test system which tests a multitude of components to the manufacturer's specifications (linear, digital, data conversion and discrete devices). The system offers such features as RS-232 ports for networking, IEEE for compatibility with handlers and probers, dual disk drives for mass storage of data, automatic self calibration, and a full statistical analysis software package.

The LTS-2020 provides several data output formats – datalog, yield analysis and statistical analysis. The console provides the primary measurement and control functions to test a specific class of devices. The socket assembly is the mechanical and electronic interface for the family board and the DUT board. The DUT board plugs directly into the socket assembly and contains the circuitry and socket, specific to the actual device under test. Analog Devices' component test systems are the first benchtop testers that are programmable in BASIC and fill-in-the-blanks CREATE. CREATE is menu-driven software which prompts the user for data sheet limits and conditions, then builds a completed test program for the specified device. Turnkey program libraries are available for each of the device families.

Far more than just comprehensive production testers, these test systems can handle complex engineering analysis and incoming inspection. They are the first systems that can provide all the capabilities of today's large centralized test systems at a price that is approximately one-third the cost. The LTS-2020 not only provides the flexibility of distributed or decentralized testing, it allows for cost effective multiple system purchases. They increase overall test reliability, since the threat of a single big failure is eliminated in a distributed testing environment.

LTS-2020 CONSOLE SPECIFICATIONS

Voltage Measurement Range $\pm 10V$	Current Range HI Z	Resolution 10μV	Accuracy $\pm (0.0015\% + 150 \mu V)$
Current Measurement Range	Voltage Range	Resolution	Accuracy
10mA to + 150mA	0 to + 20V	2μΑ	$\pm (2.5\% + 100\mu \text{A/V} + 15\mu \text{A})$
-150mA to +10mA	0 to - 20V	2µA	$\pm (2.5\% + 100\mu A/V + 15\mu A)$
-1.0mA to +1.0mA	0 to + 10V	0.2µA	$\pm (0.5\% + 10\mu A)$
- 10mA to + 10mA	$\pm 10V$	0.1µA	$\pm (0.5\% + 10\mu A)$
Voltage Forcing Range	Current Range	Resolution	Accuracy
0 to + 20V	-10mA to +150mA	100mV	$\pm 50 \text{mV}$
0 to -20V	-150mA to +10mA	100mV	$\pm 50 mV$
0 to +10V	-1.0mA to +1.0mA	50mV	±25mV
-10V to $+10V$	- 10mA to + 10mA	lmV	$\pm 500 \mu V$
Operating Voltage Range	Co	nsole Dimensions	
105V to 125V ac @ 50Hz to 60Hz	W	19in. \times D 26in. (66cm.) \times	(H 12in, (31cm.)
210V to 250V ac @ 50Hz to 60Hz	Wt	. 75lbs. (39Kgs.)	
System Reference Stability	On	erating Temperature Ray	nge

System Reference Stability 10V ± 25 ppm/1000hrs. noncumulative **Operating Temperature Range** $0 \text{ to } + 40^{\circ}\text{C}, + 32^{\circ}\text{F} \text{ to } 104^{\circ}\text{F}$

LTS-2020 Test Capabilities

LINEAR DEVICE TEST CAPABILITY

The LTS-2101 Operational Amplifier Family Board tests today's very demanding high precision op amps, comparators and regulators. This board houses the test loop used in testing op amps and comparators and the pulse load circuitry used in developing the high currents needed for voltage regulator testing.

For testing devices under 100 μ V, the LTS-2101 offers a tight offset spec of $\pm (0.25\% + 5\mu$ V). Use of low thermal Emt relays and a test loop gain of 10,045 ensures superior low level V_{OS} measurement performance for optimum repeatability of low level signals.

Testing of low current devices is achieved with the LTS-0614 Socket Assembly which is designed to test bias and offset currents with an accuracy of $\pm (5\% + 25fA)$ for any FET amplifier, including quad devices. Program libraries containing prewritten test programs for many standard op amps, comparators and regulators are available on disk.

ANALOG-TO-DIGITAL TEST CAPABILITY

The LTS-2200 ADC Family Board provides the test circuitry required for testing monolithic, hybrid or modular ADCs. An on-board 16-bit microprocessor with 8K bytes of memory acts as a slave for the system console and executes preprogrammed test routines such as linearity, all codes existence, transition noise measurements and conversion time measurements at high speed. Absolute accuracy can be measured within 200 μ V. Linearity, differential nonlinearity, offset, gain and PSSR are tested to \pm .05 DUT LSB + 200 μ V. Turnkey test packages are available for many of the standard ADCs currently in use.

DIGITAL-TO-ANALOG TEST CAPABILITY

The LTS-2302 DAC Family Board utilizes advanced state of the art test techniques to provide comprehensive test capabilities for a wide variety of D/A converters. It will test both voltage and current output DACs, DACs with and without buffer registers and serial or parallel input DACs to 16-bit accuracy.

High repeatability on low level signals is achieved because of the grounding scheme on the LTS-2302. The incorporation of high level components in the V/I circuits ensures true accuracy. In addition, the methodology for measuring low bit currents allows appropriate testing of this parameter on CMOS DACs.

Output leakage current on the LTS-2302 is measured with the bit drivers to the DAC set to logic 0. Current is measured using the I to V converter. A $1m\Omega$ resistor within the I to V circuitry ensures sensitivity, thereby measuring current down to $\pm 1\mu$ A full scale.

DIGITAL DEVICE TEST CAPABILITY

The LTS-2510 Digital Device Family Board provides 24 pin driver/detectors and a precision, four quadrant V/I source for testing SSI/MSI TTL and CMOS digital devices. This board contains four programmable device supplies and switching circuitry necessary for performing accurate parametric measurements on all device pins.

Together with the LTS-0655 remote ac test fixture, dynamic parametric testing of 24-pin SSI/MSI TTL digital devices can be achieved. Accuracies are achieved down to $\pm 4\% + 1.5$ ns at a resolution of 500ps. Dynamic parameters tested are propagation delay, setup and hold times.

DISCRETE DEVICE TEST CAPABILITY

The LTS-2600 Transistor Family Board tests bipolar transistors, JFETs, diodes and optocouplers. An on-board 16-bit microprocessor with 4K bytes of memory acts as a slave for the LTS system and coordinates the timing and pulse width control of the stimulus and measurement signals. In addition, the microprocessor monitors the interlock circuitry to insure safe handling of high power test signals.

MOSFET software packages support the testing of N and P channel enhancement mode and N channel depletion mode devices. Tests which may be performed on MOSFET devices include Idss, Igss, Igssf, Igssr, Id (off), Id (on), B Vdss, B Vgss, B Vgssf, B Vgssr, Vds (on), Vgs (th), Vgsoff, Vsd, Rds (on) and Gsf.

ANALOG SWITCH TEST CAPABILITY

The LTS-2700 Analog Switch Family Board adds switch and multiplexer testing capability to the LTS-2020. This test capability, with CREATE software allows datalogged device testing at the incoming inspection and semiconductor manufacturing levels and includes software power for use in component evaluation applications.

The LTS-2700 tests on and off drain to source leakage currents with an accuracy of 250pA, while forcing differential voltages up to 50V (\pm 25V from GND). Other tests performed are drain to source on resistance, greatest change in drain-source on resistance between channels, digital input current and supply current.

Twenty high integrity analog lines are provided -4 to be used as drain connections and 16 for source connections. Also provided are 8 programmable digital drivers, 4 digital control bits, 6 variable power supplies and 1 fixed +5V supply. These combinations of sources provide testing of devices such as 4-channel switches, 16 to 1 multiplexers and other combinations of switches and multiplexers.

Package Information Contents

.

ADI LETTER DESIGNATOR	DESCRIPTION	PAGE
Side Brazed DIP (Ceramic)		
D 14	14 Lend	16 - 2
D-14	14 Lead	16 2
D-16	16 Lead	16 – 5
D-18	18 Lead	16 – 4
D-20 .	20 Lead	16 – 5
Bottom Brazed DIP (Ceramic)		
DH-14A	14 Lead	16 – 6
Metal Platform DIP		
DH-14B	14 Lead	16 – 7
DH-16B	16 Lead	16 - 8
D11-10D	To Lead	10 - 0
Leadless Chip Carrier (Ceramic)		
E-20A	20 Terminal	16 – 9
E-28A	28 Terminal	16 – 10
Flat Pack (Ceramic)	· · · ·	
F-2A	2 Lead	16 – 11
Metal Can		
H-03A	3 Lead (TO-52)	16 – 12
H-03B	3 Lead (TO-5 Style)	16 - 13
H-08A	8 Lead $(TO-99)$	16 - 14
HOSB	8 Lead (TO-99 Style)	16 - 15
11-00D	10 L and (TO 100)	16 16
H-IUA II IOA	10 Lead (10-100)	10 - 10
H-12A	12 Lead (10-8 Style)	10 - 17
Plastic DIP		14 10
N-8	8 Lead	16 – 18
N-14	14 Lead	16 – 19
N-16	16 Lead	16 – 20
N-18	18 Lead	16 – 21
N-20	20 Lead	16 – 22
Plastic Leaded Chip Carrier (PLCC)		
P-20A	20 Lead	16 – 23
P-28A	28 Lead	16 – 24
Cerdip		
Q-8	8 Lead	16 – 25
Q-14	14 Lead	16 – 26
Q-16	16 Lead	16 – 27
Q-18	18 Lead	16 – 28
Q-24	24 Lead	16 – 29
Small Outline (SOIC)		
R-8	8 Lead	16 – 30
Plastic		
TO-92	3 Lead	16 – 31
Single In-Line Package (SIP)		
Y-10	10 Lead	16
1-10	IU LLau	10 - 52

PACKAGE INFORMATION 16-1

Package Outline Dimensions

		D-14		
14-Lead	Side	Brazed	Ceramic	DIP

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	6
b ₁	0.030	0.070	0.76	1.78	2,6
C	0.008	0.015	0.20	0.38	6
D		0.785		19.94	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	
e	0.090	0.110	2.29	2.79	7
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b_1 may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- All leads increase maximum limit by 0.003" (0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 7. Twelve spaces.

D-16

	INCHES		MILLIN	MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α,		0.200		5.08	
b	0.014	0.023	0.36	0.58	6
b ₁	0.030	0.070	0.76	1.78	2,6
C	0.008	0.015	0.20	0.38	6
D		0.840		21.34	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	
e	0.090	0.110	2.29	2.79	7
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
٥	0.015	0.060	0.38	1.52	3
S		0.080		2.03	5
S,	0.005		0.13		5

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- The minimum limit for dimension b₁ may be 0.023" (0.58mm) for all four corner leads only.
- Dimension Q shall be measured from the seating plane to the base plane.
- This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- All leads increase maximum limit by 0.003" (0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 7. Fourteen spaces.

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	6
b ₁	0.030	0.070	0.76	1.78	2,6
C	0.008	0.015	0.20	0.38	6
D		0.960		24.38	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	
e	0.090	0.110	2.29	2.79	7
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- The minimum limit for dimension b₁ may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- All leads increase maximum limit by 0.003" (0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 7. Sixteen spaces.

D-20

	INCHES		MILLIN		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	6
b ₁	0.030	0.070	0.76	1.78	2,6
C	0.008	0.015	0.20	0.38	6
D		1.060		26.92	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	
e	0.090	0.110	2.29	2.79	7
L	0.125	0.200	3.18	5.08	
L1	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.080		2.03	5
S ₁	0.005		0.13		5

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- The minimum limit for dimension b₁ may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- All leads increase maximum limit by 0.003" (0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 7. Eighteen spaces.

DH-14A

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.220		5.59	
b	0.014	0.023	0.36	0.58	
b ₁	0.030	0.070	0.76	1.78	2
C	0.008	0.015	0.20	0.38	
D		0.805		20.45	
E	0.480	0.505	12.19	12.83	
E1	0.290	0.320	7.37	8.13	6
e	0.100	BSC	2.54 BSC		4,7
L	0.125	0.200	3.18	5.08	
L ₁	0.180		4.57		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b_1 may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. The basic pin spacing is 0.100" (2.54mm) between centerlines.
- 5. Applies to all four corners.
- 6. E₁ shall be measured at the centerline of the leads.
- 7. Twelve spaces.

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.225		5.72	
φb	0.014	0.023	0.36	0.58	2
D		0.885		22.48	
E	0.490	0.520	12.45	13.21	
E1	0.295	0.305	7.49	7.75	6
e	0.100	0.100 BSC		2.54 BSC	
L	0.140	0.200	3.56	5.08	ľ
L1	0.160		4.57		
Q	0.015	0.015 0.075		1.91	3

- 1. Index area; a square corner or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b₁ may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. The basic pin spacing is 0.100" (2.54mm) between centerlines.
- 5. Applies to all four corners.
- 6. E_1 shall be measured at the centerline of the leads.
- 7. Twelve spaces.

SEATING PLANE

e 🗲

DH-16B					
16-Lead	Metal	Platform	DIP		

	INCH	IES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.175	0.215	4.45	5.46	
φb	0.016	0.020	0.41	0.51	
D	0.960	0.985	24.4	25.0	
E	0.490	0.520	12.45	13.21	
E1	0.295	0.305	7.49	7.75	4
е	0.095	0.105	2.41	2.67	5
L ₁	0.160	0.255	4.06	6.48	

φp -

- 1. Index area; a square corner or a lead one identification mark is located adjacent to lead one.
- 2. Pin 6 is electrically connected to the case.
- 3. Case has metal bottom surface.
- 4. E_1 shall be measured at the centerline of the leads.
- 5. Fourteen spaces.

E-20A					
20-Terminal Leadless Ceramic Chip	Carrier				

	INCHES		MILLIN	MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.064	0.100	1.63	2.54	1
B ₁	0.022	0.028	0.56	0.71	
D	0.342	0.358	8.69	9.09	2
D ₁	0.075	0.075 REF		1.91 REF	
е	0.050	BSC	1.27 BSC		
j	0.020	0.020 REF		0.51	
h	0.040	0.040 REF		1.02	
L	0.045	0.055	1.14	1.40	

- NOTES 1. Dimension A controls the overall package thickness.
- 2. Applies to all 4 sides.
- 3. All terminals are gold plated.

E-28A 28-Terminal Leadless Ceramic Chip Carrier

╼┥└┝╾	-> D1
	ᢂᢂᢂᡯᡀᢢ

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.064	0.100	1.63	2.54	1
B ₁	0.022	0.028	0.56	0.71	
D	0.442	0.458	11.23	11.63	2
D ₁	0.075	0.075 REF		1.91 REF	
e	0.050	BSC	1.27 BSC		
j	0.020	0.020 REF		0.51	
h	0.040	0.040 REF		2	
L	0.045	0.055	1.14	1.40	

NOTES

1. Dimension A controls the overall package thickness.

2. Applies to all 4 sides.

3. All terminals are gold plated.

F-2A 2-Lead Flat Pack (Ceramic)

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.041	0.050	1.04	1.27	
b	0.015	0.019	0.38	0.48	
C	0.0045	0.0065	0.12	0.17	
D		0.250	1	6.35	1
D ₁	1	0.220		5.59	
E	0.081	0.093	2.06	2.36	1
е	0.045	0.055	1.14	1.40	
L1	0.500		12.69		

NOTE 1. This dimension allows for off-center lid, meniscus and solder overrun.

٩

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.115	0.150	2.92	3.81	
фb		0.021		0.53	1,4
φb ₂	0.016	0.019	0.41	0.48	1,4
φD	0.209	0.230	5.31	5.84	
φD1	0.178	0.195	4.52	4.95	
e	0.100	0.100 T.P.		2.54 T.P.	
e ₁	0.050	T.P.	1.27 T.P.		2
F		0.030		0.76	
j	0.036	0.046	0.91	1.17	
k	0.028	0.048	0.71	1.22	3
L	0.500		12.70		1
L1		0.050		1.27	1
L ₂	0.250		6.35		
α	45° T.	Ρ.			

- 1. (Three Leads) ϕb_2 applies between L₁ and L₂. ϕb applies between L₂ and 0.5" (12.70mm) from seating plane. Diameter is uncontrolled in L₁ and beyond 0.5" (12.70mm) from seating plane.
- Leads having maximum diameter 0.019" (0.48mm) measured in gauging plane 0.054" (1.4mm) + 0.001" (0.03mm) - 0.000" (0.00mm) below the seating plane of the device are within 0.007" (0.18mm) of their true positions relative to a maximum-width tab.
- 3. Measured from maximum diameter of the actual device.
- 4. All leads increase maximum limit by 0.003" (0.08mm) when hot solder dip finish is applied.

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.165	0.185	4.19	4.70	
φb	0.016	0.021	0.41	0.53	2,7
φb2	0.016	0.019	0.41	0.48	2,7
φD	0.335	0.370	8.51	9.40	
φD1	0.305	0.335	7.75	8.51	
e	0.200	0.200 T.P.		5.08 T.P.	
e ₁	0.100	T.P.	2.54 T.P.		
h	0.015	0.035	0.38	0.89	
j	0.028	0.034	0.71	0.86	
k	0.029	0.045	0.74	1.14	3
L	0.500		12.70		2
L ₁		0.050		1.27	2
L ₂	0.250		6.35		2
Р	0.100		2.54		1
Q					5
r		0.007		0.18	
α	45° T.	Ρ.	T		

- 1. This zone is controlled for automatic handling. The variation in actual diameter within the zone shall not exceed 0.010" (0.25mm).
- 2. (Three leads) ϕb_2 applies between L₁ and L₂. ϕb applies between L₂ and 0.500" (12.70mm) from seating plane. Diameter is uncontrolled in L₁ and beyond 0.500" (12.70mm) from seating plane.
- 3. Measured from maximum diameter of the actual device.
- Leads having maximum diameter 0.019" (0.48mm) measured in gauging plane 0.54" (1.37mm) + 0.001" (0.03mm) - 0.000" (0.00mm) below the seating plane of the device are within 0.007" (0.18mm) of their true positions relative to the maximum-width tab.
- 5. Details of outline in this zone optional.
- 6. Lead #3 connected to case.
- 7. All leads increase maximum limit by 0.003" (0.08mm) when hot solder dip finish is applied.

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.165	0.185	4.19	4.70	
фb	0.016	0.019	0.41	0.48	1,4
φb1	0.016	0.021	0.41	0.53	1,4
φD	0.335	0.370	8.51	9.40	
φD1	0.305	0.335	7.75	8.51	
φD2	0.110	0.160	2.79	4.06	
e	0.200	0.200 BSC		5.08 BSC	
e ₁	0.100	BSC	2.54 BSC		3
F		0.040	•	1.02	
k	0.027	0.034	0.69	0.86	
k ₁	0.027	0.045	0.69	1.14	
L	0.500	0.750	12.70	19.05	
L ₁		0.050		1.27	
L ₂	0.250		6.35		
٥	0.010	0.045	0.25	1.14	
α	45° B	SC	45° BSC		3

- 1. (All leads) ϕb applies between L_1 and L_2 . ϕb_1 applies between L_2 and 0.500" (12.70mm) from the reference plane. Diameter is uncontrolled in L_1 and beyond 0.500" (12.70mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- Leads having a maximum diameter 0.019" (0.48mm) measued in gauging plane 0.054" (1.37mm) + 0.001" (0.03mm) - 0,000" (0.00mm) below the base plane of the product are within 0.007" (0.18mm) of their true position relative to the maximum width tab.
- 4. All leads increase maximum limit 0.003" (0.08mm) when hot solder dip finish is applied.

H-08B 8-Lead Metal Can (TO-99 Style)

[INCHES		MILLIM	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
A	0.165	0.185	4.19	4.70		
φb	0.016	0.019	0.41	0.48	1,4	
φb1	0.016	0.021	0.41	0.53	1,4	
φD	0.335	0.370	8.51	9.40		
φD1	0.305	0.335	7.75	8.51		
φD ₂	0.110	0.160	2.79	4.06		
8	0.230	0.230 BSC		5.84 BSC		
81	0.115	BSC	2.92 BSC		3	
F		0.040		1.02		
k	0.027	0.034	0.69	0.86		
k ₁	0.027	0.045	0.69	1.14	2	
L	0.500	0.750	12.70	19.05	1	
L ₁		0.050		1.27	1	
L ₂	0.250		6.35		1	
Q	0.010	0.045	0.25	1.14		
α	45° B	SC	45° BSC		3	

- 1. (All leads) ϕb applies between L₁ and L₂. ϕb_1 applies between L₂ and 0.500" (12.70mm) from the reference plane. Diameter is uncontrolled in L₁ and beyond 0.500" (12.70mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- 3. Leads having a maximum diameter 0.019'' (0.48mm) measued in gauging plane 0.054'' (1.37mm) + 0.001''' (0.03mm) 0.000'' (0.00mm) below the base plane of the product are within 0.007'' (0.18mm) of their true position relative to the maximum width tab.
- 4. All leads increase maximum limit 0.003" (0.08mm) when hot solder dip finish is applied.

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.165	0.185	4.19	4.70	
фb	0.016	0.019	0.41	0.48	1,4
φb ₁	0.016	0.021	0.41	0.53	1,4
φD	0.335	0.370	8.51	9.40	1
φD1	0.305	0.335	7.75	8.51	
φD ₂	0.110	0.160	2.79	4.06	
e	0.230	0.230 BSC		5.84 BSC	
e1	0.115	BSC	2.92 BSC		3
F		0.040		1.02	
k	0.027	0.034	0.69	0.86	
k ₁	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L ₁		0.050		1.27	1
L ₂	0.250		6.35		1
Q	0.010	0.045	0.25	1.14	
α	36° B	SC	36° E	BSC	3

- 1. (Three Leads) ϕb_2 applies between L₁ and L₂. ϕb applies between L₂ and 0.5" (12.70mm) from seating plane. Diameter is uncontrolled in L₁ and beyond 0.5" (12.70mm) from seating plane.
- Leads having maximum diameter 0.019" (0.48mm) measured in gauging plane 0.054" (1.4mm) + 0.001" (0.03mm) - 0.000" (0.00mm) below the seating plane of the device are within 0.007" (0.18mm) of their true positions relative to a maximum-width tab.
- 3. Measured from maximum diameter of the actual device.
- 4. All leads increase maximum limit by 0.003" (0.08mm) when hot solder dip finish is applied.

H-12A 12-Lead Metal Can (TO-8 Style)

	e- e1 -	•	
	 9 - <u>0</u> .	0 9 10 O-	e ₂
e		11@;- 12@- 1	• • • • • • • • • • • • • • • • • • •
	Y		× K

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.148	0.181	3.76	4.60	
φb	0.016	0.019	0.41	0.48	1
φb1	0.016	0.021	0.41	0.53	1
φD	0.592	0.610	15.04	15.44	
φD1	0.545	0.555	13.84	14.10	
e	0.400 BSC				3
e 1	0.200	BSC			3
e ₂	0.100	BSC			3
F		0.040		1.02	
k	0.026	0.036	0.66	0.91	
k1	0.026	0.036	0.66	0.91	2
L	0.375		9.50		1
Lı		0.050		1.27	1
Q	0.010	0.045	0.25	1.14	

- 1. (All leads) ϕb applies between L and L₁. ϕb_1 applies between L₁ and 0.375" (9.50mm) from the reference plane. Diameter is uncontrolled in L₁ and beyond 0.375" (9.50mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- 3. Leads having a maximum diameter 0.019" (0.48mm) measued in gauging plane 0.054" (1.37mm) + 0.001" (0.03mm) 0.000" (0.00mm) below the base plane of the product is within 0.007" (0.18mm) of their true position relative to the maximum width tab.

16

	INCHES MILL		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.210		5.33	
A ₂	0.115	0.195	2.93	4.95	
b	0.014	0.022	0.356	0.558	
b ₁	0.045	0.070	1.15	1.77	
C	0.008	0.015	0.204	0.381	
D	0.348	0.430	8.84	10.92	2
E	0.300	0.325	7.62	8.25	
E1	0.240	0.280	6.10	7.11	2
e	0.100	BSC	2.54	BSC	
L	0.125	0.200	3.18	5.05	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. This dimension does not include mold flash or protrusions.

N-8 8-Lead Plastic DIP

	INCHES		MILLIME	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α		0.210		5.33		
A ₂	0.115	0.195	2.93	4.95		
b	0.014	0.022	0.356	0.558		
b ₁	0.045	0.070	1.15	1.77		
C	0.008	0.015	0.204	0.381		
D	0.725	0.795	18.42	20.19	2	
E	0.300	0.325	7.62	8.25		
E1	0.240	0.280	6.10	7.11	2	
е	0.100	BSC	2.54	BSC		
L	0.125	0.200	3.18	5.05		
L ₁	0.150		3.81			
Q	0.015	0.060	0.38	1.52		

- NOTES 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. This dimension does not include mold flash or protrusions.

N-16

	INCH	ES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.210		5.33	*
A ₂	0.115	0.195	2.93	4.95	
b	0.014	0.022	0.356	0.558	
b ₁	0.045	0.070	1.15	1.77	
C	0.008	0.015	0.204	0.381	
D	0.745	0.840	18.93	21.33	2
E	0.300	0.325	7.62	8.25	
E1	0.240	0.280	6.10	7.11	2
е	0.100	BSC	2.54	BSC	
L	0.125	0.200	3.18	5.05	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. This dimension does not include mold flash or protrusions.

	INCH	ES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.210		5.33	
A ₂	0.115	0.195	2.93	4.95	
b	0.014	0.022	0.356	0.558	
b ₁	0.045	0.070	1.15	1.77	
C	0.008	0.015	0.204	0.381	
D	0.845	0.925	21.47	23.49	2
E	0.300	0.325	7.62	8.25	
E1	0.240	0.280	6.10	7.11	2
e	0.100	BSC	2.54	BSC	
L	0.125	0.200	3.18	5.05	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	

- NOTES 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. This dimension does not include mold flash or protrusions.

.

N-20

	INCHES		MILLIM	MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.210		5.33	
A ₂	0.115	0.195	2.93	4.95	
b	0.014	0.022	0.356	0.558	
b ₁	0.045	0.070	1.15	1.77	
C	0.008	0.015	0.204	0.381	
D	0.925	1.060	23.50	26.90	2
E	0.300	0.325	7.62	8.25	
E1	0.240	0.280	6.10	7.11	2
e	0.100	BSC	2.54	BSC	
L	0.125	0.200	3.18	5.05	
L ₁	0.150		3.81		
٥	0.015	0.060	0.38	1.52	

- NOTES
- Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. This dimension does not include mold flash or protrusions.

P-20A 20-Lead Plastic Leaded Chip Carrier (PLCC)

	INCH	ES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.385	0.395	9.78	10.02	
В	0.385	0.395	9.78	10.02	
С	0.165	0.180	4.19	4.57	
D	0.025	0.040	0.64	1.01	
E	0.085	0.110	2.16	2.79	
F	0.013	0.021	0.33	0.53	
G	0.050	BSC	1.27 BSC		
Н	0.026	0.032	0.66	0.81	
J	0.015	0.025	0.38	0.63	
к	0.290	0.330	7.37	8.38	
R	0.350	0.356	8.89	9.04	
U	0.350	0.356	8.89	9.04	
v	0.042	0.048	1.07	1.21	
w	0.042	0.048	1.07	1.21	
x	0.042	0.056	1.07	1.42	
Y		0.020	1	0.50	

P-28A 28-Lead Plastic Leaded Chip Carrier (PLCC)

	INCH	ES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.485	0.495	12.32	12.57	
В	0.485	0.495	12.32	12.57	
С	0.165	0.180	4.19	4.57	L
D	0.025	0.040	0.64	1.01	
E	0.085	0.110	2.16	2.79	
F	0.013	0.021	0.33	0.53	
G	0.050	BSC	1.27 BSC		
н	0.026	0.032	0.66	0.81	
J	0.015	0.025	0.38	0.63	
К	0.390	0.430	9.91	10.92	
R	0.450	0.456	11.43	11.58	
U	0.450	0.456	11.43	11.58	
v	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
X	0.042	0.056	1.07	1.42	
Y		0.020		0.50	

	IN	CHES	MILLIN	MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A		0.200		5.08	
b	0.014	0.023	0.36	0.58	7
b ₁	0.030	0.070	0.76	1.78	2,7
C	0.008	0.015	0.20	0.38	7
D		0.405		10.29	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	6
e	0.090	0.110	2.29	2.79	8
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
٥	0.015	0.060	0.38	1.52	3
S		0.055		1.35	5
S ₁	0.005		0.13		5
α	0°	15°	0°	15°	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b_1 may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- 6. Lead center when α is 0°. E1 shall be measured at the centerline of the leads.
- All leads increase maximum limit by 0.003"(0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 8. Six spaces.

	IN	CHES	MILLIN	IETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	7
b ₁	0.030	0.070	0.76	1.78	2,7
C	0.008	0.015	0.20	0.38	7
D		0.785		19.94	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	6
e	0.090	0.110	2.29	2.79	8
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5
α	0°	15°	0°	15°	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b_1 may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- 6. Lead center when α is 0°. E1 shall be measured at the centerline of the leads.
- All leads increase maximum limit by 0.003" (0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 8. Twelve spaces.

Q-16 16-Lead Cerdip

	IN	CHES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	7
b ₁	0.030	0.070	0.76	1.78	2,7
C	0.008	0.015	0.20	0.38	7
D		0.840		21.34	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	6
e	0.090	0.110	2.29	2.79	8
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.080		2.03	5
S ₁	0.005		0.13		5
α	0°	15°	0°	15°	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension $b_1\ may$ be 0.023" (0.58mm) for all four corner leads only.
- Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- 6. Lead center when α is 0°. E1 shall be measured at the centerline of the leads.
- All leads increase maximum limit by 0.003"(0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 8. Fourteen spaces.

Q-18 18-Lead Cerdip

	INC	NCHES MILLIME		ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α		0.200		5.08	
b	0.014	0.023	0.36	0.58	7
b ₁	0.030	0.070	0.76	1.78	2,7
C	0.008	0.015	0.20	0.38	7
D		0.960		24.38	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	6
e	0.090	0.110	2.29	2.79	8
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5
α	0°	15°	0°	15°	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- The minimum limit for dimension b₁ may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- 6. Lead center when α is 0°. E1 shall be measured at the centerline of the leads.
- All leads increase maximum limit by 0.003"(0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 8. Sixteen spaces.

Q-24

	IN	CHES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A		0.200		5.08	
b	0.014	0.023	0.36	0.58	7
b ₁	0.030	0.070	0.76	1.78	2,7
C	0.008	0.015	0.20	0.38	7
D		1.280		32.51	4
E	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	6
e	0.090	0.110	2.29	2.79	8
L	0.125	0.200	3.18	5.08	
L ₁	0.150		3.81		
Q	0.015	0.060	0.38	1.52	3
S		0.098		2.49	5
S ₁	0.005		0.13		5
α	0°	15°	0°	15°	

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
- 2. The minimum limit for dimension b_1 may be 0.023" (0.58mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. Applies to all four corners.
- 6. Lead center when α is 0°. E1 shall be measured at the centerline of the leads.
- All leads increase maximum limit by 0.003"(0.08mm) measured at the center of the flat, when hot solder dip lead finish is applied.
- 8. Twenty-two spaces.

R-8 8-Lead Small Outline (SOIC)

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.188	0.198	4.77	5.03	
В	0.150	0.158	3.81	4.01	
C	0.089	0.107	2.26	2.72	
D	0.014	0.022	0.36	0.56	
F	0.018	0.034	0.46	0.86	
G	0.050 BSC		1.27 BSC		
J	0.007	0.015	0.18	0.38	
к	0.005	0.011	0.125	0.275	
L	0.195	0.205	4.95	5.21	
Р	0.224	0.248	5.69	6.29	

TO-92

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.170	0.210	4.58	5.33	
C	0.016	0.019	0.407	0.482	
φD	0.175	0.205	4.96	5.20	
e	0.095	0.105	2.42	2.66	
e ₁	0.045	0.055	1.15	1.39	
E	0.125	0.165	3.94	4.19	
J	0.175	0.205	4.96	5.20	
L	0.500		12.70		
L ₁		0.050		1.27	1
S	0.080	0.105	2.42	2.66	

16

Y-10 10-Lead Single In-Line Package (SIP)

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.123	0.150	3.12	3.81	
A ₁	0.038	0.042	0.97	1.07	
b	0.016	0.020	0.41	0.51	
b ₁	0.040	0.070	1.02	1.78	
C	0.009	0.012	0.23	0.31	
D	1.566	1.586	39.78	40.28	
E	0.990	1.050	25.15	26.67	
E1	0.750 REF		19.05 REF		
E ₂	0.810 REF		20.57 REF		
е	0.100 BSC		2.54 BSC		
L ₁	0.150	0.350	3.81	8.89	
Q	0.060	0.080	1.52	2.03	
S	0.780 REF		19.51 REF		
S ₁	0.115 REF		2.92 REF		

NOTE 1. Metal tab is electrically insulated from circuitry.

Appendix Contents

Page

Ordering Guide	17 – 2
Product Families Still Available	17 – 4
Substitution Guide for Product Families No Longer Available	17 – 5
Technical Publications	17 – 6
Worldwide Service Directory	17 – 8
Ordering Guide

INTRODUCTION

This Ordering Guide should make it easy to order Analog Devices products, whether you're buying one IC op amp, a multi-option subsystem, or 1000 each of 15 different items. It will help you:

- 1. Find the correct part number for the options you want.
- 2. Get a price quotation and place an order with us.
- 3. Know our warranty for components and subsystems.

For answers to further questions, call the nearest sales office (listed at the back of the book) or our main office in Norwood, Mass. U.S.A. (617-329-4700).

MODEL NUMBERING

Many of the data sheets in the Databook for products having a number of standard options contain an Ordering Guide. Use it to specify the correct part number for the exact combination of options you want. I.C. and hybrid part numbers are created using one of these two systems:

Figure 1 shows the form of model number used for our proprietary standard monolithic ICs and many of our hybrids. It consists of an "AD" (Analog Devices) prefix, a 3-to-5-digit model number*, an alphabetic performance/temperature-range designator and a package designator. One or two additional letters may immediately follow the digits ("A" for second-generation redesigned ICs, "DI" for dielectrically isolated CMOS switches, e.g., AD536AJH, AD7512DIKD).

Figure 2 shows the somewhat different numbering scheme used by our Computer Labs Division for some hybrid circuits. The number starts with a three-character alphabetic prefix, followed by a hyphen, a three- or four-digit number, and alphabetic designators (as applicable) to indicate additional functional designations or options and packaging options.

Figure 1. Model-Number Designations for Standard Analog Devices Monolithic and Hybrid IC Products. S, T and U Grades have the Added Suffix, /883B for Devices that Qualify to the Latest Revision of MIL-STD-883, Level B.

*For some models, the combination [digit][letter][two or three digits] is used instead of ADXXXX, e.g., 2S80.

Figure 2. Computer Labs Video Hybrid Product Designations

SECOND SOURCE

In addition to our many proprietary products, we also manufacture devices that are fit-, form-, and function-compatible (and often superior in performance and reliability) to popular products that originated elsewhere. For such products, we usually add the prefix "AD" to the familiar model number (example: ADDAC85C-CBI-V).

ORDERING FROM ANALOG DEVICES

When placing an order, please provide specific information regarding model type, number, option designations, quantity, ship-to and bill-to address. Prices quoted are list; they do not include applicable taxes, customs, or shipping charges. All shipments are F.O.B. factory. Please specify if air shipment is required.

Place your orders with our local sales office or representative, or directly with our customer service group located in the Norwood facility. Orders and requests for quotations may be telephoned, sent via TWX or TELEX, or mailed. Orders will be acknowledged when received; billing and delivery information is included.

Payments for new accounts, where open-account credit has not yet been established, will be C.O.D. or prepaid. On all orders under fifty dollars (\$50.00), a five-dollar (\$5.00) processing charge is required.

When prepaid, orders should include \$2.50 additional for packaging and postage (and a 5% sales tax on the price of the goods if you are ordering for delivery to a destination in Massachusetts).

WARRANTY AND REPAIR CHARGE POLICIES

All Analog Devices, Inc., products are warranted against defects in workmanship and materials under normal use and service for one year from the date of their shipment by Analog Devices, Inc., except that components obtained from others are warranted only to the extent of the original manufacturers' warranties, if any, except for component test systems, which have a 180-day warranty, and μ MAC and MACSYM systems, which have a 90-day warranty. This warranty does not extend to any products which have been subjected to misuse, neglect, accident, or improper installation or application, or which have been repaired or altered by others. Analog Devices' sole liability and the Purchaser's sole remedy under this warranty is limited to repairing or replacing defective products. (The repair or replacement of defective products does not extend the warranty period. This warranty does not apply to components which are normally consumed in operation or which have a normal life inherently shorter than one year.) Analog Devices, Inc., shall not be liable for consequential damages under any circumstances.

THE FOREGOING WARRANTY AND REMEDY ARE IN LIEU OF ALL OTHER REMEDIES AND ALL OTHER WARRANTIES, WRITTEN OR ORAL, STATUTORY, EXPRESS, OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

APPENDIX 17-3

Product Families Not Included in the Databook (But Still Available)

The information published in this Databook is intended to assist the user in choosing components for the design of *new* equipment, using the most cost-effective products available from Analog Devices. The popular product types listed below may have been designed into your circuits in the past, but they are no longer likely to be the most economic choice for your new designs. Nevertheless, we recognize that it is often a wise choice to refrain from redesigning proven equipment, and we are continuing to make these products available for use in existing designs or in designs for which they are uniquely suitable. Data sheets on these products are available upon request.

Modei	Model	Model	Model	Mode
AD101	AD7522	DA\$1128	SDC1702/RDC1702	234
AD108/208/308	AD7523	DAS1150	SDC1704/RDC1704	235
AD108A/208A/308A	AD7525	DA\$1151	SDC1711/RDC1711	260
AD111/211/311	AD7530	DAS1155	SDC1721	261
AD293	AD7531	DA\$1156	SDC1725/RDC1725	272
AD294	AD7541	DRC1765/66	SDC1726/RDC1726	273
AD351	AD7546	DSC1705/06	SDC1768/RDC1768	275
AD370/371	AD7550	DTM1716/17	SHA-1A	276
AD503	AD7552	HAS-0802	SHA-2A	277
AD506	AD7571	HAS-1002	SHA-4	285
AD510	AD7574	HDD-1409	SHA-5	288
AD515	AD ADC-816	HDH-0802	SHA-1114	310
AD518	ADC-8S	HDH-1003	SHA-1134	311
AD528	ADC-10Z	HDH-1205	SHA-1144	424
AD530	ADC-12QZ	HDL-3806	SSCT1621	426
AD531	ADC-14I/17I	HDS-0810E	STM Series	428
AD533	ADC1100	HDS-0820	TSL1612	429
AD535	ADC1102	HDS-1015E	2B24	432
AD545	ADC1105	HDS-1025	2B34	433
AD567	ADC1111	HDS-1240E	2B52	434
AD611	ADC1133	HDS-1250	2B53	435
AD651	ADC1143	IPA1751	2B56	436
AD801	ADC-QM	IRDC1730	2B57A-1	440
AD2004	AD DAC-08	IRDC1731	2B58A	442
AD2006	ADG201	IRDC1732	2B59A	450
AD2008	ADSHC-85	IRDC1733	2820	452
AD2009	API1620/1718	MATV-0811	40	454
AD2016	BDM 1615/16	MATV-0816	43	456
AD2020	BDM 1617	MATV-0820	44	458
AD2022	CAV-0920	MCI1794	45	460
AD2023	CAV-1210	MDA-10Z	46	606
AD2033	DAC-M	MOD-1005	48	610
AD2036	DAC-QS	MOD-1020	50	752
AD2037	DAC-QZ	OSC1754	51	756
AD2038	DAC-10Z	RDC1721	52	903
AD2040	DAC1009	RTM Series	118	906
AD3554	DAC1106	SAC1763	141	915
AD3860	DAC1108	SBCD1752/53	165	926
AD6012	DAC1132	SBCD1756/57	171	944
AD7110	DAC1146	SCDX1623	183	946
AD7118	DAC1420	SCM1677	230	947
AD7520	DAC1422	SDC1604	232	959
AD7521	DAC1423	SDC1700/RDC1700	233	968

Substitution Guide for Product Families No Longer Available

The products listed in the left-hand column are no longer available from Analog Devices. In many cases, comparable functions and performance may be obtained with newer models, but – as a rule – they are not directly interchangeable. The closest recommended Analog Devices equivalent, physically and electrically, is listed in the right-hand column. If no equivalent is listed, or for further information, contact your local sales office.

	Closest
Recommended Recommended	Recommended
Model Equivalent Model Equivalent Model	Equivalent
AD501 AD711 DAC1118 None 2N3954	None
AD502 AD711 DAC1122 AD7541 2N5900	None
AD505 AD509 DAC1125 AD7533 41	AD515
AD508 AD517 HDL-3805 HDL-3806 47	48
AD511 AD711 HTC-0500 HTC-0300 101 (Module)	45
AD512 AD711 IDC1703 IRDC1730/1731 102	48
AD513 AD711 MAH-0801 HAS-0802 106	118
AD514 AD711 MAH-1001 HAS-1002 107	118
AD516 AD711 MAS-0801 HAS-0802 108	52
AD520 AD524 MAS-1001 HAS-1002 110	48
AD523 AD549 MAS-1202 HAS-1202 111	AD308
AD546 AD711 MDA-LB None 114	119
AD555 AD7519 MDA-LD None 115	43
AD559 None MDA-UB None 120	50
AD612 AD524 MDA-UD None 142	48
AD614 AD524 MDA-8H MDA-10Z 143	52
AD810-813 None MDA-10H MDA-10Z 146	AD382
AD814-816 None MDA-11MF AD7521 149	50
AD818 None MDH-0870 None 153	AD517
AD820-822 None MDH-000 None 161	165
AD830-833 None MDH-1202 None 163	165
AD835-839 None MDB1120 A016 105	171
AD1408 None MDM-5001 HDM-1210 180	AD OP-07
AD1508 None MDM-1101 HDM-1210 220	734
AD2003 AD2021 MDS.0815 None 231	237
AD2021 MD5-0015 None 274	255
AD_{2025} None MD_{5} , O_{12} None D_{202} None MD_{5} , O_{12} None MD_{5} , O_{12} None D_{202} None MD_{5} , O_{12} None MD_{5	204J 286J
AD2027 None MDS-0850 HDS-0820 280	2801
AD2028 None MDS-0200 None 2201	201 202A
AD5010/6020 AD9000 MD5-1020E None 2831	2024
AD7115 None MDS-12040 HDS-1025 4 301 (Module)	52
AD7513 None MDS-1040 HDS-1025 301 (Module)	310 (Module)
AD7516 AD7510DI MDS-1080 HD5-1025 502 AD7516 AD7510DI MDS-1040 None 350	None
AD7519 None MDS-1240 100 550	124
$\frac{1100000}{427}$	417524
AD754 None MDSL 1002 HDSL 1025 602110	AD524
AD7555 None MDSL-1025 None 6028/100	AD524
AD7550 None MDSL-1001 HDS.1250 603	AD524
AD7570 None MDSL-1250 None 605	AD524
AD7583 None PTL1200 RTL711 Series 901	AD324 904
ADC1103 None DTI 1201 RTI-111 Geries 007	021
ADC1109 None PTI 1202 RTL711 008	021
ADC1102 Note R11202 R1711 200 ADC1121 $AD7550$ SEDDEY $MAC-5000$ 900	921
AD DAC100 None SHALA None 931	None
$\frac{1}{4} D(2)(0) \qquad \text{None} \qquad SHA = SHA = 1144 \qquad 022$	None
ADM501 ADM501/506 THC 0200 HTC-0300 922	None
ADISO1 ADIS11 THE 750 Mices 025	None
ADSHM-5 HTC-0300 THC-1500 None 042	None
CAV_1020 MOD 1020 THS 0025 HTC_0300 040	047
$DAC_{100F} N_{000} THS 0060 HTC_0300 948$	None
DAC-10H DAC-107 TUS 0225 Name 071	021
DAC1112 DAC120S TSDC1608-1611 TSL 1612	721

Technical Publications

TECHNICAL PUBLICATIONS

Analog Devices provides a wide array of FREE technical publications. These include Data Sheets for all products, Catalogs, Application Notes and Guides and four serial publications: Analog Productlog, a digest of new-product information; DSPatchTM, a newsletter about digital signal-processing (applications); Analog Briefings, current information about products for military/avionics and the status of reliability at ADI; and Analog Dialogue, our technical magazine, with in-depth discussions of products, technologies and applications.

In addition to the free publications, three technical Handbooks, and Synchro & Resolver Conversion, are available at reasonable cost. System and subsystem products are supported with hardware, software and user documentation, at prices related to content.

Brief descriptions of typical publications appear below. For copies of any items, to subscribe to any of our free serials or to request any other publications, please get in touch with Analog Devices or the nearest sales office.

CATALOGS

DATA ACQUISITION PRODUCTS DATABOOKS. Contain selection guides, data sheets and other useful information about all Analog Devices ICs, hybrids, modules and subsystem components recommended for new designs. The 1988 series consists of:

DATA CONVERSION PRODUCTS DATABOOK – 1988. Data Sheets and Selection Guides on D/A, A/D, V/F, and F/V Converters, Sample-Track/Hold Amplifiers, Voltage References, Multiplexers & Switches, Synchro-Resolver Converters, Data-Acquisition Subsystems, Application-Specific ICs. (Available FREE with the Linear Products Databook as a 2-volume set.)

DSP PRODUCTS DATABOOK – 1987. Data Sheets, Selection Guides and Application Notes on DSP Microprocessors, Microcoded Support Components, Floating-Point Components and Fixed-Point Components. Available FREE.

LINEAR PRODUCTS DATABOOK – 1988. Data Sheets and Selection Guides on Op Amps, Instrumentation Amplifiers, Isolators, RMS-to-DC Converters, Multipliers/Dividers, Log/ Antilog Amplifiers, RMS-to-DC Converters, Comparators, Temperature-Measuring Components and Transducers, Special Function Components, Digital Panel Instruments, Signal-Conditioning Components and Subsystems. (Available FREE with the Conversion Products Databook as a 2-volume set.)

1987 MILITARY PRODUCTS DATABOOK. 704 pages of information and data on products processed in accordance with MIL-STD-883C Class B.

APPLICATION NOTES AND GUIDES

Application Notes. All are available individually upon request.

- A/D Converters:
 - "AD670 8-Bit A/D Converter Applications."
 - "Exploring the AD667 12-Bit Analog Output Port."
 - "Interfacing the AD7572 to High-Speed DSP Processors."
 - "The AD7574 Analog-to-Microprocessor Interface."

Amplifiers:

- "An IC Amplifier User's Guide to Decoupling, Grounding, and Making Things Go Right for a Change."
- "Applications of High-Performance BiFET Op Amps."
- "A User's Guide to IC Instrumentation Amplifiers"
- "How to Select Operational Amplifiers."
- "How to Test Basic Operational Amplifier Parameters."
- "Low-Cost, Two-Chip Voltage-Controlled Amplifier and Video Switch."
- "Using the AD9610 Transimpedance Amplifier."
- D/A Converters:
 - "AD7528 Dual 8-Bit CMOS DAC."
 - "Analog Panning Circuits Provide Almost Constant Output Power."
 - "CMOS DACs and Operational Amplifiers Combine to Build Programmable-Gain Amplifiers." In two parts.
 - "CMOS DACs in the Voltage Switching Mode Can Work from a Single Supply."
 - "CMOS D/A Converter Circuits for Single +5-Volt Supplies."
 - "14-Bit DACs (AD7534/AD7535) Maintain High Performance Over Extended Temperature Range."
 - "Gain Error and Tempco of CMOS Multiplying DACs."
 - "Interfacing the AD7549 Dual 12-Bit DAC to the MCS-48 and MCS-51 Microcomputer Families."
 - "Methods for Generating Complex Waveforms and Vectors Using Multiplying D/A Converters."
 - "Simple Interface Between D/A Converter and Microcomputer Leads to Programmable Sine-Wave Oscillator."
 - "The AD7224 DAC Provides Programmable Voltages Over Varying Ranges."
- Digital Signal Processing (Note: Eight additional DSP Application Notes will be found in the DSP Products Databook):
 - "A Guide to Designing Microcoded Circuits." "Implement a Writeable Control Store in Your
 - Word-SliceTM System." "Variable-Width Bit Reversing with the ADSP-1410
 - Address Generator."

Resolver-to-Digital Conversion:

- "Dynamic Characteristics of Tracking Converters."
- "Dynamic Resolution-Switching on the 1S74 Resolver-to-Digital Converter."
- "Resolver-to-Digital Conversion A Simple and Cost-Effective Alternative to Optical Shaft Encoders."
- "Why the Velocity Output of the 1S74 and 1S64 Series R/D Converters is Continuous and Step-Free Down to Zero Speed."

Sample-Holds:

- "Applying IC Sample-Hold Amplifiers."
- "Generate 4 Channels of Analog Output Using AD7542 12-Bit D/A Converters and Control It All with Only Two Wires."
- Switches:
 - "ADG201A/202A and ADG221/222 Performance with Reduced Power Supplies."

Analog DSPatch is a trademark of Analog Devices, Inc.

V/F Converters:

- "Operation and Applications of the AD654 IC V-to-F Converter."
- "Analog-to-Digital Conversion Using Voltage-to-Frequency Converters (AD651)."

Application Guides. All are available upon request. Analog CMOS Switches and Multiplexers. A 16-page short-form guide to high-speed CMOS switches, CMOS switches with dielectric isolation, and CMOS multiplexers. Also included are reliability data and information on single-supply operation.

Applications Guide for Isolation Amplifiers and Signal Conditioners. A 20-page guide to specifications and applications of galvanically isolated amplifiers and signal conditioners for industrial, instrumentation, and medical applications.

CMOS DAC Application Guide 2nd Edition by Phil Burton (1986 - 63 pages). Introduction to CMOS DACs, Inside CMOS DACs, Basic Application Circuits in Current-Steering Mode, Single-Supply Operation Using Voltage-Switching Mode, The Logic Interface, Applications.

ESD Prevention Manual – Protecting ICs from electrostatic discharges. Thirty pages of information that will assist the reader in implementing an appropriate and effective program to assure protection against electrostatic discharge (ESD) failures.

High-Speed Data Conversion – A 24-page short-form guide to video and other high-speed A/D and D/A converters and accessories, in forms ranging from monolithic ICs to card-level products.

RMS-to-DC Conversion Application Guide 2nd Edition by C. Kitchin and L. Counts (1986 – 61 pages). RMS-DC Conversion: Theory, Basic Design Considerations; RMS Application Circuits; Testing Critical Parameters; Input Buffer Amplifier Requirements; Programs for Computing Errors, Ripple, and Settling Time.

Surface Mount IC - A 28-page guide to ICs in SO and PLCC packages. Products include op amps, rms-to-dc converters, DACs, ADCs, VFCs, sample-holds, and CMOS switches.

ADSP-2100 SUPPORT PUBLICATIONS – for the ADSP-2100 single-chip digital signal processor, available at no charge for single copies.

ADSP-2100 USER'S MANUAL – Introduction, Architecture, System Interface, Instruction Set, Appendix – 180 pages.

ADSP-2100 CROSS-SOFTWARE MANUAL – Development System, System Builder, Assembler, Linker, Simulator, PROM Splitter, Appendix – 102 pages.

ADSP-2100 APPLICATIONS HANDBOOK – Introduction, Fixed Point Arithmetic, Floating-Point Arithmetic, Fixed-Coefficient Digital Filters, FFTs, Adaptive Filters, Image Processing, Linear Predictive Speech Coding, High-Speed MODEM Algorithms, Bibliography – 178 pages. **BOOKS** – Can be purchased from Analog Devices, Inc.; send check for indicated amount to One Technology Way, P.O. Box 796, Norwood, MA 02062. If more than one book is ordered, deduct a discount of \$1 from the price of each book.

ANALOG-DIGITAL CONVERSION HANDBOOK: Third Edition, by the Engineering Staff of Analog Devices, edited by Daniel H. Sheingold. Englewood Cliffs, NJ: Prentice-Hall (1986). A comprehensive guide to A/D and D/A converters and their applications. This third edition of our classic is in hardcover and has more than 700 pages, an Index, a Bibliography, and much new material, including: video-speed, synchro-resolver, V/F, high-resolution, and logarithmic converters, ICs for DSP, and a "Guide for the Troubled." Seven of its 22 chapters are totally new. \$32.95

NONLINEAR CIRCUITS HANDBOOK: Designing with Analog Function Modules and ICs, by the Engineering Staff of Analog Devices, edited by Daniel H. Sheingold. Norwood MA: Analog Devices, Inc. (1974). A 540-page guide to multiplying and dividing, squaring and rooting, rms-to-dc conversion, and multifunction devices. Principles, circuitry, performance, specifications, testing, and application of these devices – 325 illustrations. \$5.95

SYNCHRO & RESOLVER CONVERSION, edited by Geoff Boyes. Norwood MA: Analog Devices, Inc. (1980). Principles and practice of interfacing synchros, resolvers, and Inductosyns* to digital and analog circuitry. \$11.50

TRANSDUCER INTERFACING HANDBOOK: A Guide to Analog Signal Conditioning, edited by Daniel H. Sheingold. Norwood MA: Analog Devices, Inc. (1980). A book for the electronic engineer who must interface transducers for temperature, pressure, force, level, or flow to electronics, these 260 pages tell how transducers work – as circuit elements – and how to connect them to electronic circuits for effective processing of their signals. \$14.50

Worldwide Service Directory

North America

Alabama

(205) 536-1506

Alaska

*(206) 251-9550 *(714) 641-9391 **Arizona** (602) 949-0048

*(303) 590-9952 Arkansas

*(214) 231-5094

California

*(714) 641-9391 *(408) 559-2037 *(619) 268-4621

Colorado (303) 443-5337 *(719) 590-9952

Connecticut (516) 673-1900 *(617) 329-4700

Delaware *(215) 643-7790

Florida

(305) 855-0843 (305) 724-6795 (813) 963-1076

Georgia (404) 449-7662

Hawaii

*(714) 641-9391

Idaho

(303) 443-5337 *(303) 590-9952 *(206) 251-9550

Illinois (312) 520-0710

Indiana (317) 244-7867

lowa (319) 373-0200

Kansas (913) 829-2800

Kentucky (615) 459-0743

*(617) 329-4700 Louisiana

*(214) 231-5094 Maine

*(617) 329-4700 Maryland *(301).992-1994

Massachusetts *(617) 329-4700

Michigan (313) 559-9700 Minnesota (612) 835-2414

Mississippi (205) 536-1506

Missouri (314) 521-2044

Montana (801) 466-9336 *(714) 641-9391

Nebraska (913) 829-2800

Nevada (505) 828-1300 *(408) 559-2037 *(714) 641-9391

New Hampshire *(617) 329-4700

New Jersey (516) 673-1900 *(617) 329-4700 *(215) 643-7790

New Mexico (505) 828-1300 *(303) 590-9952

New York (516) 673-1900 (716) 425-4101 North Carolina (919) 373-0380

North Dakota (612) 835-2414

Ohio (216) 248-4995 *(614) 764-8795

Oklahoma *(214) 231-5094

Oregon *(206) 251-9550

Pennsylvania *(215) 643-7790 *(614) 764-8795

Rhode Island *(617) 329-4700

South Carolina (919) 373-0380

South Dakota (612) 835-2414

Tennessee (205) 536-1506 (615) 459-0743

Texas *(214) 231-5094 Utah (801) 466-9336

*(303) 590-9952 Vermont *(617) 329-4700

Virginia *(301) 992-1994

Washington *(206) 251-9550

West Virginia *(614) 764-8795

Wisconsin (414) 784-7736

Wyoming (801) 466-9336

Puerto Rico *(617) 329-4700

Canada (416) 821-7800 (613) 729-0023 (514) 697-0804 (604) 941-7707

Mexico

*(617) 329-4700

*Analog Devices, Inc. Direct Sales Offices

International

Australia

(03)5750222 (02)8888777 (619)2422000

Austria *(222)885504

Belgium *(3)2371672

Brazil (11)531-9355

Denmark *(2)845800

Finland (0)8041041

France

*(1)46873411 *(76)222190 *(61)408562 *(99)535200 *(83)515200

Holland *(1620)81500

Hong Kong (5)8339013

India

(212)53880 (11)611823 (812)560506

Ireland *(932)232222 (United Kingdom)

Israel *(052)911415 *(052)914461

Italy

*(2)6883831 *(6)8393405 *(11)6504572 (2)9520551 (51)555614 (49)633600 (6)390083 (11)599224 (55)894105

Japan *(3)2636826 *(6)3721814

Korea (82)7841144

Malaysia *(617)329-4700 Mexico (83)351721 (83)351661

New Zealand (9)592629

Norway (3)847099

People's Republic of China – Beijing (1)890721, Ext. 120

Romania *(222)885504 (Austria)

Singapore (65)2848537

South Africa (11)882-1300

Spain (1)7543001 (3)3007712

Sweden *(8)282740

Switzerland *(22)315760 (18)200102

Taiwan (2)5018231

United Kingdom *(932)232222

*(01)9411066

- *(635)35335
- *(506)30306
- *(021)5011166
- *(0279)418611

United States of America

*(617) 329-4700

- West Germany
- *(89)570050 *(4181)8051 *(721)616075 *(30)316441
- *(221)686006
- Yugoslavia

*(222)885504 (Austria)

*Analog Devices, Inc. Direct Sales Offices

WORLDWIDE HEADQUARTERS

One Technology Way, P.O. Box 9106, Norwood, Massachusetts 02062-9106 U.S.A. Tel: (617) 329-4700, TWX: (710) 394-6577; FAX: (617) 326-8703, Telex: 924491 Cable: ANALOG NORWOODMASS

17-10 APPENDIX

Product Index

Alpha-Numeric by Model Number

Model Page*	Model	Page*
AC2626	AD538	L 6-23
AD101	AD539	L 6-31
AD108/208/308	AD542	L 2-47
AD108A/208A/308A	AD545	C 14 4 L 17 4
AD202/204 I. 5-7	AD545	L 2-47
•AD210	AD548	L 2-55
AD293	• AD549	L 2-63
AD294	•AD557	C 2-41
AD295	AD558	C 2-45
•AD345	AD561	C 2-53
AD346	AD562	C 2-57
AD362	AD565A	C 2-61
AD363	AD566A	C 2-61
AD364	AD567	C 14-4, L 17-4
AD365	•AD568	C 2-69
AD367	AD569	C 2-81
•AD368	AD570	C 3-39
AD369	AD571	C 3-39
AD370/371	AD572	C 5-43
AD376	AD574A	C 3-61
AD380	AD575	C 3-73
AD381	AD578	C 3-81
AD382	AD579	C 3-87
AD389	AD580	C 8-5
AD390		
•AD392	AD582	
AD395 C 2-25	AD583	C 8-15
•AD396	AD585	C 6-23
AD503	•AD586	C 8-23
AD506	• AD587	C 8-31
AD507	AD588	C 8-39
AD509	AD589	C 8-51
ADS10	AD592	L 10-7
•AD515A I. 2-35	AD592	L 11-5
AD517	AD595	L 11-5
AD518	AD596	L 11-13
AD521	AD597	L 11-13
AD522	AD611	C 14-4, L 17-4
AD524	AD624	L 4-49
•AD526	AD625	L 4-61
AD530 C 14-4, L 17-4	AD050	ц.9-9 І.6-39
AD531	AD636	L 8-11
AD532	AD637	L 8-17
AD533	AD639	L 9-17
AD534	AD642	L 2-75
AD535	AD644	L 2-81
AD536A	AD647	L 2-87
AD557	AD648	L.2-93

*C = Data Conversion Products Databook, D = DSP Products Databook, L = Linear Products Databook. •New product since publication of 1986 Data Acquisition Databook Update and Selection Guide.

Model Pa	age* Model Page*
AD650	4-13 AD2008 C 14-4, L 17-4
AD651	17-4 AD2009
•AD652	4-25 AD2010
AD654	4-41 AD2016
•AD664	2-93 AD2020
AD667	-105 AD2021
•AD668	-113 AD2022
AD670	3-93 AD2023
AD673	-105 AD2026
•AD674A	-113 AD2033
•AD678	-123 AD2036
•AD679	-135 AD2037
•AD681	6-29 AD2038
•AD683	6-29 AD2040
•AD689	8-55 AD2050
AD693	1-19 AD2051
•AD707	-103 AD2060
•AD708	-105 AD2061
AD711	-107 AD2070
AD712	-119 AD2071
•AD713	-131 AD2700/2701/2702
•AD736	8-25 AD2710/2712
•AD737	8-29 AD3554
AD741 Series	-133 AD3860
•AD744	-137 AD5200 Series
•AD746	-149 AD5210 Series
•AD767	-117 AD5240
•AD770	-147 •AD5539
•AD790	3-5 AD6012
AD801	17-4 AD7110
•AD821	-153 AD7111
•AD834	6-43 AD7118
•AD840	-157 AD7224
•AD841	-159 AD7225
•AD842	-161 AD7226 C 2-159
•AD845	-163 •AD7228 C 2-165
•AD846	-165 AD7245 C 2-173
•AD847	-177 AD7248 C 2-173
•AD848	-179 AD7501 C 7-5
•AD849	-181 AD7502 C. 7-5
•AD890	9-29 AD7503 C 7-5
•AD891	9-35 AD7506 C 7-7
•AD1139 C 2-	-125 AD7507 C 7-7
•AD1145	-131 AD7510DI
AD1147	-137 AD7511DI
AD1148 C 2-	-137 AD7512DI C 7-9
AD1170 C 3-	-155 AD7520 C 14-4 L 17-4
•AD1175K C 3-	-167 AD7521
•AD1332	-175 AD7522 C 14-4 I 17-4
•AD1376	-179 AD7523 C 14-4 J 17-4
•AD1380	-187 AD7524 C 2 187
AD1403/1403A	8-63 AD7525 C 14 A T 17 A
AD2004	$17.4 \text{AD7528} \qquad \qquad$
AD2006	17-4 AD7530 C 14.4 T 17.4

,

 $\label{eq:conversion} \begin{array}{l} \star C = Data \ Conversion \ Products \ Databook, \ D = DSP \ Products \ Databook, \ L = Linear \ Products \ Databook. \\ \bullet New \ product \ since \ publication \ of \ 1986 \ Data \ Acquisition \ Databook \ Update \ and \ Selection \ Guide. \end{array}$

Model	Page*	Model Page*
AD7531 .	C 14-4, L 17-4	AD9700
AD7533 .		•AD9701
AD7534 .		AD9702
AD7535 .		•AD9703
AD7536 .		AD9768
AD7537 .		•AD96685/87
•AD7538 .		AD ADC $11/2$
AD7541 .		AD ADC80
AD7541A	C 2 222	AD ADC 816 C 14.4 L 17.4
AD7542 .	C 2-237	ADC-88 C 14.4 L 17.4
AD7545 .	C 2-241	ADC-107 C 14-4 L 17-4
•AD7545A	C 2-245	ADC-120Z C 14-4, L 17-4
AD7546	C 14-4. L 17-4	ADC-14I/17I
AD7547 .	C 2-249	ADC1100
AD7548 .		ADC1102
AD7549 .		ADC1105
AD7550 .		ADC1111
AD7552		ADC1130/1131
•AD7569 .		ADC1133
AD7571 .		ADC1140
AD7572 .		ADC1143
AD7574 .		ADC-QM
AD7575 .		AD DAC-08
AD7576 .		AD DAC71/72
AD7578 .		AD DAC80
•AD7579 .		AD DAC85
•AD7580 .		AD DAC87
AD7581 .		ADG201
AD7582 .		ADG201A
AD7590DI		ADG202A
AD7591DI		•ADG211A
AD7592DI	C 2 272	•ADG212A
•AD7628 .		ADG221
AD7820	C_{2}	ADG506A C 7 29
AD7820 .	C 3.205	•ADG507A
AD7824	C 3-305	•ADG508A C 7-27
AD7828	C 3-305	•ADG509A
AD7845 .		•ADG526A
•AD7870 .		•ADG527A
•AD7878 .		•ADG528A
AD9000 .		•ADG529A
•AD9002 .		ADLH0032G/CG
•AD9003 .		ADLH0033G/CG
•AD9012 .		AD OP-07
•AD9500 .		AD OP-27
•AD9502 .		AD OP-37
•AD9521 .		•ADREF01
•AD9610 .		•ADREF02
•AD9611 .	L 2-207	ADSHC-85
AD9685/87	(L 3-9	ADSP-1008A
●AD9686 .		ADSP-1009A
●AD9688 .		ADSP-1010A

 $\label{eq:conversion} \begin{array}{l} \star C = Data \ Conversion \ Products \ Databook, \\ \mathbf{D} = DSP \ Products \ Databook, \\ \mathbf{L} = Linear \ Products \ Databook. \\ \bullet New \ product \ since \ publication \ of \ 1986 \ Data \ Acquisition \ Databook \ Update \ and \ Selection \ Guide \\ \end{array}$

PRODUCT INDEX 18-3

Model Page*	Model Page*
ADSP-1012A	DA\$1157
ADSP-1016A	DAS1158
ADSP-1024A	DAS1159
ADSP-1080A	DRC1745/46
ADSP-1081A	DRC1765/66
ADSP-1101	DSC1705/06
ADSP-1110A	DTM1716/17
ADSP-1401	HAS-0802
ADSP-1410	HAS-1002
•ADSP-2100	HAS-1201
•ADSP-3128	HAS-1202/1202A
•ADSP-3201/02	HAS-1204
ADSP-3210/11	HAS-1409
•ADSP-3212	HDD-1206
ADSP-3220/21	HDD-1409
•ADSP-3222	HDG-0407
•ADSP-7018	HDG-0807
•ADSP-8018 D 5-53	HDG Series
ADVFC32	HDH-0802
AP11620/1718 C 14-4, L 17-4	HDH-1003
BDM 1615/1616 C 14-4, L 17-4	HDH-1205
BDM 1617	HDL-3806
CAV-0920	HDM-1210
CAV 1040	HDS-0810E
•CAV-1202	$HDS_{1015E} = C_{14,4} L_{17,4}$
CAV-1210 C 14-4 J 17-4	HDS-1015E
CAV-1220 C 3-419	HDS-1025
DAC-M	HDS-1250 C 2-345
DAC-OS C 14-4 L 17-4	HDS-050/050A/050C
DAC-OZ	HOS-060 L 2-251
DAC-08 (see AD DAC-08)	HOS-100AH/SH
DAC-10Z	•HOS-200
DAC71/72 (see AD DAC71/72)	НТС-0300А
DAC80 (see AD DAC80)	HTS-0010
DAC85 (see AD DAC85)	HTS-0025
DAC87 (see AD DAC87)	IPA1751
DAC1009 C 14-4, L 17-4	IPA1764
DAC1106	IRDC1730
DAC1108	IRDC1731
DAC1132	IRDC1732
DAC1136	IRDC1733
DAC1138	•LTS-2020
DAC1146	MATV-0811
DAC1420	MATV-0816
DAC1422 $U = 17.4$	MATV-0820
ΔS_{1128} C 14.4 L 17.4	MDA 107
DAS1150 C 14 4 L 17 4	MOD 1005 C 14.4 L 17.4
DAS1150	MOD-1005
DAS1157	MOD-1020
DAS1153	OSC1754 C 14.4 L 17.4
DAS1155	OSC1758
DAS1156	RDC1721

*C = Data Conversion Products Databook, D = DSP Products Databook, L = Linear Products Databook. •New product since publication of 1986 Data Acquisition Databook Update and Selection Guide.

Model Pa	age*	Model	Page*
RDC1740/1741/1742	5-19	2B55	L 11-81
RTM Series	17-4	2B56	C 14-4, L 17-4
SAC1763	17-4	2B57A-1	C 14-4, L 17-4
SBCD1752/53	17-4	2B58A	C 14-4, L 17-4
SBCD1756/57	17-4	2B59A	C 14-4, L 17-4
SCDX1623	17-4	2B Series	L 11-87
SCM1677	17-4	2820	C 14-4, L 17-4
SDC1604	17-4	2850	C 5-49
SDC1700/RDC1700	17-4	•2\$54	C 5-51
SDC1702/RDC1702	17-4	•2856	C 5-51
SDC1704/RDC1704	17-4	•2\$80	C 5-59
SDC1711/RDC1711	17-4	•2581	C 5-71
SDC1721	17-4	•2582	C 5-83
SDC1725/RDC1725	17-4	3B Series	L 11-89
SDC1/26/RDC1/26	17-4	4B Series	L 11-93
SDC1/40/1/41/1/42	5-19	• >B Series	L 11-95
SDC1/68/RDC1/68	17-4	•5570	
SHA-IA	17-4	•)5/2	· · · · · · · · · · · · · · · · · · ·
SHA-2A	17-4	40	C 14-4, L 17-4
SHA-4	17-4	45	C 14-4, L 17-4
SHA-5	17-4	44	C 14-4, L 17-4
SHA-1114	17-4	45	C 14-4, L 17-4
SHA1144 C 14-4, L	17-4	40	C 14-4, L 17-4
SECT1621 C 14.4 L	17-4	40 · · · · · · · · · · · · · · · · · · ·	C 14-4, L 17-4
STM Sarias $C = 14.4$ L	17-4	50	C 14-4, L 17-4
TSI 1612 C 14.4 I	17-4	51	C 14-4, L 17-4
•1821 I 1	1,-4	118	C 14-4, L 17-4
•1B27	1-35	141	C 14-4, L 17-4
•1B31 I 1	1-37	165	C 14-4, L 17-4
•1B32 I. 1	1-45	171	C 14-4, L 17-4
•1B41	1-53	183	C 14-4, L 17-4
•1B51	1-55	230	C 14-4, L 17-4
1S14	5-25	232	C 14-4, L 17-4
1S20	5-33	233	C 14-4, L 17-4
1S24	5-25	234	C 14-4, L 17-4
1S40	5-33	235	C 14-4, L 17-4
1\$44	5-25	260	C 14-4, L 17-4
1860	5-33	261	C 14-4, L 17-4
1861	5-33	272	C 14-4, L 17-4
1864	5-25	273	C 14-4, L 17-4
1874	5-41	275	C 14-4, L 17-4
2B20	1-59	276	C 14-4, L 17-4
2B22	1-63	277	C 14-4, L 17-4
2B23	1-67	284J	L 5-33
2B24	17-4	285	C 14-4, L 17-4
2B30	1-71	286J/281	L 5-39
2B31	1-71	288	C 14-4, L 17-4
2B34	17-4	289	L 5-45
2B35	14-1	290A/292A	L 5-51
2B50	1-77	310	C 14-4, L 17-4
2B52	17-4	311	C 14-4, L 17-4
2B53	17-4	424	C 14-4, L 17-4
2B34	1-81	426	U 14-4, L 1/-4

*C = Data Conversion Products Databook, D = DSP Products Databook, L = Linear Products Databook. •New product since publication of 1986 Data Acquisition Databook Update and Selection Guide.

428 C 14-4, L 17-4 923 C 11-1, L 14 429 C 14-4, L 17-4 925 C 11-1, L 14 432 C 14-4, L 17-4 926 C 11-1, L 14 433 C 14-4, L 17-4 926 C 11-1, L 14 434 C 14-4, L 17-4 928 C 11-1, L 14 435 C 14-4, L 17-4 940 C C 11-2, L 14 436 C 14-4, L 17-4 941 C C 11-2, L 14	e*
428 C 14-4, L 17-4 923 C 11-1, L 14 429 C 14-4, L 17-4 925 C 11-1, L 14 432 C 14-4, L 17-4 926 C 11-1, L 14 433 C 14-4, L 17-4 926 C 11-1, L 14 434 C 14-4, L 17-4 927 C 11-1, L 14 435 C 14-4, L 17-4 928 C C 11-1, L 14 436 C 14-4, L 17-4 940 C C 11-2, L 14	-
429 C 14-4, L 17-4 925 C 11-1, L 14 432 C 14-4, L 17-4 926 C 14-4, L 17-4 433 C 14-4, L 17-4 926 C 14-4, L 17-4 434 C 14-4, L 17-4 927 C 11-1, L 14 435 C 14-4, L 17-4 928 C 11-1, L 14 436 C 14-4, L 17-4 940 C 11-2, L 14	4-1
432 C 14-4, L 17-4 926 C 14-4, L 17-4 433 C 14-4, L 17-4 927 C 11-1, L 14 434 C 14-4, L 17-4 928 C 11-1, L 14 435 C 14-4, L 17-4 928 C 11-1, L 14 436 C 14-4, L 17-4 940 C 11-2, L 14	4-1
433 C 14-4, L 17-4 927 C 11-1, L 14 434 C 14-4, L 17-4 928 C 11-1, L 14 435 C 14-4, L 17-4 928 C 11-1, L 14 436 C 14-4, L 17-4 940 C 11-2, L 14 941 C 11-2, L 14 14 941 C 11-2, L 14	7-4
434 C 14-4, L 17-4 928 C 11-1, L 14 435 C 14-4, L 17-4 940 C 11-2, L 14 436 C 14-4, L 17-4 941 C 11-2, L 14	4-1
435 C 14-4, L 17-4 940 C 11-2, L 14 436 C 14-4, L 17-4 941 C 11-2, L 14	4-1
436	4-2
	4-2
440	4-2
442	7-4
450	4-2
451 C 4-53 946 C 14-4 L 17	7-4
452	7-4
453	1 -2
454	4-2
456	4-1
458 C 14-4 L 17-4 953 C 11-2 L 14	4-2
460 C 14-4 L 17-4 955 C 11-1 L 14	4-1
606 C 14-4 L 17-4 958 C 11-2 L 14	4-2
C 14.4 L 17.4 959 C 14.4 L 17.	7-4
C 14.4 L 17.4 960 C 11.2 L 14	1_7
755/759 1.7-11 962 1.1-2 1.4	4-2
756 C 14.4 I 17.4 964 C 11.2 I 14	1.2
757 I 7-15 965 C 11-2 I 14	1_2
002/002-2 C 11-1 L 14-1 966 C 11-2 L 14	4-2
903 C 14.4 L 17.4 967 C 11-2 L 14	1_2
904	7_4
905 C 11.1 L 14.1 970 C 11.1 L 14	4_1
906 C 14.4 L 17.4 972 C 11-1 L 14	4.1
	4.1
(11, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	4-1
$\begin{array}{c} (11, 1, 14, 1, 975) \\ (11, 14, 14, 14, 1, 975) \\ (11, 14, 14, 14, 14, 14, 14, 14, 14, 14, $	1.1
922 C11-1, 1, 14-1 976 C11-1, 1, 1, 1, 1, 1	4 1

.

.

 $\label{eq:conversion} \begin{array}{l} \star C = Data \ Conversion \ Products \ Databook, \ D = DSP \ Products \ Databook, \ L = Linear \ Products \ Databook. \\ \bullet New \ product \ since \ publication \ of \ 1986 \ Data \ Acquisition \ Databook \ Update \ and \ Selection \ Guide. \end{array}$

WORLDWIDE HEADQUARTERS

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: (617) 329-4700, Twx: (710) 394-6577, Telex: 924491, Cable: ANALOG NORWOODMASS

G1183-150-4/88